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Preface

DISC, the International Symposium on DIStributed Computing, is an annual
forum for presentation of research on all facets of distributed computing, inclu-
ding the theory, design, analysis, implementation, and application of distributed
systems and networks. The 20th anniversary edition of DISC was held on Sep-
tember 18-20, 2006, in Stockholm, Sweden.

There were 145 extended abstracts submitted to DISC this year, and this vo-
lume contains the 35 contributions selected by the Program Committee and one
invited paper among these 145 submissions. All submitted papers were read and
evaluated by at least three Program Committee members, assisted by external
reviewers. The final decision regarding every paper was taken during the Pro-
gram Committee meeting, which took place in Beer-Sheva, June 30 and July 1,
2006.

The Best Student Award was split and given to two papers: the paper “Ex-
act Distance Labelings Yield Additive-Stretch Compact Routing Schemes,” by
Arthur Bradly, and Lenore Cowen, and the paper “A Fast Distributed Appro-
ximation Algorithm for Minimum Spanning Trees” co-authored by Maleq Khan
and Gopal Pandurangan.

The proceedings also include 13 three-page-long brief announcements (BA).
These BAs are presentations of ongoing works for which full papers are not ready
yet, or of recent results whose full description will soon be or has been recently
presented in other conferences. Researchers use the BA track to quickly draw
the attention of the community to their experiences, insights and results from
ongoing distributed computing research and projects. The BAs included in this
proceedings volume were selected among 26 BA submissions.

DISC 2006 was organized in cooperation with the European Association for
Theoretical Computer Science (EATCS), the European Research Consortium
for Informatics and Mathematics (ERCIM), and Swedish Institute of Compu-
ter Science (SICS). The support of Ben-Gurion University, Microsoft Research,
Intel, Sun microsystems, Deutsche Telekom Laboratories is also gratefully ack-
nowledged.

July 2006 Shlomi Dolev
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Exploring Gafni’s Reduction Land: From $2*
to Wait-Free Adaptive (2p — [} ])-Renaming
Via k-Set Agreement

Achour Mostefaoui, Michel Raynal, and Corentin Travers

TRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
{achour, raynal, ctravers}@irisa.fr

Abstract. The adaptive renaming problem consists in designing an al-
gorithm that allows p processes (in a set of n processes) to obtain new
names despite asynchrony and process crashes, in such a way that the
size of the new renaming space M be as small as possible. It has been
shown that M = 2p—1 is a lower bound for that problem in asynchronous
atomic read/write register systems.

This paper is an attempt to circumvent that lower bound. To that
end, considering first that the system is provided with a k-set object,
the paper presents a surprisingly simple adaptive M-renaming wait-free
algorithm where M = 2p—[7]. To attain this goal, the paper visits what
we call Gafni’s reduction land, namely, a set of reductions from one object
to another object as advocated and investigated by Gafni. Then, the
paper shows how a k-set object can be implemented from a leader oracle
(failure detector) of a class denoted £2%. To our knowledge, this is the first
time that the failure detector approach is investigated to circumvent the
M = 2p—1 lower bound associated with the adaptive renaming problem.
In that sense, the paper establishes a connection between renaming and
failure detectors.

1 Introduction

The renaming problem The renaming problem is a coordination problem initially
introduced in the context of asynchronous message-passing systems prone to
process crashes [3]. Informally, it consists in the following. Each of the n processes
that define the system has an initial name taken from a very large domain [1..N]
(usually, n << N). Initially, a process knows only its name, the value n, and
the fact that no two processes have the same initial name. The processes have to
cooperate to choose new names from a name space [1..M] such that M << N
and no two processes obtain the same new name. The problem is then called
M -renaming.

Let t denote the upper bound on the number of processes that can crash.
It has been shown that ¢ < n/2 is a necessary and sufficient requirement for
solving the renaming problem in an asynchronous message-passing system [3].
That paper presents also a message-passing algorithm whose size of the renaming
space is M =n +t.

S. Dolev (Ed.): DISC 2006, LNCS 4167, pp. 1-15, 2006.
© Springer-Verlag Berlin Heidelberg 2006



2 A. Mostefaoui, M. Raynal, and C. Travers

The problem has then received a lot of attention in the context of asynchro-
nous shared memory systems made up of atomic read/write registers. Numer-
ous wait-free renaming algorithms have been designed (e.g., [2,4,5,6]). Wait-free
means here that a process that does not crash has to obtain a new name in a
finite number of its own computation steps, regardless of the behavior of the
other processes (they can be arbitrarily slow or even crash) [12]. Consequently,
wait-free implies £ = n — 1. An important result in such a context, concerns the
lower bound on the new name space. It has been shown in [13] that there is no
wait-free renaming algorithm when M < 2n — 1. As wait-free (2n — 1)-renaming
algorithms have been designed, it follows that that M = 2n — 1 is a tight lower
bound.

The previous discussion implicitly assumes the “worst case” scenario: all the
processes participate in the renaming, and some of them crash during the algo-
rithm execution. The net effect of crashes and asynchrony create “noise” that
prevents the renaming space to be smaller than 2n — 1. But it is not always the
case that all the processes want to obtain a new name. (A simple example is
when some processes crash before requiring a new name.) So, let p, 1 < p < n,
be the number of processes that actually participate in the renaming. A renam-
ing algorithm guarantees adaptive name space if the size of the new name space
is a function of p and not of n. Several adaptive wait-free algorithms have been
proposed that are optimal as they provide M = 2p — 1 (e.g., [2,4,6]).

¢

The question addressed in the paper. Let us assume that we have a solution
to the consensus problem. In that case, it easy to design an adaptive renaming
algorithm where M = p (the number of participating processes). The solution is
as follows. From consensus objects, the processes build a concurrent queue that
provides them with two operations: a classical enqueue operation and a read
operation that provides its caller with the current content of the queue (without
modifying the queue). Such a queue object has a sequential specification and
each operation can always be executed (they are total operations according to
the terminology of [12]), from which it follows that this queue object can be
wait-free implemented from atomic registers and consensus objects [12]. Now, a
process that wants to obtain a new name does the following: (1) it deposits its
initial name in the queue, (2) then reads the content of the queue, and finally
(3) takes as its new name its position in the sequence of initial names read from
queue. It is easy to see that if p processes participate, they obtain the new names
from 1 to p, which means that consensus objects are powerful enough to obtain
the smallest possible new name space.

The aim of the paper is to try circumventing the lower bound M = 2p — 1
associated with the adaptive wait-free renaming problem, by enriching the un-
derlying read/write register system with appropriate objects. More precisely,
given M with p < M < 2p — 1, which objects (when added to a read/write
register system) allow designing an M-renaming wait-free algorithm (without
allowing designing an (M — 1)-renaming algorithm). The previous discussion on
consensus objects suggests to investigate k-set agreement objects to attain this
goal, and to study the tradeoff relating the value of £ with the new renaming
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space. The k-set agreement problem is a distributed coordination problem (k
defines the coordination degree it provides the processes with) that generalizes
the consensus problem: each process proposes a value, and any process that does
not crash must decide a value in such a way that at most k distinct values are
decided and any decided value is a proposed value. The smaller the coordination
degree k, the more coordination imposed on the participating processes: k = 1
is the more constrained version of the problem (it is consensus), while k = n
means no coordination at all.

From k-set to (2p — [} ])-renaming. Assuming k-set agreement base objects,
and p < n participating processes, the paper presents an adaptive wait-free
renaming algorithm providing a renaming space whose size is M = (2p — [ ]).
Interestingly, when considering the two extreme cases we have the following:
k =1 (consensus) gives M = p (the best that can be attained), while ¥ = n (no
additional coordination power) gives M = 2p — 1, meeting the lower bound for
adaptive renaming in read/write register systems.

The proposed algorithm follows Gafni’s reduction style [9]. It is inspired by the
adaptive renaming algorithm proposed by Borowsky and Gafni [6]. In addition
to k-set objects, it also uses simple variants of base objects introduced in [6,7,10],
namely, strong k-set agreement [7], k-participating set [6,10]. These objects can
be incrementally built as follows: (1) base k-set objects are used to build k-
participating set objects, and then (2) k-participating set objects, are used to
solve (2p — [¥])-renaming.

The renaming algorithm that we obtain is surprisingly simple. It is based
on a very well-known basic strategy: decompose a problem into independent
subproblems, solve each subproblem separately, and finally piece together the
subproblem results to produce the final result. More precisely, the algorithm
proceeds as follows:

- (1) Using a k-participating set object, the processes are partitioned into inde-
pendent subsets of size at most k.

- (2) In each partition, the processes compete in order to acquire new names
from a small name space. Let h be the number of processes that belong to a
given partition.They obtain new names in the space [1..2h — 1].

- (3) Finally, the name spaces of all the partitions are concatenated in order to
obtain a single name space [1..M].

The key of the algorithm is the way it uses a k-participating set object to
partition the p participating processes in such a way that, when the new names
allocated in each partition are pieced together, the new name space is upper
bounded by M = (2p—[7]) Interestingly, the processes that belong to the same
partition can use any wait-free adaptive renaming algorithm to obtain new names
within their partition (distinct partitions can even use different algorithms).
This noteworthy modularity property adds a generic dimension to the proposed
algorithm.

From the oracle £2° to k-set objects. Unfortunately, k-set agreement objects
cannot be wait-free implemented from atomic registers [7,13,17]. So, the paper
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investigates additional equipment the asynchronous read/write register system
has to be enriched with in order k-set agreement objects can be implemented.
To that aim, the paper investigates a family of leader oracles (denoted here
(£2%)1<2<n), and presents a k-set algorithm based on read/write registers and
any oracle of such a class £2%.

So, the paper provides reductions showing that adaptive wait-free (2p — [} 1)-
renaming can be reduced to the 2* leader oracle class. To our knowledge, this is
the first time that oracles (failure detectors) are proposed and used to circumvent
the 2p — 1 adaptive renaming space lower bound. Several problems remain open.
The most crucial is the statement of the minimal information on process crashes
that are necessary and sufficient for bypassing the lower bound 2p — 1.

Roadmap. The paper is made up of 5 sections. Section 2 presents the asyn-
chronous computation model. Then, Section 3 describes the adaptive renaming
algorithm. This algorithm is based on a k-participating set object. Section 4
visits Gafni’s reduction land by showing how the k-participating set object can
be built from a k-set object. Then, Section 5 describes an algorithm that con-
structs a k-set object in an asynchronous read/write system equipped with a
leader oracle of the class £2F.

2 Asynchronous System Model

Process model. The system consists of n processes that we denote p1,...,pn-
The integer ¢ is the index of p;. Each process p; has an initial name id; such
that id; € [1..N]. Moreover, a process does not know the initial names of the
other processes; it only knows that no two processes have the same initial name.
A process can crash. Given an execution, a process that crashes is said to be
faulty, otherwise it is correct in that execution. Each process progresses at its
own speed, which means that the system is asynchronous.

In the following, given a run of an algorithm, p denotes the number of processes
that participate in that run, 1 < p < n. (To participate, a process has to execute
at least one operation on a shared object.)

Coordination model. The processes cooperate and communicate through two
types of reliable objects: atomic multi-reader /single-write registers, and k-set ob-
jects. A k-set object KS provides the processes with a single operation denoted
kset propose; (). It is a one-shot object in the sense that each process can invoke
KS kset propose () at most once. When a process p; invokes KS.kset propose, (v),
we say that it “proposes v” to the k-set object KS. If p; does not crash during
that invocation, it obtains a value v’ (we then say “p; decides v"”). A k-set object
guarantees the following two properties: a decided value is a proposed value, and
no more than k distinct values are decided.

Notation. Identifiers with upper case letters are used to denote shared registers
or shared objects. Lower case letters are used to denote local variables; in that
case the process index appears as a subscript. As an example, level;[j] is a local
variable of the process p;, while LEVEL[j] is an atomic register.
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3 An Adaptive (2p — [} ])-Renaming Algorithm

3.1 Non-triviality

Let us observe that the trivial renaming algorithm where p; takes i as its new
name is not adaptive, as the renaming space would always be [1..m], where m
is the greatest index of a participating process (as an example consider the case
where only p; and p, are participating). To rule out this type of ineffective
solution, we consider the following requirement for a renaming algorithm [5]:

— The code executed by process p; with initial name id is exactly the same as
the code executed by process p; with initial name id.

This constraint imposes a form of anonymity with respect to the process
initial names. It also means that there is a strong distinction between the index
1 associated with p; and its original name id;. The initial name id; can be seen
as a particular value defined in p;’s initial context. Differently, the index 7 can
be seen as a pointer to the atomic registers that can be written only by p;. This
means that the indexes define the underlying “communication infrastructure”.

3.2 k-Participating Set Object

The renaming algorithm is based on a k-participating set object. Such an object
generalizes the participating set object defined in [6].

Definition. A k-participating set object PS is a one-shot object that provides
the processes with a single operation denoted participating set; (). A process
p; invokes that operation with its name id; as a parameter. The invocation
PS .participating set, (id;) returns a set S; to p; (if p; does not crash while exe-
cuting that operation). The semantics of the object is defined by the following
properties [6,10]:

Self-membership: Vi: id; € S;.

— Comparability: Vi,j: S; € S; V S; C S;.

Immediacy: Vi, j: (id; € S;) = (S; € 5;).

Bounded simultaneity: ¥¢: 1 <{¢<n:|[{j : |S;|=¢} <k.

The set .S; obtained by a process p; can be seen as the set of processes that,
from its point of view, have accessed or are accessing the k-participating set
object. A process always sees itself (self-membership). Moreover, such an object
guarantees that the S; sets returned to the process invocations can be totally
ordered by inclusion (comparability). Additionally, this total order is not at all
arbitrary: it ensures that, if p; sees p; (i.e., id; € S;) it also sees all the processes
seen by p; (Immediacy). As a consequence if id; € S; and id; € S;, we have
S; = Sj. Finally, the object guarantees that no more than k processes see the
same set of processes (Bounded simultaneity). As we will see later (Section 3.2),
such an object can be constructed from k-set objects.



6 A. Mostefaoui, M. Raynal, and C. Travers

Table 1. An example of k-participating object (p =10 < n, k = 3)

level stopped processes S sets
10 D5,D9 Ss = So = {p1, P2, P3, P4, D5, D6, D7, D8, P9, P10 }
9 empty level
8 D1, P3, P10 S1 = S3 = Si0 = {p1,p2, P3, P4, D6, D7, P8, P10 }
7 empty level
6 empty level
5 D2, Ps S2 = Sg = {p2,p4, ps, P7, P8}
4 empty level
3 p7 S7 = {pa, ps, p7}
2 P4, Pé S4s = S6 = {p4,pe}
1 empty level

Notation and properties. Let S; be the set returned to p; after it has invoked
participating set;,(id;), and ¢ = |S;| (notice that 1 < ¢ < n). The integer ¢ is
called the level of p;, and we say “p; is -or stopped- at level £”. If there is a
process p; such that |S;| = ¢, we say “the level ¢ is not empty”, otherwise we
say “the level £ is empty”. Let £ be the set of non-empty levels ¢, |£| = m < n.
Let us order the m levels of £ according to their values, i.e., {1 < ly < -+ < lp,
(this means that the levels in {1,...,n}\ {¢1,..., 4.} are empty).

|S;| = ¢ (p; stopped at level £) means that, from p; point of view, there are
exactly £ processes that (if they do not crash) stop at the levels ¢ such that
1 < ¢ < (. Moreover, these processes are the processes that define S;. (It is
possible that some of them have crashed before stopping at a level, but this fact
cannot be known by p;.) We have the following properties:

— If p processes invoke participating set; (), no process stops at a level higher
than p.
— (|Si| =191 =¢) = (Si=S;) (from the comparability property).
— Let S; and S; such that |S;| = ¢, and |S;| = ¢, with ¢, < ¢,.
e S; C S; (from ¢, < ¢, and the comparability property).
e |S;\Si| =|S;|—|Si| = €y, — £, (consequence of the set inclusion S; C S;).

A k-participating set object can be seen as “spreading” the p < n participating
processes on at most p levels £. This spreading is such that (1) there are at
most k processes per level, and (2) each process has a consistent view of the
spreading (where “consistent” is defined by the self-membership, comparability
and immediacy properties). As an example, let us consider Table 1 that depicts
the sets S; returned to p = 10 processes participating in a k-participating set
object (with k = 3), in a failure-free run. As we can see some levels are empty.
Two processes, po and pg, stopped at level 5; their sets are equal and contain
exactly five processes, namely the processes that stopped at a level < 5.

The next lemma captures an important property provided by a k-participating
set object. Let ST[¢;] = {j such that |S;| = ¢;} (the processes that have
stopped at the level £;). For consistency purpose, let £y = 0.
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Lemma 1. |ST[(,]| < min(k, y — lp—1).

Proof. |ST[¢;]| < k follows immediately from the bounded simultaneity prop-
erty. To show |ST[(,]| < ¢y — £5_1, let us consider two processes p; and p; such
that p; stops at the level £, while p; stops at the level £,_;. We have:

1. |Sj] =4, and |S;| = £,—1 (definition of “a process stops at a level”).

2. ST[t;] € S; (from the self-membership and comparability properties),

3. STt,]NS; = 0 (from S; # S; and the immediacy and self-membership
properties),

4. ST[l;] € S;\ S; (from the items 2 and 3),

. 185\ Si| = €y — €51 (previous discussion),

. |ST]| < €y — €y—1 (from the items 4 and 5). ]

D Ot

Lemma 1

Considering again Table 1, let us assume that the processes pi1, ps and pig
have crashed while they are at level ¢ = 8, and before determining their sets S,
S3 and S1p. The level £ = 8 is now empty (as no process stops at that level),
and the levels 10 and 5 are now consecutive non-empty levels. We have then
ST[10] = {ps,po}, ST[5] = {p2,ps}, and |ST[10]| = 2 < min(k, 10 — 5).

3.3 An Adaptive Renaming Protocol

The adaptive renaming algorithm is described in Figure 1. When a process p;
wants to acquire a new name, it invokes new name(id;). It then obtains a new
name when it executes line 05. Remind that p denotes the number of processes
that participate in the algorithm.

Base objects. The algorithm uses a k-participating set object denoted PS, and
a size n array of adaptive renaming objects, denoted RN[1..n].

Each base renaming object RN[y] can be accessed by at most k processes.
It provides them with an operation denoted rename(). When accessed by h <
k processes, it allows them to acquire new names within the renaming space
[1..2h — 1]. Interestingly, such adaptive wait-free renaming objects can be built
from atomic registers (e.g., [2,4,6]). As noticed in the introduction, this feature
provides the proposed algorithm with a modularity dimension as RN[y] and
RN|[y'] can be implemented differently.

The algorithm: principles and description. The algorithm is based on the fol-
lowing (well-known) principle.

— Part 1. Divide for conquer.

A process p; first invokes PS.participating set, (id;) to obtain a set S; sat-
isfying the self-membership, comparability, immediacy and bounded simul-
taneity properties (line 01). It follows from these properties that (1) at most
k processes obtain the same set S (and consequently belong to the same
partition), and (2) there are at most p distinct partitions.

An easy and unambiguous way to identify the partition p; belongs to is
to consider the level at which p; stopped in the k-participating set object,
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namely, the level £ = |S;]. The h < k processes in the partition ¢ = |S;]
compete then among themselves to acquire a new name. This is done by
p; invoking the appropriate renaming object, i.e., RN [|S;|].rename(id;) (line
03). As indicated before, these processes obtain new names in renaming space
[1..2h — 1].

operation new name(id;):

(1) Si « PS.participating set, (id;);
(2) base; — (2 x |Ss| = [511);

(3) offset; < RN [|Si|].rename(id;);
(4) myname; < base; — offset; + 1;
(5) return(myname;)

Fig. 1. Generic adaptive renaming algorithm (code for p;)

— Part 2. Piece together the results of the subproblems.

The final name assignment is done according to very classical (base,offset)
rule. A base is attributed to each partition as follows. The partition £ = |S;|
is attributed the base 2 x |S;| — [Iiil] (line 02). Let us notice that no two
partitions are attributed the same base. Then, a process p; in partition £
considers the new name obtained from RN[{] as an offset (notice that an
offset in never equal to 0). It determines its final new name from the base
and offset values it has been provided with, considering the name space
starting from the base and going down (line 04).

3.4 Proof of the Algorithm

Lemma 2. The algorithm described in Figure 1 ensures that no two processes
obtain the same new name.

Proof. Let p; be a process such that |S;| = £,. That process is one of the | ST[¢,]|
processes that stop at the level £, and consequently use the underlying renaming
object RN[{;]. Due to the property of that renaming object, p; computes a
value offset; such that 1 < offset; < 2 x |ST[¢;]| — 1. Moreover, as |[ST[(,]| <
min(k, ¢, — £;—1) (Lemma 1), the previous relation becomes 1 < offset; < 2 x
min(k, by — ly_1).

On another side, the renaming space attributed to the processes p; of ST[¢,]
starts at the base 2¢, — [%*] (included) and goes down until 24,_; — fexk‘l]
(excluded). Hence the size of this renaming space is

20— et = (171 =T10),

It follows from these observations that a sufficient condition for preventing

conflict in name assignment is to have

2 x min(k, by — ly_1) — 1 < 2(ly — ly_y) — (M;} - f%q).
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We prove that the algorithm satisfies the previous relation by considering two
cases according to the minimum between k and ¢, — ¢, _1. Let

lo=qo ktry with0<r, <k (ie, [7}51 € {0,1})), and

lot = Gor k7o wWith0<re 1 <k (ie., (”];11 € {0,1}),

from which we have £, —ly—1 = (qz — Gu—1) b+ (1o — T2—1)-

— Case b, —l,_1 <k.
In that case, the relation to prove simplifies and becomes [ %] — flxk‘ 1<,
e, (qu+[7]) = (qe—1+ 73" ]) < 1, that can be rewritten as (gz — gz—1) +
(MFT=1""D <1
Moreover, from €, — ly—1 = (qz — Guo—1) k+ (re —72—-1) and £, — b1 < k,
we have (¢ — qz—1) k + (1o — 72—1) < k from which we can extract two
subcases:

e Case g —qz—1=1land r, =7,_1.
In that case, it trivially follows from the previous formulas that (g, —

Ge—1) + ([T =17 "1) <1, which proves the lemma for that case.

e Case ¢z = g1 and 0 <7, —rp_1 <k.
In that case we have to prove [ =[] < 1. As [, [ ™' ] € {0, 1},
we have [7x] — [ '] < 1, which proves the lemma for that case.

— Case k < ly —ly_1.
After simple algebraic manipulations, the formula to prove becomes:

(2 = D@ = qo1 = 1) + 200 = o) = (1= 177 1T) 2 0.

Moreover, we have now £, — ly—1 = (qz — qu—1) k + (T2 — ro—1) > k, from
which, as 0 < r,,r,_1 < k, we can conclude ¢, — q;—1 > 1. We consider two
cases.
® Gy —(p—1 = 1.
- Tx—
The formula to prove becomes 2(ry —7,-1) > [ =[]
From ¢, — ¢,_1 > k we have:
* Ty > Ty_1, from which (as r, and r,_; are integers) we conclude

Q(Tm — Tx—l) Z 2.
* 1> [ >[7 1] >0, from which we conclude [*] =[] < 1.

By combining the previous relations we obtain 2 > 1 which proves the
lemma for that case.
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® Gy —qGy—1 > 1. Let ¢ — gu—1 = 1 + a (where « is an integer > 1).
The formula to prove becomes
T Too
(2k = Da+2(rs —rpmn) = ([ 711711 20,
As 0 < rg,ry—1 <k, the smallest value of r,, — 7,1 is —(k—1). Similarly,
the greatest value of [7] — [ "] is 1.
It follows that, the smallest value of the left side of the formula is (2k —
DNDa—2k-1)—-1=2ka—2k+a)+1=02k—-1)(a—1). Ask>1
and a > 1, it follows that the left side is never negative, which proves
the lemma for that case.

DLemma 2
Theorem 1. The algorithm described in Figure 1 is a wail-free adaptive (2p —
[21])-renaming algorithm (where p < n is the number of participating processes).

Proof. The fact that the algorithm is wait-free is an immediate consequence of
the fact that base k-set participating set object and the base renaming objects
are wait-free. The fact that no two processes obtain the same new name is
established in Lemma 2.

If p processes participate in the algorithm, the highest level at which a process
stops is p (this follows from the properties of the k-set participating set object).
Consequently, the largest base that is used (line 02) is 2p— [} ], which establishes
the upper bound on the renaming space. Orheorem 1

4 Visiting Gafni’s Land: From k-Set to k-Participating
Set

This section presents a wait-free transformation from a k-set agreement object to
a k-participating set object. It can be seen as a guided visit to Gafni’s reduction
land [6,7,10]. Let us recall that a k-set object provides the processes with an
operation kset propose().

4.1 From Set Agreement to Strong Set Agreement

Let us observe that, given a k-set object, it is possible that no process decides
the value it has proposed. This feature is the “added value” provided by a strong
k-set agreement object: it is a k-set object (i.e., at most k different values are
decided) such that at least one process decides the value it has proposed [7]. The
corresponding operation is denoted strong kset propose;().

In addition to a k-set object KS, the processes cooperate by accessing an array
DEC|1..n] of one-writer/multi-reader atomic registers. That array is initialized
to [L,...,1]. DECIi] can be written only by p;. The array is provided with a
snapshot() operation. Such an operation returns a value of the whole array as if
that value has been obtained by atomically reading the whole array [1]. Let us
remind that such an operation can be wait-free implemented on top of atomic
read/write base registers.
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The construction (introduced in [7]) is described in Figure 2. A process p; first
proposes its original name to the underlying k-set object KS, and writes the value
it obtains (an original name) into DECTi] (line 01). Then, p; atomically reads
the whole array (line 02). Finally, if it observes that some process has decided
its original name id;, p; also decides id;, otherwise p; decides the original name
it has been provided with by the k-set object (lines 03-04).

operation strong kset propose, (id;) :

(1) DECIi] < KS .kset propose,(id;);

(2) dec;[1..n] < snapshot(DEC|[1..n]);

(3) if (3h: deci[h] = id;) then decision; — id; else decision; — dec;[i] endif;
(4) return(decision;)

Fig. 2. Strong k-set agreement algorithm (code for p;)

4.2 From Strong Set Agreement to k-Participating Set

The specification of a k-participating set object has been defined in Section 3.2.
The present section shows how such an object PS can be wait-free implemented
from an array of strong k-set agreement objects; this array is denoted SKS[1..n].
(This construction generalizes the construction proposed in [10] that considers
n =3 and k = 2.) In addition to the array SKS[1..N] of strong k-set agreement
objects, the construction uses an array of one-writer/multi-reader atomic regis-
ters denoted LEVELI[1..n]. As before only p; can write LEVEL[i]. The array is
initialized to [n + 1,...,n +1].

The algorithm is based on what we call Borowski-Gafni’s ladder, a wait-free
object introduced in [6]. It combines such a ladder object with a k-set agreement
object in order to guarantee that no more than k processes, that do not crash,
stop at the same step of the ladder.

Borowsky-Gafni’s Ladder. Let us consider the array LEVEL[1..n| as a ladder.
Initially, a process is at the top of the ladder, namely, at level n + 1. Then it
descends the ladder, one step after the other, according to predefined rules until
it stops at some level (or crashes). While descending the ladder, a process p;
registers its current position in the ladder in the atomic register LEVEL[i].
After it has stepped down from one ladder level to the next one, a process p;
computes a local view (denoted view;) of the progress of the other processes in
their descent of the ladder. That view contains the processes p; seen by p; at
the same or a lower ladder level (i.e., such that level;[j] < LEVELIi]). Then, if
the current level £ of p; is such that p; sees at least £ processes in its view (i.e.,
processes that are at its level or a lower level) it stops at the level £ of the ladder.
This behavior is described by the following algorithm [6]:
repeat LEVEL[i| — LEVEL[i] — 1;
for j € {1,...,n} do level;[j] — LEVEL[j] end do;
view; «— {j : level;[j] < LEVELIi]};
until (Jview;| > LEVEL[i]) end repeat;
let S; = view;; return(S;).
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This very elegant algorithm satisfies the following properties [6]. The sets S;
of the processes that terminate the algorithm, satisfy the self-membership, com-
parability and immediacy properties of the k-participating set object. Moreover,
if |S;| = ¢, then p; stopped at the level ¢, and there are £ processes whose current
level is < /4.

From a ladder to a k-participating set object. The construction, described in
Figure 3, is nearly the same as the construction given in [10]. It uses the previous
ladder algorithm as a skeleton to implement a k-participating set object. When
it invokes participating set, (), a process p; provides its original name as input
parameter. This name will be used by the underlying strong k-participating set
object. The array INIT NAME][1..n] is initialized to [L,..., L]. INIT NAME]i|
can be written only by p;.

operation participating sety (id;)

(1) INIT NAMEJi) — id;;

(2) repeat LEVEL[i] — LEVEL[i] — 1,

(3) for j € {1,...,n} do level;[j] — LEVEL[j] end do;
(4) view; — {j : level;[j] < LEVEL][i]};

(5) if (LEVELIi]> k) A (Jview;| = LEVELIi))

(6) then let ¢ = LEVELI];

(7) ans;<—SKS{].strong kset propose, (id;);
(8) ok; —(ans; = id;)

(9) else ok; — true

(10 endif

(11) wuntil (Jview;| > LEVEL[i]) A ok; end repeat;

(12) let S; = {id | 3j € view; such that INIT NAME]j] = id};
(13) return(S;)

NN NI N’

3

Fig. 3. k-participating set algorithm (code for p;)

If, in the original Borowski-Gafni’s ladder, a process p; stops at a ladder level
{ < k, it can also stop at the same level in the k-set participating object. This
follows from the fact that, as |view;| = ¢ < k when p; stops descending, we know
from the ladder properties that at most ¢ < k processes are at the level £ (or at
a lower level). So, when LEVEL[i] < k (line 05), p; sets ok; to true (line 05). It
consequently exits the repeat loop (line 11) and we can affirm that no more than
k processes do the same, thereby satisfying the bounded simultaneity property.

So, the main issue of the algorithm is to satisfy the bounded simultaneity
property when the level £ at which p; should stop in the original Borowski-
Gafni’s ladder is higher than k. In that case, p; uses the underlying strong
k-set agreement object SKS[{] to know if it can stop at that level (lines 07-08).
This k-participating set object ensures that at least one (and at most k) among
the participating processes that should stop at level £ in the original Borowski-
Gafni’s ladder, do actually stop. If a process p; is not allowed to stop (we have
then ok; = false at line 08), it is required to descend to the next step of the
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ladder (lines 11 and 01). When a process stops at a level £, there are exactly £
processes at the levels ¢/ < ¢. This property is maintained when a process steps
down from £ to ¢ — 1 (this follows from the fact that when a process is required
to step down from ¢ > k to ¢ — 1 because ¢ > k, at least one process remains at
the level £ due to the k-set agreement object SKS[¢]).

5 From £2F to k-Set Objects

This section shows that a k-set object can be built from single-writer/multi-
reader atomic registers and an oracle (failure detector) of the class £2%.

5.1 The Oracle Class 2%

The family of oracle classes (£2%)1<.<, has been introduced in [16]. That defini-
tion implicitly assumes that all the processes are participating. We extend here
this definition by making explicit the notion of participating processes. More pre-
cisely, an oracle of the class 2% provides the processes with an operation denoted
leader() that satisfies the following properties:

— Output size: each time it is invoked, leader() provides the invoking process
with a set of at most z participating process identities (e.g., {idy,, ..., idy, }).

— Eventual multiple leadership: There is a time after which all the leader()
invocations return forever the same set. Moreover, this set includes at least
one correct participating process (if any).

It is important to notice that each instance of £2* is defined with respect to
the contexrt where it is used. This context is the set of participating processes.
This means that if £2* is used to construct a given object, say a k-set object K,
the participating processes for that failure detector instance are the processes
that invoke KS.kset propose;(). Let us remark that, during an arbitrary long
period, the participating processes that invoke leader() can see different sets of
leaders, and no process knows when this “anarchy” period is over. Moreover,
nothing prevent faulty processes to be elected as permanent leaders.

When all the processes are assumed to participate, £2! is nothing else than the
leader failure detector denoted (2 introduced in [8], where it is shown that it is
the weakest failure detector for solving the consensus problem in asynchronous
systems. (Let us notice that the lower bound proved in [8], on the power of
failure detectors, assumes implicitly that all the correct processes participate in
the consensus algorithm.)

5.2 From 02F to k-Set Agreement

In addition to an oracle of the class 2%, the proposed k-set agreement algorithm
is based on a variant, denoted KA, of a round-based object introduced in [11] to
capture the safety properties of Paxos-like consensus algorithms [14]. The leader
oracle is used to ensure the liveness of the algorithm. KA is used to abstract
away the safety properties of the k-set problem, namely, at most k values are
decided, and the decided values are have been proposed.
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The KA object This object provides the processes with an operation denoted
alpha propose, (r;,v;). That operation has two input parameters: the value v;
proposed by the invoking process p; (here its name id;), and a round number
r; (that allows identifying the invocations). The KA object assumes that no
two processes use the same round numbers, and successive invocations by the
same process use increasing round numbers. Given a KA object, the invocations
alpha propose, () satisfy the following properties:

— Validity: the value returned by any invocation alpha propose, () is a proposed
value or L.

— Agreement: At most k different non-_L values can be returned by the whole
set of alpha propose, () invocations.

— Convergence: If there is a time after which the operation alpha propose, ()
is invoked infinitely often, and these invocations are issued by an (unknown
but fixed) set of at most k processes, then there is a time after which none
of these invocations returns L.

An algorithm constructing a KA object from single-writer /multi-reader atomic
registers is described in [15].

The k-set algorithm. The algorithm constructing a k-set object KS (accessed
by at most n processes!), is described in Figure 4. As in previous algorithms,
it uses an array DEC/[1..n] of one-writer /multi-reader atomic registers. Only p;
can write DEC([i]. The array is initialized to [L,..., L]. The algorithm is very
simple. If a value has already been decided (3j : DEC[j] # L), p; decides it.
Otherwise, p; looks if it is a leader. If it is not, it loops. If it is a leader, p; invokes
alpha proposey,(r;,v;) and writes in DEC|i] the value it obtains (it follows from
the specification of KA that that value it writes is L or a proposed value).

operation kset propose, (v;):
(1) 7 — (i — n);
(2) while (Vj : DEC[j] = 1) do

(3) ifid; € leader() then r; < r; + n; DEC|i] «— KA.alpha propose, (ri,v;) endif
(4) end while;

(5) let decided; = any DEC[j] # L;

(6) return(decided;)

Fig. 4. An 2"-based k-set algorithm (code for p;)

It is easy to see that no two processes use the same round numbers, and each
process uses increasing round numbers. It follows directly from the agreement
property of the KA object, that at any time, the array DEC|[1..n] contains at
most k values different from L. Moreover, due the validity property of KA, these
values have been proposed.

! Let us remind that the construction of each SKS[f] object used in Figure 3 is based
on an underlying k-set object KS object.
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Tt is easy to see that, as soon as a process has written a non- L valuein DEC|[1..n],
any kset propose(v;) invocation issued by a correct process terminates. So, in order
to show that the algorithm is wait-free, we have to show that at least one process
writes anon-_L value in DEC|1..n]. Let us assume that no process deposits a value
in this array. Due to the eventual multiple leadership property of £2%, there is a
time 7 after which the same set of ¥’ < k participating processes are elected as
permanent leaders, and this set includes at least one correct process. It follows from
the algorithm that, after 7, at most k processes invoke K A.alpha propose, (), and
one of them is correct. It follows from the convergence property of the KA object,
that thereis atime 7’ > 7 after which no invocation returns L. Moreover, as at least
one correct process belongs to the set of elected processes, that process eventually
obtains a non- 1 value from an invocation, and consequently deposits that non- 1
value in DEC|1..n]. The algorithm is consequently wait-free.
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Abstract. We study the renaming problem in a fully connected syn-
chronous network with Byzantine failures. We show that when faulty
processors are able to cheat about their original identities, this prob-
lem cannot be solved in an a priori bounded number of rounds for
t > (n+ n mod 3)/3, where n is the size of the network and ¢ is the
number of failures. This result also implies a ¢ > (n+n mod 4)/2 bound
for the case of faulty processors that are not able to falsify their original
identities. In addition, we present several Byzantine renaming algorithms
based on distinct approaches, each providing a different tradeoff between
its running time and the solution quality.

1 Introduction

In the renaming problem, n processors have to cooperatively select for them-
selves new names from a namespace whose size depends only on n, in a way that
guarantees that each correct processor has a distinct new name. In the crash fail-
ure case, this problem was extensively investigated in both the message passing
and the shared memory models. So far the renaming problem was not studied
in the Byzantine failure case.

Consider for example a group of (client) processes that wish to access a data
set or a service which is replicated on a large number of servers. For best perfor-
mance, each process should access a different server. When some of the processes
experience Byzantine failures [13], e.g., they are controlled by a malicious adver-
sary, this might not be possible since the faulty processes may access any number
of servers (in the worst case each faulty process accesses every server). However,
even in such cases, the correct processes benefit from reducing the contention
among themselves. This paper deals with the general problem demonstrated by
the above example, in which the the processes are required to solve an instance
of the renaming problem in the presence of Byzantine failures.

From the theoretical point of view, renaming belongs to the class of symmetry
breaking problems, which can be regarded as the simplest nontrivial distributed
computing task [9]. As we shall see, in the Byzantine failure case, similarly to
crash failures, renaming raises a number of questions that are not addressed
by other well known problems (such as consensus). In order to understand the
implications of Byzantine failures for renaming, it is convenient (at least at the

S. Dolev (Ed.): DISC 2006, LNCS 4167, pp. 16-30, 2006.
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beginning) to consider the problem in the context of standard well known models,
despite the fact that some aspects of the scenario described in the above example
will not be accurately represented.

Specifically, in this paper we consider a synchronous network of an a priori
known size n, in which every pair of processors is connected by a communication
channel (link). Each processor has a unique identifier (processorID), which is
originally known only to its owner (if the identifiers of the processors are globally
known, the renaming task has a trivial solution). The communication between
processors is performed by message passing, which satisfies one of the following
conditions (see also [16]):

(Mp) A faulty processor may send messages with arbitrary identifiers. Mes-
sages from different processors can be distinguished according to the link through
which they are received.

(M) The true unique identifier of each processor is included in any message
it sends. *

The renaming problem can be formally defined by the following conditions
[3,6,20]:

(Termination) Each correct processor eventually decides on a new name.

(Uniqueness) All the new names belong to the target namespace, and no two
correct processors decide on the same name.

The above conditions also have stronger versions:

(Strong termination [10]) Each correct processor decides on a new name during
r = r(n) rounds, where  depends only on the size of the system.

(Order preserving) The new names of the correct processors preserve the order
imposed by their original identifiers.

The paper has two main parts. Section 2 deals with impossibility results for
Byzantine renaming. We show that in the M model, strong termination is not
possible if n 4+ (n mod 3) < 3t, where t is the number of faulty processors. The
same proof also implies impossibility of strongly terminating Byzantine renaming
in the Mj; model, when n + (n mod 4) < 2t.

Section 3 focuses on efficient algorithms for the Byzantine renaming problem.
We show three algorithms, each representing a different approach. In the first
algorithm renaming is achieved by using Byzantine agreement (solving an in-
stance of group membership problem). This approach allows to solve the order-
preserving renaming problem using a small target namespace, in O(n) time.
The second algorithm uses splitting to solve the non-order preserving problem
directly, in O(logn) rounds. Its target namespace, however, is ©(poly(n)). The
third approach is to adapt the original algorithm of Attiya et al. [3] to the
Byzantine failure case, to get an algorithm that works in the asynchronous case.

! This model is closer to the typical practical case, in which there are no dedicated
communication links for each pair of processors. Such an assumption is necessary in
order to prevent a single Byzantine processor from attacking a system by counter-
feiting multiple identities (the Sybil attack [11]).
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1.1 Related Previous Work

The renaming problem was originally introduced in [3] for asynchronous message
passing system with crash failures. This landmark paper presented a simple
renaming algorithm with a target namespace of size (n — t/2)(t + 1), followed
by a more intricate algorithm with a target namespace of size (n + t), and an
order preserving algorithm with a target namespace of size 2f(n —t + 1) — 1.
The last result was also shown to be tight. The wait-free renaming problem in
the synchronous message passing model with crash failures was studied in [9],
which presents an O(logn)-round algorithm and a proof that for comparison
based algorithms this result is optimal.

The renaming problem was also studied in the shared memory model, first
in the original one-shot setting [7,8], and then in the long-lived version, where
processors request and release the new names dynamically [15]. In [15], the split-
ter object was used to solve the problem, an approach which was subsequently
adopted in several follow up papers. More recently, both the one-shot and the
long-lived versions of the problem were studied in the adaptive setting, where
the number of participating processors k, is not known in advance [1,2,4,5]. In
this setting the goal is to develop efficient wait-free algorithms whose target
namespace and complexity depend only on k.

The question of the minimum possible target namespace was settled by the
groundbreaking work of Herlihy and Shavit, as a special variant of their Asyn-
chronous Computability Theorem [12]. They have shown that (n + t) is indeed
the smallest possible namespace for tolerating ¢ failures in an asynchronous en-
vironment, for both the shared memory and the message passing models.

A review of the Byzantine agreement problem [19,13] is beyond the scope of
this paper. A presentation of this topic can be found in [14,6].

2 Impossibility Results for Byzantine Renaming

This section deals with impossibility results for Byzantine renaming. First, ob-
serve that the Byzantine renaming problem (in a synchronous system) can be
solved for any n > ¢, if strong termination is not required. A possible solution
(assuming w.l.o.g. that processor ids are natural numbers), that is also order
preserving, is presented in Fig. 1. The running time of this algorithm depends
on the values of the ids, and thus can be arbitrarily long. We show that in model
My, for n+ (n mod 3) < 3t this is the best possible solution, i.e., there exists
no deterministic strongly terminating renaming algorithm.

We start by proving that strongly terminating renaming is impossible in a
system with three processors one of which can be faulty, when the identifiers of
the processors belong to some infinite set J. For the proof, assume that the port
numbering is as shown in Fig. 2.

Suppose by contradiction that there exists a deterministic algorithm A that
solves the renaming problem in r rounds when one processor can arbitrarily fail.
Further, assume that A is a full-information algorithm in which each correct
processor distributes all its current information in every round.
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Initial setup:
1: M:={1,...,n}

In rounds 1,...,processorlID — 1:

2: for every link i do

3: if m is the first ever value received via link ¢ then
4: M := M\ {m}

In round processorID:
5: decide on min(M)
6: send min(M) to all

Fig. 1. A Byzantine renaming algorithm with eventual (weak) termination only

-

n
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Fig. 2. A symmetric 3-processor system

To begin with, due to the symmetry of the port numbers in Fig. 2, each
processor knows the port numbers through which the other two processors com-
municate with it. Therefore, the only new information available to a correct
processor by the end of the first round is the identifiers sent by the other two
processors. Generally, by the end of r rounds, the processor receives r identifiers
from each port.

Let A (e, 81, ..y Bry 71, -, V) be the output of A executed on a processor whose
processorID is a, when it gets in round 1 < s < r identifier 5 via port 1 and
identifier 7, via port 2. Then algorithm A must satisfy:

a#ﬁl = (1)
Vﬁr-‘rh’)/’f A(a7ﬁla"'aﬁr7’71a"'a/y7‘)7éA(ﬁl7ﬁ2a"'157‘-‘1-1’04171’"'177‘—1)a

otherwise in an execution shown in Fig. 3 the correct processors o and 3; decide
on the same new id.

| 3 i e e i |
Y1

Ve ees o) Bl ves Br ﬁr+1

Fig. 3. A scenario for r-round renaming

To complete the proof we show that such a function cannot exist (since J is
assumed to be infinite, it is sufficient to prove this claim for 3 = Z). In order
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to state the combinatorial theorem which implies this result, we introduce the
following definitions. _

Let Z™ = {(a1,...,an) € Z"V1 <i,j <n i # j = a; # a;}, i.e., Z" contains
only the points of Z™ that have n distinct coordinate values.

Let Lg(a1,...,ak—1,0k+1, ..., Gn) denote a line in Z™ parallel to the k-th axis:

Li(a1, ... Gp—1, Qg1 oy Gn) =
{(al7 vy Ak—1, 2, Ak+1, '-'7an) |Z €Z \ {a/lu vy Q—1, Qk+1, "'7an}}7

where aq, ...,ax_1, ax+1, ..., an are any distinct integers? and 1 < k < n.

For any o € S,, (a permutation on n elements) and a point a = (a1, ..., an)
in Z", the point ola) € Z™ is defined by o(a) = (ag-1(1), Ag-1(2)5 s Ag=1(n)). A
function C : Z" — C, where C is a finite set, is called a (finite) coloring of A

For any S C Z", let o(S) and C(S) denote the sets {o(a)|o € S} C Z™ and
{C(a)|a € S} CC, respectively. These definitions imply:

0 (Lg(an, ey Q1 Qg 15 ey A )) = )
La(k) (a0*1(1)7 A5=1(2)s s Qo=1(g(k)=1)s Go=1(a(k)+1)s s ao'*l(n))°

Theorem 1. For anyn > 2, n > k > 1 and any cyclic permutation o € Sy,
there exists no finite coloring C of Z" such that for every line L parallel to the
k-th azis of Z™

C(L)NC(a(L)) = 0. (3)

Before proving the theorem, we show that it implies the non-existence of a re-
naming algorithm. The key observation is that A can be considered as a coloring
A : 72"t — C, where C is the finite target namespace of A. For the permuta-
tion o = (1(r +2)(r + 3)...(2r)(2r + 1)(r + 1)r...2), condition (1) implies that
for any line L parallel to the (2r + 1)-th axis, A(L) N A(c(L)) = (). However,
according to Theorem 1 no such finite coloring exists. _

The theorem is proved by showing that a finite coloring of Z™ (which satisfies
the required condition), if it existed, could have been used to define a coloring
of Z"~! with a larger (but finite) set of colors. In the context of renaming this
means that an algorithm that runs in r rounds could have been used to construct
an algorithm with larger target namespace that runs in » — 1 rounds.

Proof of Theorem 1. Assume that the theorem is false for n = 2 and let C':
Z? — C be a coloring that satisfies (3) for o = (12). W.l.o.g. assume that k = 2.
Let La(a) and La(b) be two different lines, such that C(Lz(a)) = C(Lz(b)). Ob-
serve that La(a) No(L2(b)) = (a,b). Therefore, C(a,b) € C(La(a)) = C(L2(b))
and C(a,b) € C(o(L2(b))), which is a contradiction.

Suppose that the theorem is false and let n > 2 be the minimal dimension for
which the theorem is incorrect. W.l.o.g., assume that k = n. Let C : Z™ — C be a
coloring that satisfies (3) for o = (07...05,). W.l.o.g. suppose that n = o,,_1. Let

2 In the sequel this coordinate numbering will be more convenient than the more
obvious a1, ..., Gn_1.
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7 = (01...0n—20,) be a cyclic permutation on n — 1 elements. Define a coloring
Dy : Zn=1 o by Di(a1,...;an—1) = C(Ln(ay,...,an—1)). In addition, let Dy
be a finite coloring that satisfies Dy(a) # Dy (m(r)) for any o € Z"1. Next, we
show that the finite coloring D defined by D(a) = (D1(a), Da(«)) satisfies (3)
for every line in Zn=1 which is parallel to the o~ !(n)-th axis, with respect to
the cyclic permutation 7. Since this contradicts the choice of n, this completes
the proof.

Let L = Lgfl(n)(al, oy Qg=1(n) =1 Q=1 (n)+15 -+ ap—1). Since Vi # o(n) Wﬁl(i)
=o071(i), 7~ Y(o(n)) = 07 1(n) and w(c~*(n)) = o(n), by applying (2) we get:

(L) = Lon)(@o-1(1), Go=1(2)5 -+ Qo=1(0(n)=1)s Co—1 (o(n)+1)> =+ o1 (n—1))-

If D(L) N D(w(L)) # 0, there must exist two integers a,-1(,) and a,, such that
D assigns the same value to the points

a = (a17 w0 Qg=1(n)—1,Ag—=1(n)s Ao—1(n)+15 -'-7an—1) €L

and

B = (aafl(l)a < Qg=1(g(n)=1)s Go—1(a(n))) Ao—1(c(n)+1)s s aafl(n—l)) € W(L)

Moreover ag-1(,) # an, since otherwise it holds that () = B, which implies
Dy(a) # Do() and thus D(«) # D(S3) as well.

From Di(a) = C(Lp(a1,...;an-1)) = C(Ln(as-1(1)s s Go-1(n—1y)) = D1(5),
it follows that there must exist a point v € L, (a1, ..., an—1) such that

C(’}/) = C’(agfl(l), ceey aoq(n)).

However the point (ay-1(1),...,a5-1(,)) belongs also to the line o(Ly,(ay, ...,
an—1)), and thus we found a line for which C does not satisfy (3), contrary
to the assumption. (]

This completes the proof of the impossibility of strongly terminating renaming
in model My, in a 3-processor system with 1 failure. The same proof holds for
a 4-processor system with 2 faults in model M, since in the particular case in
which each correct processor sees a different faulty processor, the views of the
correct processors are exactly as above.

Next we would like to extend the impossibility result to a system with n
processors, to show that strongly terminating renaming in presence of [n/3]
faulty processors is impossible. Usually this can be done by the following sim-
ple simulation argument (e.g., see [13]). If there were an algorithm for a system
with n processors that tolerates [n/3] faults, it would be possible to divide the
n processors to three nearly equal sets, and let each processor in a 3-processor
system simulate one of the sets. This would give an algorithm for the case n = 3,
t = 1, which was already shown to be impossible. However, in the current case
such a simulation argument cannot be applied straightforwardly, since accord-
ing to the model definition, the algorithms executed by the processors must be
completely identical. Thus, a more careful simulation argument is required.
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For n = 0 mod 3 there exist port labeling schemes of K,, (a complete graph
on n nodes) which divide its nodes to 3 isomorphic sets of n/3 nodes each, such
that these sets are interconnected in a symmetrical way. An algorithm A that
solves the Byzantine renaming problem in K, with such a labeling scheme in
the presence of n/3 failures, can be simulated in a 3-processor system presented
in Fig. 2. This would give an algorithm for renaming in this 3-processor system,
which is a contradiction. Therefore, no such A exists.

Next, suppose n = 1 mod 3. Consider a labeling of K,, in which there exists
one special node that is seen by all the other nodes via their (n—1) link, while all
the other nodes are divided to three isomorphic sets connected as in the previous
case. The special node is assumed to be crashed from the very beginning, and
in addition 1/3 of the remaining nodes can experience a Byzantine failure. Even
for this specific case, there exists no strongly terminating renaming algorithm,
since it can be turned into an algorithm for 3-processor system in Fig. 2, as in
the n = 0 mod 3 case.

The case n = 2 mod 3 is similar, except that now two special nodes are
required. Therefore, we can only prove that there exists no renaming algorithm
that tolerates (n —2)/3+ 2 failures. Together the three cases imply the following:

Theorem 2. In model My, in a system of n processors of which t may fail,
where n + (n mod 3) < 3t, there exists no algorithm that solves the strongly
terminating Byzantine renaming problem.

Since a similar difficulty arises when trying to extend the impossibility result in
the 4-processor case to a system with n processors in model Mj, we can only
prove that there exists no strongly terminating algorithm for n+ (n mod 4) < 2t.

3 Algorithms

In this section we study the algorithmic aspect of the Byzantine renaming prob-
lem, by considering several different approaches for constructing such algorithms.
Section 3.1 describes a simple renaming algorithm based on Byzantine agree-
ment. Section 3.2 presents an algorithm that solves the problem by first iter-
atively splitting the processors into smaller groups until at least one correct
processor gets a unique new name, and then using it to assign all the processors
unique new names. In Section 3.3 we briefly discuss solutions based on the orig-
inal algorithms of Attiya et al. [3]. All the presented algorithms assume n > 3t
and work for model M.

3.1 Renaming Using Byzantine Agreement

Using Byzantine agreement it is possible to solve the renaming problem in a sim-
ple and natural way. Moreover, it provides a “high quality” solution: the target
namespace can be made small and the original order of the ids is automatically
preserved. We note that Byzantine agreement was studied mainly under the
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assumption of a priori acquainted processors, which does not hold here. Yet,
such an assumption is not necessary [16,17,18].

The idea of our renaming algorithm is rather simple: first each correct proces-
sor p computes two sets of ids, where the first set (.J,,) contains all the processor
ids known to p, and the second set (I,,) contains only the ids of the “well behaved”
processors. In addition, these sets satisfy I, C .J, for any two correct processors
p and ¢. Next, an instance of Byzantine agreement protocol is executed for every
id, to decide if it should be taken into account. A correct processor p participates
only in instances of ids that appear in .J,. The decisions are consistent because
whenever an id belongs to the I-set of some correct processor, all the correct
processors participate in its instance, and if an id does not belong to the I-set
of any correct processor, the decision is guaranteed to be 0 (i.e., to drop the id),
even if some correct processors do not participate. All the correct processors end
up with the same set of ids (that contains the ids of all the correct processors),
then each processor decides on the rank of its own id in this set.

The algorithm and the formal proof of its correctness can be found in [18].

3.2 Fast Byzantine Renaming

The renaming algorithm presented in the previous section relies on an under-
lying Byzantine agreement protocol. However, it is well known that renaming
is “easier” than consensus. For example, in the crash failure case, synchronous
wait-free renaming can be performed in O(logn) rounds [9] (consensus requires
£2(n) rounds), and it can also be solved asynchronously in the presence of up to
[(n —1)/2] failures [3] (consensus is not solvable asynchronously even if a single
crash failure is possible). These observations suggest that it would be interesting
to find a Byzantine renaming algorithm that does not use Byzantine agreement.

Fig. 4 presents an O(logn) round renaming algorithm that does not rely on
Byzantine agreement. As in [9] and several shared memory algorithms [15,5], the
idea is to split the processors into smaller and smaller groups. Every processor
starts with an empty string and iteratively extends this string according to the
position of its identifier in the set of identifiers of all the processors whose string
is equal to its own. This approach works for the crash failure case (see [9]), since
eventually each group contains at most one processor. However, it is insufficient
for Byzantine failures, because in some groups the faulty processors may become
(an arbitrarily large) majority, in which case they can prevent the group from
further splitting.

Nevertheless, there always exists at least one group which does not have this
problem, so that eventually at least one correct processor py chooses a unique
new name. Moreover, by using the technique of echo messages [21], it is pos-
sible to ensure that no faulty processor is able to claim multiple new names,
which in particular implies that the new name of pg is not shared by any faulty
processor. The method used for Byzantine failures is to treat the new names as
namespaces in which a name is assigned to every processor by the namespace
owner. Renaming can be solved this way because at least one namespace is
completely controlled by a correct processor.
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Initial setup (1st round): /* initialization phase, round 1 */
1: send (processorID, \) to all

Initial setup (2nd round): /* initialization phase, round 2 */
2: for 1<i<ndo

3: if (o, ) message was received from link ¢ in round 1 then
4: Ink[i].ID = «
5 send echo(a) to all

6: receive messages
7: for 1<i<ndo

8:  if echo(Ink[i].ID) messages were received from n — ¢ distinct processors then
9: Ink[i].str :== X
10:  else
11: Ink[i].str :==1
In rounds 2k + 1, where 1 < k < K: /* splitting phase k, round 1 */
12: let I :=
{ink[i].ID |1 < i< n A Ink[i].str = Ink[n].str}
13: let d :=

14f |I|/4 > rank(processorID) > 1
2 if |I|/2 > rank (processorID) > |I|/4
3if 3|I|/4 > rank) (processorID) > |1]/2
4 if rank (processorID) > 3|I|/4
14: append to Ink[n].str: (i) d; (ii) the 7 most significant digits in the decimal representation of |I|
15: send (processorID,Ink[n].str) to all
16: receive messages
17: for 1 <i<ndo

18:  if (Ink[i].ID, o) was received from link i and o is a legal string for phase k and Ink[i].str is
a prefix of o then

19: Inkli].str :== o

2 else

21: Ink[i].str :==1

In rounds 2k + 2, where 1 < k < K: /* splitting phase k, round 2 */

22: for 1 < i < n do

23:  send echo(Inkl[i].ID,Ink[i].str) to all

24: receive messages

25: for 1 < i < n do

26:  if echo(Inkl[i].ID,Ink[i].str) were received from < n — t distinct processors then

27: Inkli].str ;==L

In round 2K + 3: /* decision phase, round 1 */

28: for 1 < i< n do

29:  send (processorID,Ink[i].ID,Ink[n].str,) to all

In round 2K + 4: /* decision phase, round 2 */

30: for 1 <i<ndo

31:  if (ink[]).ID, v, Ink[i].str, j) was received via link i and thereisno 1 < i’ < ns.t. Ink[i’].ID #
Ink[i].ID A Ink[i'].str = Ink[i].str then

32: send echo(Inkl[i].ID,~,Ink[i].str, j) to all

In round 2K + 5: /* decision phase, round 3 */

33: for 1 <i<ndo

34:  if echo(Ink[i]).ID,~, Ink[i].str, j) were received from n —t distinct processors and there are no
v #~and 1 < i’ < n s.t. echo(Ink[i'].ID,~’,Ink[i].str, j) were received from n — t distinct
processors then

35: send ACK (Ink[i].ID,~,Ink[i].str, j) to all

36: receive messages

37: let 1 < 49 < n be a minimal number s.t. ACK (Ink[io].ID, processorID,Ink[io].str,j) were

received from n — t distinct processors
38: decide on (Inklio].str, j)

Fig. 4. A fast Byzantine renaming algorithm

The renaming algorithm in Fig. 4 consists of an initialization phase (the first
two rounds), O(logn) splitting phases (each taking two rounds), and a final
phase (the last three rounds) in which a processor allocates new names in its
namespace (computed during the splitting phases) for all the processors in the
system (round 2K + 3), and then picks some “legal” namespace together with
the name that it was assigned inside that namespace (round 2K + 5).
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In Fig. 4 we denote an empty string by A, and the NULL string, which
by definition cannot be a prefix of any other string, by L. For convenience, it
is assumed that the links are labeled 1,...,n, where link n is a self-loop. The
number of splitting phases is denoted by K = O(logn) (the exact value follows
from the proof). ranky(«) denotes the rank of an id « in the set I, i.e., the place
of o in a list of elements in I sorted in ascending order.

For a string o, let C (o) denote the set of (identifiers of ) the correct processors
whose [nk[n].str variable at the end of phase k > 0 (i.e., at the end of round
2k+2), is 0. Note that the variable Ink|[n].str holds the string that the processor
has chosen for itself (so far), which follows from the convention that the nth link
is a self loop.

In addition to Ci(0), we define the set Fj(o) of the faulty identifiers that
correspond to the string o. Formally, an identifier 5 belongs to Fi (o) iff one of
the following two conditions is satisfied:

(i) B ¢ Ck(o) and there exists a correct processor p and 1 < ¢ < n —1 s.t.
(Ink[i].ID), = 8 and (Ink[i].str), = o at the end of phase k.

(ii) B € Ck(o) and there exist n — 2t correct processors p, ..., pp—2¢ S.t. V1 <
J < n—2t, Jiy, iy with (Ink[i1].ID),; = (Inkl[iz].ID),; = 3 and (Inkli1].str),; =
(Inklig].str)y = 0.

Intuitively, Fj (o) contains all the ids that are associated with the string o which
do not belong to any correct processor in C (), together with ids of the correct
processors associated with o that have a faulty duplicate that is also associated
with o.

Below we sketch the proof of the correctness of the renaming algorithm in
Fig. 4. A formal proof appears in Appendix A.

The first step is to show that |Fp(A\)| < 2¢, which implies that from the
beginning the number of faulty ids that satisfy (i) or (ii) is smaller than the
number of the correct processors. Since in the following stages of the algorithm
both the correct and the faulty ids are only splitted and no new ids can be
introduced, the above inequality implies that for any 1 < k < K there exists a
string o such that |Cy(o)| > |F(0)].

Next we show that a group C (o) of correct processors that satisfies |Cy(0)| >
|Fi. ()] is splitted in the (k+1) phase into at least two groups (unless it is already
of size 1). Moreover, when |Cy(o)| is higher than some (constant) threshold, each
of the groups into which Cj (o) splits is smaller than Ci (o) by some constant
fraction. This result implies that after K = O(logn) splitting phases, there exists
a string oy, such that Ck(c9) = {ap} and Fik (c0) = 0.

Based on the above, the correctness of the algorithm can be proved as follows:
First we show that two correct processors cannot decide on the same new name.
Then we show that since there exists at least one legal namespace from which
new names can be chosen (the namespace og, controlled by correct processor with
id «ayp), every correct processor is able to decide on a new name. Finally, since
in each of the O(logn) splitting phases the strings are extended by a constant
number of symbols, the target namespace is of size O(poly(n)).
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3.3 Asynchronous Byzantine Renaming

In [3], which introduced the renaming problem for the asynchronous message
passing environment with crash failures, the basic algorithm operates by con-
tinuously exchanging all the ids that each processor has discovered so far. It
is shown that eventually the exchanged vectors of ids must converge to stable
vectors, i.e., vectors shared by the majority of the processors. Since the stable
vectors are totally ordered by the inclusion relation, they can be used for renam-
ing: a new name which consists of the size of a stable vector and of the rank of
processor’s original id in a stable vector is guaranteed to be unique.

In the Byzantine failure case it is a common practice to use echo messages to
verify every message received [21]. In our case, if an id is added to the vector only
after it was acknowledged by at least n — ¢t echo messages from distinct proces-
sors, the basic renaming algorithm of [3] is transformed into an asynchronous
algorithm that tolerates | (n — 1)/3] Byzantine failures.

In [3], two more complex renaming algorithms are presented: a renaming al-
gorithm with a target namespace of size n+t, and an order preserving renaming
algorithm. Both algorithms rely on the fact that processors do not cheat in a
more subtle ways than the basic algorithm. Thus, these algorithms cannot be
made Byzantine fault tolerant in a similarly straightforward manner.

4 Conclusions

This paper considered the renaming problem in a totally connected synchronous
network. It was shown that when faulty processors are able to falsify their names
(the My, model), the problem cannot be solved in an a priori bounded number
of rounds, for n + (n mod 3) < 3t. For the case of faulty processors that cannot
cheat about their names (the M model), this bound implies that renaming
cannot be solved when n + (n mod 4) < 2t. We also presented three algorithms
for solving the Byzantine renaming problems for n > 3t, each using a different
well known paradigm. One of the algorithms works in the asynchronous model
as well.

The Byzantine renaming problem offers a number of interesting open ques-
tions. The most important one is to find the maximal number of failures that
can be tolerated by a renaming algorithm. This mainly concerns the M; model,
since the bound that was obtained in Section 2 for M, is almost tight (a gap
of one fault remains in case n = 2 mod 3). Another direction is to find fast
algorithms with a small (possibly even linear) size of the target namespace.

The above questions are also interesting in the asynchronous case of the
Byzantine renaming problem. An additional open question in this case is the
size of the minimum possible target namespace. We note that in the synchro-
nous system the last question can be settled for n > 3t by exploiting the possi-
bility of consensus, in which case for both the M; and the M models the new
namespace can be of size n (the best possible).
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A Algorithm for Fast Byzantine Renaming

Below we prove the correctness of the renaming algorithm in Fig. 4. The proof
proceeds as described in Section 3.2. For convenience we often refer to a correct
processor directly by its id. To denote the id of the correct processor to which a
variable belongs subscripts are used.

Lemma 1. |Fy()\)| < 2t.

Proof. Recall that from the definitions in Section 3.2 it follows that Cy(\) is the
set of ids of all the correct processors. Consider some 5 € Fy(\). If 8 & Co()\)
then there exists a correct processor a such that at the end of the second round
(ink[i].ID)o = 0 and (Ink[i].str), = A. This is possible iff « received n — ¢
echo(3) messages, i.e., at least n — 2t correct processors received (3, \) message
in the first round. If § € Cy(A), then in the first round at least n — 2t correct
processors received (3, \) message from at least two different links.

In both cases 3 accounts for n — 2¢ links between correct and faulty processors
(in the 1st round). The total number of such links is (n — t)¢. Thus [Fo(N\)| <
(n —t)t/(n — 2t) < 2t, where the last inequality follows from n > 3t. O

Since |Co(A)| = n — t, the above lemma in particular implies |Co(A)| > [EFp(N)].

Lemma 2. For every K > k > 0, a string o which is valid for phase k and
a string ot (o1 denotes the concatenation of strings o and T) valid for phase
k+1, 4t holds that U;Cl11(o7) = Ci(0) and U Fyy1(o7) C Fi(o).

Proof. For most cases the property follows directly from the definitions of the
sets together with the fact that all the string variables in the algorithm are
modified only by appending of new suffixes. The only non trivial case is when
some B € Fipi1(o7) st. B € Cry1(o7) belongs to Ck(c). In this case there
exists a correct processor « s.t. at the end of phase k+ 1 (Ink[i].str = 07), and
(Iink[i].ID = )4 (for some ). This is possible iff & received in round 2(k+1)+2
n—t echo(oT, ) messages, which implies that during phase k+1 there are n—2t
correct processors that have two channels associated with the id 3, one of which
is also associated with the string o7. Thus 8 € Fy(0). O

Together, Lemma 1 and Lemma 2 imply that for every k there exists a string o
such that |Ck(0)| > |Fg(0)|.
The following property follows directly from the definitions and the algorithm:

Property 1. If a € Cy(o), then the set I, computed by the correct processor a
in the beginning of phase k + 1 satisfies Cy (o) C I, C Ci(0) U Fi(o).

Lemma 3. If 10° > |Ck(o)| > max {|Fy(0)|,1}, then |Ck(c)| > |Cry1(oT)]
for any non-empty string 7.

Proof. Property 1 implies that when the sizes of the sets Cy(c) and Fj(c) are
bounded by 10°, the size of the set I computed in the beginning of phase k + 1
(see line 12 in Fig. 4) is entirely expressed by the digits appended to the string
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(line 14). If the size of the set I is not the same among all the processors in
Cx (o), then the lemma follows immediately.

Otherwise, let oy = min Cy(0) and ag = max Cy(0). Let S = |Ci(0)| and let
S+ s = |1y, | = [Ia,|, where I, and I, are the I sets computed by a; and as
in phase k + 1. Property 1 implies S > s.

To prove the lemma, consider first the case S —1 > s. In this case, in I,, there
are S —1 elements higher than a; (namely Ci(0)\{a1}), and at most s elements
lower than «aq. It follows that in phase (k+1) d,, < 2. At the same time, in I,
there are S — 1 elements lower than as (namely Cj (o) \ {a2}), and at most s
elements higher than as. Therefore d,, > 3, which completes the proof for this
case.

In the second case S —1 = s. It follows that I,, = Ci(o) U Fj(0), since
otherwise |Cx(0)| > |Fx(0)| does not hold. Similarly I, = Ci(c) U Fy (o). Since
the distance between «; and s is s, while |Cx(0) U F(0)| = 25 + 1, ag and ae
cannot belong to the same quarter of Cy (o) U Fy(0), i.e., da, < da,. O

Lemma 4. If |Cy(0)| > |Fi(o)| and |Cx(0)| > 32, then for any non-empty
string T it holds that 31 |Cy ()| /32 > |Cr11(0oT)].

Proof. As before, let S denote the size of the set Ci (o). Suppose the lemma
is incorrect, i.e., there exists 79 such that |Cry1(079)| > 315/32. Observe that
Property 1 implies that for any o € Ci (o) the I-set computed in phase k + 1
satisfies 25 > |I,| > S. It follows that for any o € Cyyi1(om0) S+ s+ €S >
[la] > S + s, where s = min,eccy,(or0) ol — S, and € depends on the number
of the most significant digits of the size of the I-set that the algorithm appends
to the string. When 7 digits in decimal representation are appended (line 14),
e <1076,

Consider two possible cases:

(i) s < 75/8. In this case, for any o € Ciy1(070) [1al|/2 < (15/16 + €/2)S <
315/32. It follows that the processor with the highest id in Cyy1(07p) assigns
in phase k + 1 its d variable the value 3 or 4. The processor with the lowest id
in Cyy1(079) assigns in phase k + 1 its d variable the value 1 or 2, which is a
contradiction.

(i) s > 75/8. In this case, for any a, a1, a2 € Crt1(070) it holds that

|ranky,, (a) — rankg,, (o) < S/8+ €S. (4)

W.l.o.g. suppose that in phase k + 1 all the processors in Cy41(079) choose
to assign their d variable the value 2, i.e., for any a € Ciki1(o70) |1a]/2 >
ranky, (o) > |I,|/4, which implies (S + s + €5)/2 > ranky, (o) > (S + s)/4. By
applying (4) we get that for any a, ag € Ci41(070) it holds that (S+s+€5)/2+
S/8 + €S > ranky,, (a) > (S +s)/4 — S/8 — €S. This implies Yo € Cyy1(070)
345/32+ 3eS/2 > ranky, (o) > 115/32 — €S, which is an obvious contradiction
(a set of size 31.5/32 cannot have its ranks in an interval of length smaller than
315/32). O

Lemma 5. No two correct processors end up with the same new name.
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Proof. Assume by contradiction that two correct processors, a; and « decide
on the same name (o,7). It follows that there exist 3,4’ such that in round
2K + 5 processor «; received the message ACK (0, a1,0,j) from n — t distinct
processors, and processor as received the message ACK (8, az,0,j) from n —t
distinct processors. Therefore there must exist a correct processor that in round
2K + 5 sends both these messages. This is a contradiction, since the rule for
sending ACK messages (lines 34, 35) forbids it. O

Lemma 6. If by the end of the K splitting phases Fx (o) = 0 and Ck (o) =
{ap}, then every correct processor decides on a new name.

Proof. Consider the correct processor . In round 2K + 3 g sends (to all) a
message (ap, @, 0, j), for any id « that belongs to a correct processor (typically j
is the label of the link which connects g to «a, but it can also be a label of a link
between o and a faulty processors that presents itself as a). Since Fi (o) = 0,
the condition on line 31 implies that all the correct processors send in round
2K + 4 an echo(ag, o, 0, j) message to all. Next consider the last round. If all
the correct processors send an ACK (ag, @, 0, j) message, the proof is complete.
Otherwise, there exists a correct processor that does not send ACK (g, «v, 0, j),
despite receiving echo(ay, o, o, j) messages from n — ¢ distinct processors. From
the condition on line 34 it follows that there exist n — 2¢ correct processors that
in round 2K + 4 sent an echo(3,7', 0, j) message, where v’ # «a, in addition to
the echo(ag, v, 0, ) message. This is impossible if 8 # ag (see the condition on
line 31). However, if 3 = aq each one of these n— 2t correct processors must have
two different links associated with the id o and the string o, i.e., ag € Fk(0).
This contradicts the assumption. O

Theorem 3. The algorithm in Fig. 4 solves the Byzantine renaming problem in
model My, for n > 3t in O(logn) rounds, with target namespace of O(poly(n))
size.

Proof. By Lemmas 1, 2, 3 and 4 it follows that after appropriately chosen
K = O(logn) splitting phases, there exists some o such that Ck (o) = {ag},
and Fg (o) = 0. For such a K Lemma 5 and Lemma 6 imply that renaming is
achieved.

In every splitting phase the string of each processor grows by a constant
number of bits. Thus, the strings are O(logn) bits long. Since the final name
consists of one such string and a number between 1 and n, the new namespace
is of size O(poly(n)). (To get the best possible size, one needs to optimize the
parameters in Lemmas 3 and 4.) O
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Abstract. This paper presents a novel approach for lock-free implementations
of concurrent data structures, based on dynamically maintaining a coloring of
the data structure’s items. Roughly speaking, the data structure’s operations are
implemented by acquiring virtual locks on several items of the data structure and
then making the changes atomically; this simplifies the design and provides clean
functionality. The virtual locks are managed with CAS or DCAS primitives, and
helping is used to guarantee progress; virtual locks are acquired according to a
coloring order that decreases the length of waiting chains and increases concur-
rency. Coming back full circle, the legality of the coloring is preserved by having
operations correctly update the colors of the items they modify.

The benefits of the scheme are demonstrated with new nonblocking implemen-
tations of doubly-linked list data structures: A DCAS-based implementation of a
doubly-linked list allowing insertions and removals anywhere, and CAS-based
implementations in which removals are allowed only at the ends of the list (inser-
tions can occur anywhere).

The implementations possess several attractive features: they do not bound
the list size, they do not leave accessible chains of garbage nodes, and they allow
operations to proceed concurrently, without interfering with each other, if they
are applied to non-adjacent nodes in the list.

1 Introduction

Many core problems in asynchronous multiprocessing systems revolve around the
coordination of access to shared resources and can be captured as concurrent data
structures—abstract data structures that are concurrently accessed by asynchronous
processes. A prominent example is provided by list-based data structures: A double-
ended queue (deque) supports operations that insert and remove items at the two ends
of the queue; it can be used as a producer-consumer job queue [3]. A priority queue can
be implemented as a doubly-linked list where removals are allowed only at the ends,
while items can be inserted anywhere at the queue; it can be used to queue process
identifiers for scheduling purposes. Finally, a generic doubly-linked list (hereafter, often
called simply a linked list) allows insertions and removals anywhere in the linked list.
Concurrent data structures are implemented by applying primitives—provided by the
hardware or the operating system—to memory locations. Lock-free implementations do
not rely on mutual exclusion, thereby avoiding the inherent problems associated with
locking—deadlock, convoying, and priority-inversion. Lock-free implementations must

S. Dolev (Ed.): DISC 2006, LNCS 4167, pp. 31-45, 2006.
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rely on strong primitives [15], e.g., CAS (compare and swap) and its multi-location
variant, kCAS.

Lock-free implementations are often complex and hard to get right; even for rela-
tively simple, key data structures, like deques, they suffer from significant drawbacks:
Some implementations may contain garbage nodes [14], others statically limit the
data structure’s size [16] or do not allow concurrent operations on both ends of the
queue [21]. Even when DCAS (i.e., 2CAS) is used, existing implementations either are
inherently sequential [11, 12] or allow to access chains of garbage nodes [9].

Implementing concurrent data structures is fairly simple if an arbitrary number of
locations can be accessed atomically. For example, removing an item from a doubly-
linked list is easy if one can atomically access three items—the item to be removed and
the two items before and after it (cf. [9]).

Since no multiprocessor supports primitives that access more than two locations
atomically, it is necessary to simulate them in software using CAS or DCAS. This can be
done using methods such as software transactional memory [22] or the so-called lock-
ing without blocking techniques [25,7]. The basic idea of these methods is to use CAS in
order to acquire virtual locks on the items—one item at a time, and help processes that
hold virtual locks on desired items until they are released. This guarantees that the sim-
ulation is nonblocking [15], namely, in any infinite execution, some pending operation
completes within a finite number of steps. Unfortunately, the resulting implementations
may have long waiting chains, creating interference among operations and reducing the
implementation’s throughput.

Attiya and Dagan [4] suggest an alternative implementation of binary operations that
reduces interference by using colors (from a small set). This color-based virtual locking
scheme starts by legally coloring the items it is going to access, so that neighboring
items have distinct colors. Then, the algorithm acquires the virtual locks in increasing
order of colors, thereby avoiding long waiting chains. Afek et al. [1] extended this
implementation to arbitrary k-ary operations.

To evaluate whether operations that access disjoint parts of the data structure, or
are widely separated in time, do not interfere with each other, Afek et al. [1] define
two measures. These definitions rely on the familiar notion of a conflict graph, whose
nodes are the data items and there is an edge between two items if they are accessed by
the same operation. Roughly speaking, the distance between operations in the conflict
graph is the length of the shortest path between their data items. An implementation
has d-local step complexity if only operations in distance less than or equal to d in
the conflict graph can delay each other; it has d-local contention if only operations
in distance less than or equal to d in the conflict graph can access the same locations
simultaneously.! In particular, when there is no path in the conflict graph between the
data items accessed by two operations, they do not delay each other or access the same
memory locations; thus, d-local step complexity and contention extend and generalize
disjoint-access parallelism [19].

The implementations [1,4] have O(log™ n)-local step complexity and contention, and
they are rather complicated, making them infeasible for fundamental linked list-based

! Attiya and Dagan [4] used a more complicated measure called sensitivity, which is not dis-
cussed in this extended abstract.
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data structures. The major reason for the cost and complication of these implementa-
tions is the need to color memory locations at the beginning of each operation, since
operations access arbitrary and unpredictable sets of memory locations.

When operations are applied on a specific data structure, however, they access its
constituent items in a predictable, well-organized manner; e.g., linked list operations
access two or three consecutive items. In this case, why color the accessed items from
scratch, each time an operation is invoked? After all, the implementation initializes the
data structure and provides operations that are the only means for manipulating it. If the
colors are built into the items, then an operation can rely on them to guide its locking
order, without coloring them first. In return, the operation needs to guarantee that the
modifications it applies to the data structure preserve the legality of the items’ coloring.

We demonstrate this approach with two new doubly-linked list algorithms: A CAS-
based implementation in which removals are allowed only at the ends of the list (and
insertions can occur anywhere), and a DCAS-based implementation of a doubly-linked
list allowing insertions and removals anywhere.

The CAS-based implementation, allowing insertions anywhere and removals at the
ends, is based on a 3-coloring of the linked list items. It has 4-local contention and
4-local step complexity.; namely, an operation only contends with operations on items
close to its own items on the linked list, and it is delayed only due to such operations.
When insertions are also limited to occur at the ends, the analysis can be further refined
to show 2-local contention and 2-local step complexity; this means that operations at
the two ends of a deque containing three data items (or more) never interfere with each
other.

Handling removals from the middle of the linked list is more difficult: removing an
item might entail recoloring one of its neighbors, requiring to make sure its neighbor’s
color is not changed concurrently. Thus, a remove operation has to lock three consec-
utive items; under a legal coloring it is possible that two of these items (necessarily
non-consecutive) have the same color. We employ a DCAS operation to lock these two
nodes atomically, thereby avoiding hold-and-wait chains. This algorithm has 6-local
contention and 2-local step complexity. To the best of our knowledge, this is the first
nonblocking implementation of a doubly-linked list from realistic primitives, which al-
lows insertions and removals anywhere in the list, and has low interference.

In our algorithms, an operation has constant obstruction-free step complexity [10];
namely, an operation completes within O(1) steps in an execution suffix in which it is
running solo. Another attractive feature of our implementations is that it does not leave
accessible chains of stale “garbage” nodes.

In recent years, a flurry of papers proposed implementations of dynamic linked list
data structures, yet none of them provided all the features of our algorithms.

Harris [14] used CAS to implement a singly-linked list, with insertions and
removals anywhere; however, in this algorithm, a process can access a node pre-
viously removed from the linked list, possibly yielding an unbounded chain of un-
collected garbage nodes. Michael [20] handled these memory management issues.
Elsewhere [21], Michael proposed an implementation of a deque; in his algorithm, a
single word (called anchor) holds the head and tail pointers, causing all operations
to interfere with each other, thereby making the implementation inherently sequential.
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Sundell and Tsigas [24] avoid the use of a single anchor, allowing operations on the
two ends to proceed concurrently. They extend the algorithm to allow insertions and re-
movals in the middle of the list [23]; in the latter algorithm, a long path of overlapping
removals may cause interference among distant operations; moreover, during interme-
diate states, there can be a consecutive sequence of inconsistent backward links, causing
part of the list to behave as singly-linked. An obstruction-free deque, providing a live-
ness property weaker than nonblocking, was proposed by Herlihy et al. [16]; besides
blocking when there is even a little contention, this array-based implementation bounds
the deque’s size.

Greenwald [11, 12] suggests to use DCAS to simplify the design of implementa-
tions of many data structures. His implementations of deques, singly-linked and doubly-
linked lists synchronize via a single designated memory location, resulting in a strictly
sequential execution of operations. Agesen et al. [2] present the first DCAS-based non-
blocking, dynamically-sized deque implementation that supports concurrent access to
both ends of the deque, and has 1-local step complexity; this algorithm does not allow
insertions or removals in the middle of the linked list. The SNARK algorithm [8] is an
attempt for further improvement that uses only a single DCAS primitive per operation
in the best case, instead of two. Unfortunately, SNARK is incorrect [9]; the corrected
version allows removed nodes to be accessed from within the deque, thus preventing
the garbage collector from reclaiming long chains of unused nodes. Doherty et al. [9]
even argue that primitives more powerful than DCAS, e.g., 3CAS, are needed in order to
obtain simple and efficient nonblocking implementations of concurrent data structures.

The rest of this paper is organized as follows. Section 2 presents the model of a
asynchronous shared-memory system, while Section 3 defines local contention and lo-
cal step complexity in a dynamic setting. Most of the paper describes the DCAS-based
implementation of a doubly-linked list allowing insertions and removals anywhere (Sec-
tion 4). Section 6 outlines the modifications needed to obtain the CAS-based implemen-
tation that does not allow removals from the middle. The complete code and proof of
correctness for both algorithms appear in the full version of this paper [5].

2 Preliminaries

We consider a standard model for a shared memory system [6] in which a finite set of

asynchronous processes pi, . .., p, communicate by applying primitive operations to
m shared memory locations, ly, . .. .
A configuration is a vector C' = (q1, ..., qn, V1, - - -, Vm ), Where g; is the local state

of p; and v; is the value of memory location /;.

An event is a computation step by a process, p;, consisting of some local computation
and the application of a primitive to the memory. We allow the following primitives:
READ([;) returns the value v; in location [;; WRITE(l;,v) sets the value of location
l; to v; CAS(l;, exp, new) writes the value new to location ; if its value is equal to
exp, and returns a success or failure flag; DCAS is similar to CAS, but operates on two
independent memory locations.

An execution interval « 1is a (finite or infinite) alternating sequence
Cy, ¢9,C1,¢91,C5, ..., where Cy is a configuration, ¢, is an event and the
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application of ¢ to Cy results in Ciyq, for every k& = 0,1,.... An execution is
an execution interval in which Cj is the unique initial configuration.

A data structure of type T supports a set of operations that provide the only means
to manipulate it. Each data structure has a sequential specification, which indicates how
it is modified when operations are applied in a serial manner (in isolation).

An implementation of a data structure " provides a specific data-representation for
T’s instances as a set of memory locations, and protocols that processes must follow to
carry out T’s operations, defined in terms of primitives applied to memory locations.
We require the implementation to be linearizable [17].

This paper considers a doubly-linked list data structure, composed of nodes, each
with link pointers to its left and right neighboring nodes. Two special anchor nodes
serve as the first (leftmost) and last (rightmost) nodes in the doubly-linked list; they
cannot be removed from it, and hold no left link or no right link, respectively. A node
is valid in configuration C' if it is either an anchor, or both its left link and right link
pointers are not null.

We concentrate on the InsertRight, InsertLeft and Remove operations applied to some
source node in the linked list. Our description of their effects follows the description
of the deque operations in [2]:

insertRight(nd). If source is a valid node other than the right anchor, then insert nd to
the right of source and return SUCCESS; otherwise, return INVALID and the linked
list is unchanged.

insertLeft(nd). If source is a valid node other than the left anchor, then insert nd to
the left of source and return SUCCESS; otherwise, return INVALID and the linked
list is unchanged.

remove(). If source is a valid node other than an anchor, then remove source from
the linked list and return SUCCESS; otherwise, return INVALID and the linked list is
unchanged.

In order to apply an operation op; to the data structure, process p; executes the asso-
ciated protocol. The interval of an operation op, denoted I,,,, is the execution interval
between the first and last events of the process executing op’s protocol; if the opera-
tion does not terminate, its interval is infinite. Two operations overlap if their intervals
overlap. The interval of a set of operations OP, denoted I p, is the minimal execution
interval that contains all intervals, {I,, } opcop-

3 Locality Properties

The reference lock-based implementation of a data structure 1" atomically locks all the
memory locations that it accesses; these are called the lock set of the operation. The
lock set of an operation op; applied in state s is denoted LS (op;). Different lock-
based implementations may have different lock sets. Since we aim for highly concurrent
implementations, we choose a reference implementation that locks as few data items as
possible; for a linked list data structure this number is a constant.

When operations are concurrent, the state of the data structure at a configuration C'
is not necessarily unique. A state s of the data structure is possible in configuration C,
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(a) Example of overlapping operations on a linked list.
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(b) The corresponding conflict graph G(C).

Fig. 1. A simple conflict graph

if it is the result of some linearization that includes all operations that complete before
C' and a subset of the operations that are pending in C. The set of all possible states in
C'is denoted state(C').

Intuitively, the data set of an operation includes all the data items the operation ac-
cesses. When the data structure is dynamic, however, the data set changes over time and
it is unknown when the operation is invoked. For this reason, we need to consult the ref-
erence implementation regarding the data items it locks with respect to all the states of
the data structure during the operation’s interval. Formally, the data set of an operation
op; in configuration C' is defined as DS ¢ (op;) = Usesmte(c) LS (op;), i.e., the union
of all the sets of data items the operation locks (under the reference implementation)
when the state of the data structure is in state(C). DS(op;) = Uee Lo, DS c(opi);

namely, the union of DS« (op;) over all configurations during op;’s execution interval.

The conflict graph of a configuration C, denoted G(C'), occurring in some execution,
is an undirected graph that captures the distance between overlapping operations. If C'
is in the execution interval of an operation op;, and v and u are data items in DS (op; ),
then the conflict graph includes an edge between the respective vertices m,, and m,,,
labeled op;. The conflict graph of an execution interval a is the graph J.c, G(C).
For example, Figure 1(a) depicts the data set of several overlapping operations; op,
ops, and ops insert a new node to the right of mg, my4, and mg, respectively, while ops
and op4 remove mg and mg respectively. Figure 1(b) depicts the corresponding conflict
graph; the new node, omitted from the figure, is also in the operation’s data set.

The conflict distance (in short distance) between two operations, op;, op;, in a con-
flict graph is the length (in edges) of the shortest path between some vertex m; in
DS (op;) and some (possibly the same) vertex m,; in DS(op;). In particular, if DS (op;)
intersect DS(op; ), then the distance between op; and op; is zero. The distance is oo, if
there is no such path. In the conflict graph of Figure 1(b), the distance between op; and
op2 18 zero, the distance between op; and ops is one, the distance between op; and opy
is two, and the distance between op; and ops is co.
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We use this dynamic version of a conflict graph in the definitions of locality measures
suggested by Afek et al. [1]:

Definition 1. An algorithm has d-local step complexity if the number of steps per-
formed by process p during the operation interval 1, is bounded by a function of the
number of operations at distance smaller than or equal to d from op in the conflict
graph of its operation interval I,

Definition 2. An algorithm has d-local contention if in every execution interval for any
two operations, Iiop,, op,}, 0P1 and opz access the same memory location only if their
distance in the conflict graph of L1 oy, op,} is smaller than or equal to d.

4 DCAS-Based Doubly-Linked List Algorithm

We demonstrate our approach with a nonblocking implementation, DCAS-CHROMO, of
a doubly-linked list with insertions and removals anywhere. At the heart of our method-
ology is an enhancement of the colored-based virtual locking scheme. We first review
this scheme, and then describe our algorithm.

The Color-Based Virtual Locking Scheme: Data structures can be implemented by the
nonblocking virtual locking scheme [7,22,25]. A concurrent implementation is system-
atically derived from any lock-based algorithm: an operation starts by acquiring virtual
locks on the data items in its data set (LOCK phase); then, the appropriate changes are
applied on these data items (APPLY phase); finally, the operation releases the virtual
locks (UNLOCK phase). Similar to a lock-based solution, while a data item is locked by
an operation, other operations can neither lock nor moditfy it. This means the algorithm
is relieved of handling inconsistent states due to contention.

An operation is blocked if a data item in its data set is locked by another, blocking
operation. In order to make the scheme nonblocking, the process executing the blocked
operation op helps the blocking operation op’ to complete and release its data set. Sev-
eral processes may execute an operation; the process that invokes the operation is its
initiator, while the executing processes are processes helping the initiator to complete
or the initiator itself. CAS primitives are used to guarantee that only one of the executing
processes performs each step of the operation, and others have no effect.

This scheme induces recursive helping, in which one process helps another process
to help a third process and so on, possibly causing long helping chains. For example,
assume the nodes in Figure 1(a) are locked in ascending order. Consider an execution «
in which ops, ops and op4 concurrently lock their left-most data items successfully, and
then op; tries to lock its data items while the other operations are delayed. Since mso is
locked by op2, op; has to help ops; since my is locked by ops, op; has to help ops; and
since my is locked by op4, op; has to help op4. Thus op; is delayed by operations on a
path in o’s conflict graph, from some vertex in DS (op1 ). In general, op; can be delayed
by any operation within finite distance from it, implying that the locality is high.

Shavit and Touitou [22] overcome this problem by helping only an immediate neigh-
bor in the conflict graph. Nevertheless, the number of steps a process performs depends
on the length of the longest path from its data set in the conflict graph. Consider again
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Fig. 2. 3-Coloring of the linked list in Figure 1(a)

an execution that starts with opa, ops and op4 locking their low-address data items suc-
cessfully, then op; fails to lock ma, ops fails to lock my4, and ops fails to lock ms; each
operation then helps its (immediate) neighbor. Prior to helping, op2 and ops, relinquish
their locks and fail, thus op; and opy discover their help is unnecessary. Assume that
op4 completes, and again op1, op2 and ops try to lock their data sets. It is possible that
ops and ops lock their low-address data items, and op; tries, in vain, to help ops, which
releases its locks due to ops, etc. As the length of the path of overlapping operations
increases, the number of times op; futilely helps ops increases as well.

A color-based virtual locking scheme [4] bounds the length of helping chains by M-
coloring the data items with an ordered set of colors, c; < ca < ... < cps. An operation
acquires locks on data items in an increasing order of colors; after it locks all ¢;-colored
data items, we say the operation locked color ¢;. In this scheme, op helps op’ only if op’
already locked a higher color.

Figure 2 presents a 3-coloring of the linked list in Figure 1(a) using the colors
r(red) < g(green) < b(blue). Assume ops locks m4 and then tries to lock my, with
color b. If the lock on mg is already held by opy, then ops has to help opy. Note how-
ever, that b is the largest color, which means that op, already locked all the nodes in data
set. This means that ops will only have to apply op4’s changes, and ops is not required
to recursively help additional operations. Along these lines, it is possible to prove that
the length of helping chains is bounded by the number of colors, M, and the number
of times an operation helps other operations is bounded by a function of the number of
operations within distance M [4].

Originally [1, 4], colors were assigned to nodes from scratch each time an opera-
tion starts. This is done in a DECISION phase, which obtains information about op-
erations (and their data sets) at non-constant distance; thus, the DECISION phase has
non-constant locality properties.

Our Approach: We achieve constant locality properties by employing two complemen-
tary algorithmic ideas: The first is to maintain the data structure legally colored at all
times, and the second is to atomically lock all data items with the same color.

The key idea of our approach is to keep the coloring legal while the operation is in
its APPLY phase, rendering the DECISION phase obsolete. That is, the colors are built
into the nodes, and the operation updates the colors so that nodes remain legally colored.
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These changes are limited to the nodes in the operation’s data set, and bypass the need
to re-compute a legal coloring from scratch each time an operation is invoked.

The second idea avoids long helping chains due to symmetric color assignments.
For example, consider a long legally colored linked list of nodes with alternating col-
ors: b,r,b,r,b,r,.... Assume a set of concurrent operations, each of which is trying
to remove a different r-colored node, by first locking the node and its two b-colored
neighbors. An implementation that locks these two b-colored nodes one at a time, e.g.,
first the left neighbor, can lead to a configuration in which an operation holds its left
lock, and needs to help all operations to its right.

It is tempting to extend the notion of a legal coloring and require that any triple of
neighboring nodes is assigned distinct colors. This certainly will allow to follow the
color-based virtual locking scheme, but how can we preserve this extended coloring
property? In particular, when a node is removed, it is necessary to lock four nodes in
order to legally re-color the remaining three nodes; this requires to further extend the
coloring property to any four consecutive nodes, which in turn requires to lock five
consecutive nodes and so on.

Locking equally-colored nodes atomically provides an escape from this vicious cir-
cle, by avoiding this situation altogether. An operation accesses at most three consec-
utive nodes, which are legally colored, thus at most two of these nodes have the same
color, and a DCAS suffices for locking them. For example, in the scenario described
above, locking the two b-colored nodes atomically breaks the symmetry. This guaran-
tees that the LOCK phase has O(1)-local step complexity.

Another aspect of our algorithm is in handling the complications due to dynamically-
changing data structures. Previous implementations of the virtual locking scheme
handle static transactions [22] and multi-location operations [1, 4]; in both cases, an
operation accesses a pre-determined static data set.

Our algorithm addresses this problem, in a manner similar to [13], using a data
set memento, which holds a view of the data set when the operation starts. If, while
locking, a node and its memento are inconsistent, the operation skips the APPLY phase
to the UNLOCK phase where it releases all the locks it holds. If, on the other hand, the
operation completes its LOCK phase, then the locked data set memento is consistent
with the operation data set and the operation can continue with the APPLY phase as in a
static virtual locking scheme.

Detailed Description of Algorithm DCAS-CHROMO: First, we describe how operations
apply their changes to the data structure, and give some intuition of how the legal col-
oring is preserved; then we describe the helping mechanism that is responsible for the
nonblocking and locality properties.

The lock-based implementation we use as a reference has the following lock sets:
An InsertRight operation locks the new node to be inserted, the source node (to which
the operation is applied) and its right neighbor; an InsertLeft operation is symmetric;
a Remove operation locks the source node and both its left and right neighbors. After
locking, the operations apply changes to the respective set of left and right links as
described by the following code:
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Fig. 3. An example of an InsertRight operation - op; in Figure 2

InsertRight::applyChanges() { Remove::applyChanges() {
newN ode.right < source.right source.left.right < source.right
newN ode.left < source source.right.left < source.left
source.right.left < newNode source.right «— L
source.right < newNode source.left «— L

} }

Since our algorithm employs a virtual locking scheme, each operation proceeds in
exclusion in a manner similar to the lock-based one. Our implementation, however, also
needs to maintain the nodes legally colored. This requires adding one step to the Inser-
tRight operation (see Figure 3), and two steps to the Remove operation (see Figure 4).
To ensure that the coloring is legal at all times, we use a temporary color ¢y < c; during
the algorithm as described bellow. In the example figures, g is w(white).

InsertRight operation. Figure 3(a) presents the nodes m, mo, ms, m4 from Figure 2,
and the new node, m, that op; inserts to the right of mo. Before m is inserted to the
linked list, it is colored with the temporary color, w. op; locks the nodes in its data set,
ms and mga (and effectively, also m), and then applies its changes as follows: update
right neighbor of m (Figure 3(b)); update left neighbor of m—now, m is legally colored,
since its neighbors mq and mg have colors different than w (Figure 3(c)); m is assigned
with a non-temporary color different than its neighbors ms and m3 (Figure 3(d)); update
left neighbor of mg (Figure 3(e)); update right neighbor of mqy (Figure 3(f)).

Remove operation. Figure 4(a) presents the nodes my, mo, ms, my, ms from Figure 2,
opo removes the node mg. ops locks the nodes in its data set, mo, ms and my, before
it applies its changes as follows: my4 is assigned with the temporary color, w—now,
my 1is legally colored, since its neighbors ms and ms have colors different than w
(Figure 4(b)); update right neighbor of my (Figure 4(c)); update left neighbor of my
(Figure 4(d)); set right and left neighbors of m3 to null (Figure 4(e)); my4 is assigned
with a non-temporary color different than its neighbors mo and ms so it is legally
colored (Figure 4(f)).

Both an InsertRight operation and a Remove operation access three consecutive
nodes in the data set, however each operation only changes the color of a single node.
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Fig.4. An example of a remove operation - op> in Figure 2

An InsertRight operation changes the color of the middle node, and a Remove opera-
tion changes the color of the right node. The color of the left node in the data set of an
operation is not modified. This ensures that no two adjacent nodes change their color
concurrently even if they belong to the data sets of two adjacent concurrent operations.

We now detail the color-based locking and helping mechanisms. An operation is
partitioned into invocations. To initiate an invocation, the initiator process generates
the operation’s data set memento, which traces inconsistencies in the data set due to
changes applied by concurrent operations. If the operation locks its data set and applies
its changes then the invocation completes successfully and the operation will not be
re-invoked. Otherwise, the invocation fails and the operation restarts a new invocation.

The state of an operation is a tuple (seq,phase,result): seq is an integer, initially 0,
incremented every time the operation fails and the initiator process reinvokes it; phase
indicates the locking scheme phase within the invocation, set to INIT at the beginning
of every invocation; result holds the result of the current invocation execution, set to
NULL at the beginning of every invocation.

Figure 5 shows the state transition diagram of an operation’s invocation. The dashed
line indicates re-invocation, increasing the sequence number of the operation. The state
transitions of an invocation in a best-case execution, encountering no contention, ap-
pear at the top. If an operation discovers, while initiating an invocation, that another
operation removed the source node then it need not apply its changes, and it skips to the
FINAL phase with an INVALID result; this operation will not be re-invoked. If an oper-
ation discovers that a node in its data set other than the source node is invalid, then the
operation needs to re-evaluate its data set. In such a case, the invocation fails and a new
invocation is restarted. Another scenario in which an invocation fails is if the operation
detects inconsistency with the data set memento while locking the data set. In this case,
the operation releases the locks it already acquired and restarts a new invocation.

When an operation op fails to lock color ¢ it may discover that a node in its data set is
locked by another, blocking operation op’. In such a case, we follow the standard recur-
sive helping mechanism, i.e., op helps op’. Before helping op’, the executing process of
op verifies (again) that the nodes are consistent with their mementos. This is crucial for
maintaining the locality properties of the algorithm. If after an operation fails to lock the
nodes it discovers that none of them is locked by another operation, it simply retries to
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Fig. 5. Diagram of an operation state transitions model; the lower part of the state is the value of
result

acquire their locks. Finally, when an operation discovers that its source node is invalid
(as described above), it helps the operation that removes this node before skipping to its
FINAL phase, to preserve the correct order in which the operations complete.

Since an operation may be invoked more than once, its execution is composed of an
alternating sequence of acquiring and releasing locks. Having more than one process
executes the operation requires special care. Specifically, a process may acquire locks
of previous invocations or release locks acquired in a later invocation. Together with
the CAS primitives, the state is used to synchronize between the executing processes of
an operation. Before acquiring a lock the process verifies that the operation’s sequence
number is equal to the invocation it is executing. Furthermore, to prevent a process from
releasing locks acquired in a later invocation, the operation stamps any lock it acquires
with its sequence number. Before a process releases a lock, it verifies that the sequence
number stamped on the lock is equal to the invocation it is executing.

Some Implementation Details: We use object-oriented terminology and define opera-
tions as objects, whose structure and behavior are defined in the Operation hierarchy.

A process initializes an operation object with all the data required for its execution,
specifically the source node from the linked list on which the operation is applied. Al-
gorithm 1. outlines the generic protocol for an operation execution. The execution starts
with the execute method (line ex1) and as long as it suffers from contention and is un-
able to complete, the process repeatedly tries to re-invoke the operation (lines ex3-ex4):
First it generates the new data set memento (line t5); then it “helps” itself to follow the
locking scheme (line t7); lock nodes in its data set (line h2), apply its changes (line h4),
and releas the data set (line h6). Concrete operations, such as InsertRight and Remove,
extend the Operation structure and refine its protocols for cloning and manipulating the
data set with respect to their specifications. (The full pseudocode appears in [5].)

It is well-known that CAS primitives suffer from the ABA problem [18]: a process
p may read a value A from some memory location [, then other processes change [ to
B and then back to A, later p applies CAS on [ and the comparison succeeds whereas it
should have failed. The simplest way to avoid this problem is to associate each attribute
with a monotonically increasing counter. The attribute and the counter are manipulated
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Algorithm 1. Algorithm DCAS-CHROMO: Execution outline

ex1: Result Operation::execute() { tl: Operation::try() {
ex2: do t2: if source is invalid then
ex3: initiate new invocation t3: helpBlocking(source.lock)
ex4: tryQ t4: transition to FINAL-INVALID state
ex5: while state.result = CONTENTION t5: clone data set
ex6: return state.result t6: transition to LOCK state
ex7: } t7: help(state.seq)
t8: transition to FINAL state
t9: }
hl: Operation::help(intseq) { hbl: Operation::helpBlocking(Lock lock) {
h2: lock data set // by ascending colors ~ hb2: if lock != L then
h3: if state.phase = APPLY then hb3: op, opseq «— get blocking info
h4: apply changes hb4: op.help(opseq)
h5: transition to UNLOCK state hb5: }
h6: unlock data set
h7: }

atomically; the counter is incremented whenever the attribute is updated. Assuming that
the counter has enough bits, the CAS succeeds only if the counter has not changed since
the process read the attribute. Other methods prevent the ABA problem without the use
of a per-attribute counters, and may be applied also to our algorithm.

It is assumed that an automatic garbage collection reclaims unreferenced objects
such as nodes and operation objects. Long chains of garbage and garbage cycles do not
form since the links of removed nodes are nullified. The ABA prevention counter allows
a removed node to be inserted into a linked list immediately (after setting its color to
co) without harming the correctness of the algorithm. However, this would violate the
local contention property of the algorithm, so it is assumed that once a node is removed
from one linked list it is not reused until reclaimed by the garbage collector.

5 Correctness Proof (Outline)

The safety properties of the implementation, and in particular, its linearizability, hinge
on showing that the executing processes preserve the correct transition of the operation
between phases—locking, changing and releasing nodes in accordance with the opera-
tions’ phases. Most importantly, items in the data set are changed only while all of them
are locked. As mentioned before, this is somewhat more complicated than in previous
work [1,4,7,22,25], since the data set is dynamic.

Proving the progress and locality properties is more involved. One key is to show that
the color of an item causing a blocked operation to help, increases with every recursive
call. This implies that the depth of the recursion is bounded by the number of colors,
M. Moreover, we argue that in every locking attempt of an executing process, may it
be a successful or a futile one, some “nearby” operation makes progress, ensuring that
the algorithm is nonblocking and that the step complexity of an operation depends only
on the number of operations in its close neighborhood.
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The detailed correctness proof appears in the full version of the paper [5], showing:

Theorem 1. Algorithm DCAS-CHROMO is a nonblocking implementation of a doubly-
linked list, allowing insertions and removals anywhere, with 2-local step complexity
and 6-local contention complexity.

6 CAs-Based Doubly-Linked List Algorithm

In this section we discuss Algorithm CAS-CHROMO, a CAS-based variation of Algo-
rithm DCAS-CHROMO, allowing insertions everywhere and removals only at the ends.

We reuse the core implementation of insert and remove operations from Algorithm
DCAS-CHROMO and add the operations InsertFirst, RemoveFirst, InsertLast and Re-
moveLast for manipulating the ends of the linked list, with the obvious functionality.

We discuss the operations applied on the first (left) end of the linked list; the two
operation on the last (right) end are symmetric. InsertFirst and RemoveFirst operations
are closely related to the InsertRight and Remove operations, except that they implicitly
take the left anchor as their source node. The most crucial modification is in the locking
protocol, which no longer uses a DCAS primitive when locking its data set. However,
nodes with the same color are locked according to their order in the list, from left to
right; this allows to prove that the algorithm is nonblocking. In fact, this can also show
that operations help only along paths with O(1) length, which can be used to prove that
the algorithm has good locality properties. The details of the algorithm, as well as its
correctness proof, appear in the full version of the paper [5].

Theorem 2. Algorithm CAS-CHROMO is a nonblocking implementation of a doubly-
linked list, allowing insertions anywhere and removals at the ends, with 4-local step
complexity and 4-local contention complexity.

An implementation of deque data structure requires operations only at the ends. In this
case, the analysis can be further improved to show that the algorithm has 2-local step
complexity and 2-local contention complexity.

7 Discussion

This paper presents a new approach for designing nonblocking and high-throughput
implementations of linked list data structures; our scheme may have other applications,
e.g., for tree-based data structures.

We show a DCAS-based implementation of insertions and removals in a doubly-
linked list; when nodes are removed only from the ends, the implementation is modified
to use only CAS. These implementations are intended only as a proof-of-concept and
leave open further optimizations. It is also necessary to implement a search mechanism
in order to support the full functionality of priority queues and lists.

Acknowledgments. We thank David Hay, Danny Hendler, Gadi Taubenfeld and the
referees for helpful comments.
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Abstract. Gathering is a fundamental coordination problem in cooper-
ative mobile robotics. In short, given a set of robots with arbitrary initial
location and no initial agreement on a global coordinate system, gath-
ering requires that all robots, following their algorithm, reach the exact
same but not predetermined location. Gathering is particularly challeng-
ing in networks where robots are oblivious (i.e., stateless) and the direct
communication is replaced by observations on their respective locations.
Interestingly any algorithm that solves gathering with oblivious robots
is inherently self-stabilizing.

In this paper, we significantly extend the studies of deterministic gath-
ering feasibility under different assumptions related to synchrony and
faults (crash and Byzantine). Unlike prior work, we consider a larger set
of scheduling strategies, such as bounded schedulers, and derive interest-
ing lower bounds on these schedulers. In addition, we extend our study
to the feasibility of probabilistic gathering in both fault-free and fault-
prone environments. To the best of our knowledge our work is the first
to address the gathering from a probabilistic point of view.

1 Introduction

Many applications of mobile robotics envision groups of mobile robots self-
organizing and cooperating toward the resolution of common objectives. In many
cases, the group of robots is aimed at being deployed in adverse environments,
such as space, deep sea, or after some natural (or unnatural) disaster. It re-
sults that the group must self-organize in the absence of any prior infrastructure
(e.g., no global positioning), and ensure coordination in spite of faulty robots
and unanticipated changes in the environment.
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The gathering problem, also known as the Rendez-Vous problem, is a funda-
mental coordination problem in cooperative mobile robotics. In short, given a
set of robots with arbitrary initial location and no initial agreement on a global
coordinate system, gathering requires that all robots, following their algorithm,
reach the exact same location—one not agreed upon initially—within a finite
number of steps, and remain there.

Similar to the Consensus problem in conventional distributed systems, gather-
ing has a simple definition but the existence of a solution greatly depends on the
synchrony of the systems as well as the nature of the faults that may possibly occur.
In this paper, we investigate some of the fundamental limits of deterministic and
probabilistic gathering in the face of different synchrony and fault assumptions.

To study the gathering problem, we consider a system model first defined
by Suzuki and Yamashita [1], and some variants with various degrees of syn-
chrony. In this model, robots are represented as points that evolve on a plane.
At any given time, a robot can be either idle or active. In the latter case, the
robot observes the locations of the other robots, computes a target position, and
moves toward it. The time when a robot becomes active is governed by an acti-
vation daemon (scheduler). In the original definition of Suzuki and Yamashita,
called the ATOM model, activations (i.e., look—compute-move) are atomic, and
the scheduler is assumed to be fair and distributed, meaning that each robot
is activated infinitely often and that any subset of the robots can be active si-
multaneously. In the CORDA model of Prencipe [2], activations are completely
asynchronous, for instance allowing robots to be seen while moving.

Suzuki and Yamashita [1] proposed a gathering algorithm for non-oblivious
robots in ATOM model. They also proved that gathering can be solved with
three or more oblivious robots, but not with only two.! Prencipe [3] studied
the problem of gathering in both ATOM and CORDA models. He showed that
the problem is impossible without additional assumptions such as being able to
detect the multiplicity of a location (i.e., knowing the number of robots that may
simultaneously occupy that location). Flocchini et al. [4] proposed a gathering
solution for oblivious robots with limited visibility in CORDA model, where
robots share the knowledge of a common direction as given by some compass.
Based on that work, Souissi et al. [5] consider a system in which compasses are
not necessarily consistent initially. Ando et al. [6] propose a gathering algorithm
for ATOM model with limited visibility. Cohen and Peleg [7] study the problem
when robots’ observations and movements are subject to some errors.

None of the previously mentioned works addressed the gathering feasibility
in fault-prone environments. One of the first steps in this direction was done
by Agmon and Peleg [8]. They prove that gathering of correct robots (referred
in this paper weak gathering) can be achieved in the ATOM model even in the

1 'With two robots, all configurations are symmetrical and may lead to robots endlessly
swapping their positions. In contrast, with three or more robots, an algorithm can
be made such that, at each step, either the robots remain symmetrical and they
eventually reach the same location, or symmetry is broken and this is used to move
one robot at a time.
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face of the crash of a single robot. Furthermore, they prove that no deterministic
gathering algorithm exists in ATOM model that can tolerate a Byzantine? robot.
Finally, they consider a stronger daemon, called fully synchronous, in which all
robots are always activated simultaneously, and show that weak gathering can
be solved in that model when the number of Byzantine robots is less than one
third of the system.

Contribution. In this paper, we further study the limits of gathering feasibility in
both fault-free and fault prone environments, by considering centralized sched-
ulers® (i.e., activations in mutual exclusion) and k-bounded schedulers, that is,
schedulers ensuring that between any two consecutive activations of a robot, no
other robot is activated more than k times.

The main results we obtain are as follows. Firstly, we strengthen the impossi-
bility results of Agmon and Peleg [8] since we show that, even in strictly stronger
models, their impossibility result holds. Secondly, we outline the essential limits
where Byzantine and crash-tolerant gathering become possible. In particular, we
propose interesting lower bounds on the value that & (the scheduler bound) must
take for the problem to become possible. Thirdly, we show in what situations
randomized algorithms can help solve the problem, and when they cannot. To
the best of our knowledge our work is the first to study the feasibility of prob-
abilistic gathering in both fault-free and fault-prone systems. Additionally we
evaluate the convergence time of our probabilistic gathering algorithms under
fair schedulers using the coupling technique developed in [9]. The convergence
time of our algorithms is polynomial in the size of the network in both fault-
free and crash-prone environments under fair bounded schedulers. We conjecture
that our bounds are optimal and hold for the case of Byzantine-prone systems.

Structure of the paper. The rest of the paper is structured as follows. Section 2
describes the robots network and system model. Section 3 formally defines the
gathering problem. Section 4 propose possibility and impossibility results for
deterministic and probabilistic gathering in fault-free environments. Section 5.1
and 5.2 extend the study in Section 4 to crash and Byzantine prone environments.
Due to space limitations, most of the proofs are omitted, but they are included
in the full version [10].

2 Model

2.1 Robots Networks

Most of the notions presented in this section are borrowed from [1,2,8]. We
consider a network of a finite set of robots arbitrarily deployed in a geographical

2 A Byzantine robot is a faulty robot that can behave arbitrarily, possibly in a way
to prevent the other robots from gathering in a stable way.

3 The rationale for considering a centralized daemon is that, with communication
facilities, the robots can synchronize by running a mutual exclusion algorithm, such
as token passing.
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area. The robots are devices with sensing, computational and motion capabilities.
They can observe (sense) the positions of other robots in the plane and based on
these observations they perform some local computations. Furthermore, based
on the local computations robots may move to other locations in the plane.

In the case robots are able to sense the whole set of robots they are referred
as robots with unlimited visibility; otherwise robots have limited visibility. In
this paper, we consider that robots have unlimited visibility.

In the case robots are able to distinguish if there are more than one robot at
a given position they are referred as robots with multiplicity knowledge.

2.2 System Model

A network of robots that exhibit a discrete behaviour can be modeled with an
I/0 automaton [11]. A network of robots that exhibit a continous behaviour can
be modeled with a hybrid I/O automaton [12]. The actions performed by the
automaton modeling a robot are as follows:

— Observation (input type action).
An observation returns a snapshot of the positions of all the robots in the vis-
ibility range. In our case, this observation returns a snapshot of the positions
of all the robots;
— Local computation (internal action).
The aim of a local computation is the computation of a destination point;
— Motion (output type action).
This action commands the motion of robots towards the destination location
computed in the local computation action.

The local state of a robot at time ¢ is the state of its input/output variables and
the state of its local variables and registers. A network of robots is modeled by
the parallel composition of the individual automata that model one per one the
robots in the network. A configuration of the system at time ¢ is the union of the
local states of the robots in the system at time ¢. An execution e = (cg, ..., ¢, . .)
of the system is an infinite sequence of configurations, where ¢g is the initial
configuration? of the system, and every transition ¢; — c;;1 is associated to the
execution of a subset of the previously defined actions.

Schedulers. A scheduler decides at each configuration the set of robots allowed
to perform their actions. A scheduler is fair if, in an infinite execution, a robot
is activated infinitely often. In this paper we consider the fair version of the
following schedulers:

— centralized: at each configuration a single robot is allowed to perform its
actions;

— k-bounded: between two consecutive activations of a robot, another robot
can be activated at most k times;

4 Unless stated otherwise, this paper makes no specific assumption regarding the re-
spective positions of robots in initial configurations.
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— bounded regular: between two consecutive activations of a robot, all the ro-
bots in the system perform their actions once and only once.
— arbitrary: at each configuration an arbitrary subset of robots is activated.

Faults. In this paper, we address the following failures:

— crash failures: In this class, we further distinguish two subclasses: (1) robots
physically disappear from the network, and (2) robots stop all their activities,
but remain physically present in the network;

— Byzantine failures: In this case, robots may have an arbitrary behavior.

2.3 Computational Models

The literature proposes two computational models: ATOM and CORDA. The
ATOM model was introduced by Suzuki and Yamashita [1]. In this model each
robot performs, once activated by the scheduler, a computation cycle composed
of the following three actions: observation, computation and motion. The atomic
action performed by a robot in this model is a computation cycle. The execution
of the system can be modeled as an infinite sequence of rounds. In a round
one or more robots are activated and perform a computation cycle. The ATOM
model was refined by Agmon and Peleg [8]. The authors distinguish the case
of hyperactive systems where all robots are activated simultaneously and non-
hyperactive systems where a strict subset of robots are simultaneously activated.

The CORDA model was introduced by Prencipe [2]. This model refines the
atomicity of the actions performed by each robot. Hence, robots may perform
in a decoupled fashion, the atomic actions of a computation cycle. They may be
interrupted by the scheduler in the middle of a computation cycle. Moreover,
while a robot performs an action A, where A can be one of the following atomic
actions: observation, local computation or motion, another robot may perform
a totally different action B.

In this paper, we consider both models, refined with the scheduling strategies
presented above. Moreover, we consider that robots are oblivious (i.e., stateless).
That is, robots do not conserve any information between two computational cy-
cles.” We also assume that all the robots in the system have unlimited visibility.

3 The Gathering Problem

A network of robots is in a terminal (legitimate) configuration with respect to
the gathering requirement if all the robots share the same position in the plane.
Let denote by Pgathering this predicate.

An algorithm solves the gathering problem in an oblivious system if the fol-
lowing two properties are verified:

® One of the major motivation for considering oblivious robots is that, as observed
by Suzuki and Yamashita [1], any algorithm designed for that model is inherently
self-stabilizing.
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— Convergence Any execution of the system starting in an arbitrary con-
figuration reaches in a finite number of steps a configuration that satisfies
PGathering-

— Termination Any execution starting in a terminal configuration with re-
spect to the Pgathering predicate contains only legitimate configurations.

Gathering is difficult to achieve in most of the environments. Therefore, weaker
forms of gathering were studied so far. An interesting version of this problem
requires robots to converge toward a single location rather than reach that loca-
tion in a finite time. The convergence is however considerably easier to deal with.
For instance, with unlimited visibility, convergence can be achieved trivially by
having robots moving toward the barycenter of the network [1].

Note that an algorithm that solves the gathering problem with oblivious or
stateless robots is self-stabilizing [13].

4 Gathering in Fault-Free Environments

In this section, we refine results showing the impossibility of gathering [3,8]
by proving first that these results hold even under more restrictive schedulers
than the ones considered so far [3,8]. Interestingly, we also prove that some
of these impossibility results hold even in probabilistic settings. Additionally,
to circumvent these impossibility results, we propose a probabilistic algorithm
that solves the fault-free gathering in both ATOM and CORDA models, under
a special class of schedulers, known as k-bounded schedulers. In short, a k-
bounded scheduler is one ensuring that, during any two consecutive activations
of any robot, no other robot is activated more than k times.

4.1 Synchronous Robots — ATOM Model

Note 4.1. Prencipe [3] proved that there is no deterministic algorithm that solves
gathering in ATOM and CORDA models without additional assumptions, such
as the ability to detect multiplicity.

The following lemma shows that the impossibility result of Prencipe [3] holds
even under a weaker scheduler—the centralized fair bounded regular scheduler.
Intuitively, a schedule of this particular scheduler is characterized by two prop-
erties: each robot is activated infinitely often and between two executions of a
robot every robot in the network executes its actions exactly once. Moreover, in
each configuration a single robot is allowed to execute its actions.

Lemma 4.1. There is no deterministic algorithm that solves gathering in the
ATOM model for n > 3 under a centralized fair bounded regular scheduler, with-
out additional assumptions (e.g., multiplicity knowledge).

Note that the deterministic gathering of two oblivious robots was proved impos-
sible by Suzuki and Yamashita [1]. The scenario is the following: the two robots
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Algorithm 4.1 Probabilistic gathering for robot p.

Functions:

observe meighbors :: returns the set of robots within visibility range of robot p (the set
of p’s neighbors). Note that, in a system with unlimited visibility, observe neighbors
returns all the robots in the network.

Actions:
Ay true —
Ny = observe neighbors();
with probability a = N b{p}‘ do
select a robot ¢ € N, U{p};
move towards gq;
Remark: with probability 1 — «, the position remains unchanged;

are always activated simultaneously. Consequently, they continuously swap po-
sitions, and the system never converges. In the following, we prove that, for
the case of two robots, there exists a probabilistic solution for gathering in the
ATOM model, under any type of scheduler. Algorithm 4.1 describes the proba-
bilistic strategy of a robot. When chosen by the scheduler, a robot decides, with
probability «, whether it will actually compute a location and move whereas,
with probability 1 — «, the robot will remain stationary. The following lemma
shows that Algorithm 4.1 reaches a terminal configuration with probability 1.

Lemma 4.2. Algorithm 4.1 probabilistically solves the 2-gathering problem in
the ATOM model under an arbitrary scheduler. The algorithm converges in
2 steps in expectation.

The next lemma extends the impossibility result proved in Lemma 4.1 to prob-
abilistic algorithms under unfair schedulers.

Lemma 4.3. There is no probabilistic algorithm that solves the m-gathering
problem, for n > 3, in ATOM model, under a fair centralized scheduler with-
out additional assumptions (e.g., multiplicity knowledge).

The key issue leading to the above impossibility is the freedom that the sched-
uler has in selecting a robot r until its probabilistic local computation allows
r to actually move. The scenario can however no longer hold with systems in
which the scheduler is k-bounded. That is, in systems where a robot cannot be
activated more than k times before the activation of another robot. In this type
of game robots win against the scheduler and the system converges to a terminal
configuration.

Lemma 4.4. Algorithm 4.1 probabilistically solves the n-gathering problem, n >
3, in the ATOM model under a fair k-bounded scheduler and without multiplicity
knowledge.
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Lemma 4.5. The convergence time of Algorithm 4.1 under fair bounded sched-
ulers is n? rounds® in expectation.

Proof. In the following, we use the coupling technique developed in [9]. Algo-
rithm 4.1 can be seen as a Markov chain. Let’s call it A hereafter. A coupling
for Algorithm 4.1, is a Markov chain (X, Y;)$2, with the following properties:
(1) each of the variables (X}), (Y;) is a copy of the Markov chain A4 (given initial
configurations Xo = = and Yy = y); and (2) if X; = Y; then X441 = Y4,
Intuitively, the coupling time is the expected time for the two processes X; and
Y: to reach the agreement property (X; = Y;). As shown in Theorem 1 [9] the
coupling time is also an upper bound for the hitting time or convergence time
of a self-stabilizing algorithm.

Assume (X;) and (Y;) are two copies of the Markov chain modeling Algo-
rithm 4.1. Let us denote by 6(X;,Y;) the distance between X; and Y; (the
number of robots that do not share identical positions in X; and Y;). In the
worst case, 6(X;,Y;) = n (where n is the number of robots in the network).
In the following we show that, with positive probability, the distance between
X1 and Y41 decreases. Assume that the scheduler chooses robot p at instant ¢,
and assume that p does not share the same position in X; and Y;. With pos-
itive probability, X;11(p) = Yi+1(p). Assume that the scheduler chooses two
or more robots in t. Since the scheduler is bounded, within a round of size R,
0(Xi+r,Yier) < 0(X;,Y;) — 1. Following the result proved in Theorem 2 [9],
the coupling time for this chain is bounded from above by B 5 Where B is the
maximal value of the distance metric (in our case this value is n) and g is the
constant such that for all (Xy, Y;) we have E[0(X¢41, Yit1)] < 86(X¢, Yz). In our
case, § = ";1. So, the hitting (convergence) time for Algorithm 4.1 is n? rounds
in expectation. a

4.2 Asynchronous Robots — CORDA Model

In the following, we analyze the feasibility of gathering in a stronger model,
namely, CORDA. Obviously, all the impossibility results proved in the ATOM
model hold for CORDA [14].

The next lemma states that 2-gathering, while probabilistically feasible in
ATOM model, is impossible in the CORDA model under an arbitrary scheduler.”
We recall that, in the CORDA model, robots can be interrupted by the scheduler
during a computation cycle.

Lemma 4.6. 2-gathering is impossible in the CORDA model under an arbitrary
scheduler.

Now, instead of an arbitrary scheduler, we consider a k-bounded scheduler, and
obtain the following possibility result.

5 A round is the longest fragment of an execution between two successive actions of
the same process. Following the variant of the chosen k-bounded scheduler a round
can have k steps or kn steps.

" Note that 2-gathering is trivially possible under a centralized scheduler.
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Lemma 4.7. Algorithm 4.1 probabilistically solves the n-gathering problem, n >
2, in the CORDA model under a k-bounded scheduler and without multiplicity
knowledge.

5 Fault Tolerant Gathering

5.1 Crash Tolerant Gathering

In the following we extend the study of the gathering feasibility to fault-prone
environments. In this section (n, f) denotes a system with n correct robots but
f and the considered faults are the crash failures. As mentioned in the model,
Section 2, in an (n, f) crash-prone system there are two types of crashes: (1) the
crashed robots completely disappear from the system, and (2) the crashed robots
are still physically present in the system, however they stop the execution of any
action. In the sequel we analyze both situations.

Lemma 5.1. In a crash-prone system, (3,1)-gathering is deterministically pos-
sible under a fair centralized regqular scheduler.

The following lemma proves that the previous result does not hold in systems
with more than three robots. More precisely, this lemma expands the impossi-
bility results proved in Lemma 4.1 and 4.3 to crash-prone environments.

Lemma 5.2. In a crash-prone system, there is no deterministic algorithm that
solves the (n,1)-gathering problem, n > 4, under a fair bounded regular central-
ized scheduler without additional assumptions (e.g, multiplicity knowledge).

Lemma 5.3. In a crash-prone system, there is no probabilistic algorithm that
solves the (n,1)-gathering problem, n > 3, under a fair centralized scheduler
without additional assumptions (e.g., multiplicity knowledge).

The key argument in the previous impossibility proof is that the scheduler has
the possibility to choose a robot until that robot is allowed to move (by its
probabilistic algorithm). In some sense, the scheduler managed to derandom-
ize the system. However, the process of derandomization is no longer possible
with a bounded scheduler. The following lemma proves that (n,1)-gathering
is probabilistically possible under a bounded scheduler and without additional
assumptions.

Lemma 5.4. In a crash-prone system, Algorithm 4.1 is a probabilistic solution
for the gathering problem in systems with n correct robots but one and under a
bounded scheduler.

In the following, we extend our study to systems with more than one faulty
robot. Hereafter, (n, f)-gathering refers to the gathering problem in a system
with n correct robots but f. If the faulty robots disappear from the system,
then the problem trivially reduces to the study of a fault-free gathering with
n—f correct robots. In contrast, in systems where faulty robots remain physically
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present in the network after crashing, the problem is far from being trivial.
Obviously, gathering all the robots including the faulty ones, is impossible since
faulty robots may possibly have crashed at different locations.

From this point on, we study the feasibility of a weaker version of gathering,
referred to as weak gathering. The (n, f)-weak gathering problem requires that, in
a terminal configuration, only the correct robots must share the same position.
The following lemma proves the impossibility of deterministic and probabilis-
tic weak gathering under centralized bounded and fair schedulers and without
additional assumptions.

Lemma 5.5. In a crash-prone system, there is neither a probabilistic nor a
deterministic algorithm that solves the (n, f)-weak gathering problem, n > 3 and
f > 2, under a fair centralized regular scheduler without additional assumptions.

Algorithm 5.1 Deterministic fault-tolerant weak gathering for robot p
Functions:

observe meighbors :: returns the set of robots within the vision range of robot p (the
set of p’s neighbors);

maximal multiplicity :: returns a robot in the group with the maximal multiplicity;
or, if several such groups exists, makes an arbitrary choice among them:;

Actions:
Aq i true —
N, = observe neighbors();
q = mazimal multiplicity(Np);
move towards gq;

An immediate consequence of the previous lemma is the necessity of an addi-
tional assumption (e.g., multiplicity knowledge), even for probabilistic solutions
under bounded schedulers.

In the sequel, we identify the conditions under which the weak gathering
accepts deterministic and probabilistic solutions. Algorithm 5.1 proposes a de-
terministic solution for the weak gathering that works under both centralized
and bounded schedulers. The idea of the algorithm is the following: a robot,
once chosen by the scheduler, moves to the group with the maximal multiplicity
— “attraction action”. In case that all groups have the same multiplicity, the
chosen robot will go to the location of another robot — “unbalanced action”.
The attraction action helps the convergence while the unbalanced action breaks
the symmetry.

Lemma 5.6. In a crash-prone system, Algorithm 5.1 deterministically solves
the (n, f)-weak gathering problem, f > 2, under a centralized scheduler if robots
are aware of the system multiplicity.
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Algorithm 5.2 Probabilistic fault-tolerant gathering for robot p with multiplic-
ity knowledge

Functions:

observe meighbors :: returns the set of robots within the vision range of robot p (the
set of p’s neighbors);

maximal multiplicity :: returns the set of robots with the maximal multiplicity;

Actions:
Ay true —
N, = observe neighbors();
if p € mazimal multiplicity(Np) A [mazimal multiplicity (Np)| > 1 then
1

with prObablhty |ma,z1',ma.l multiplicity (Np) | do

select a robot q € mazimal multiplicity(Np);
move towards gq;
else
select a robot q € mazimal multiplicity(Np);
move towards gq;

In the following we show that (n, f)-weak gathering can be solved under arbi-
trary schedulers using a probabilistic algorithm, Algorithm 5.2, and multiplicity
knowledge. Algorithm 5.2 works as follows. When a robot is chosen by the sched-
uler it moves to the group with maximal multiplicity. When all groups have the
same size, then the robot tosses a coin to decide if it moves or holds the current
position.

Lemma 5.7. In a crash-prone system, Algorithm 5.2 probabilistically solves the
(n, f)-weak gathering problem, f > 2, under an unfair scheduler if robots are
aware of the system multiplicity.

5.2 Byzantine Tolerant Gathering

In the following we study the gathering feasibility in systems prone to Byzantine
failures. In the sequel (n, f) denotes a system with n correct robots but f. Agmon
and Peleg [8] proved that gathering in Byzantine environments is impossible
in ATOM and CORDA models for the case (3,1). The impossibility proof is
given for the case of the ATOM model and algorithms that are not hyperactive.
The following lemma proves the (3, 1)-gathering impossibility under the weakest
scheduler, in particular the centralized, fair and regular.

Lemma 5.8. In a Byzantine-prone system, there is no deterministic algorithm
that solves (3,1)-weak gathering under a fair, centralized and bounded regular
scheduler without additional assumptions.

Note 5.1. Note that Algorithm 5.1 solves the Byzantine (3,1)-weak gathering
under a centralized regular scheduler and multiplicity knowledge. The cycle cre-
ated in the impossibility proof is broken because the Byzantine robot cannot
play the attractor role.
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The following lemma shows that if the scheduler is relaxed, the (3,1)-weak
gathering becomes impossible even if robots are aware of the system multiplicity.

Lemma 5.9. In a Byzantine-prone system, there is no deterministic algorithm
that solves the (3,1)-weak gathering, even when robots are aware of the system
multiplicity, under a centralized fair k-bounded scheduler with k > 2.

Note 5.2. Byzantine (n,1)-weak gathering for any odd n > 4 is possible un-
der any fair centralized scheduler and multiplicity knowledge. The algorithm is
trivial: a robot moves to the group with maximal multiplicity.

The following lemma establishes a lower bound for the bounded centralized
scheduler that prevents the deterministic gathering.

Lemma 5.10. In a Byzantine-prone system, there is no deterministic algorithm
that solves (n, 1)-weak gathering, with n > 2 even, under a centralized k-bounded
scheduler for k > (n — 1). This result holds even when robots are aware of the
system multiplicity.

Corollary 5.1. Byzantine (n,1)-weak gathering is possible under a centralized
scheduler:

— in systems where n > 4 is odd, robots have multiplicity knowledge and the
scheduler is fair, or

— in systems where n > 2 is even and the scheduler is k-bounded with k <
(n—2).

The following lemma states the lower bound for a bounded scheduler that pre-
vents deterministic gathering.

Lemma 5.11. In Byzantine-prone systems, there is no deterministic algorithm
that solves (n, f)-weak gathering, f > 2, under a centralized k-bounded scheduler

with k > {”;f when n is even, and with k > Hiﬂ when n is odd, even when

the robots can detect multiplicity.

Proof. — Even case. Similar to the (n, 1) case above, assume that the system
starts in an initial configuration in which all robots are arranged in two
groups. Assume the same scheduler as in the (n, 1) case: for each move of a
correct robot the scheduler chooses a Byzantine robot. The Byzantine robot
will try to balance the system equilibrium hence it will move towards the old
location of the correct robot. In order to win the game the Byzantine robots
need to move each time a correct robot moves. Since there are n— f correct

robots in the system, the scheduler has to be bounded by no less than [";f—‘

for the Byzantine team to win.

— Odd case. For the odd case assume an initial configuration where robots
but one (a Byzantine one) are arranged in two groups. When chosen by the
scheduler the Byzantine robot not member of a group moves such that the
equilibrium between the two groups does not change. Let denote G and
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G5 the two groups. Consider the following schedule. Every time a correct
robot, member of G;, moves, a Byzantine robot moves as well in the opposite
direction. Hence the system equilibrium does not change. The game is similar
to the even case. The only difference is that the number of Byzantine robots
that influence the faith of the game is f — 1. Therefore, in order to win
the game, the Byzantine team needs a k-bounded scheduler bounded by
k> H*{ W O
Lemma 5.12. In systems with Byzantine faults, Algorithm 5.2 probabilistically
solves the (n, f)-weak gathering, n > 3, problem under a bounded scheduler and
multiplicity detection.

6 Conclusion

The results presented here extend that of prior work on the possibility and
impossibility of gathering in fault-free and both crash-prone and Byzantine-
prone systems. For instance, we strengthen several prior impossibility results by
showing that they still hold against weaker schedulers, and under various failure
models. We also mark out more accurately the limit between possibility and
impossibility by deriving appropriate upper and lower bounds.

To the best of our knowledge, this is actually the first study that considers
probabilistic solutions to solve the gathering problem. Here, we identify condi-
tions under which a probabilistic solution exists, as well as conditions for which
not even a probabilistic solution exists.

The main results of the paper are summed up in Table 1 for fault-free systems;
in Table 2 for crash-prone systems; and in Table 3 for the weak gathering problem
in Byzantine-prone systems.

As an open question, some of the impossibility proofs only consider the use
of randomization for determining whether a robot takes actions or not when it
is activated. One can argue that using randomization in a different way may

Table 1. Summary of the main results in fault-free environments

s g

< 8 2z
=0 28 58 4
FEEE IR
<0 E2 8245 5 Conditions Solution Source

. . o Impossible  Prencipe [3] (Note 4.1)
e0 o 0o0o0 n >3  No deterministic Lemma 4.1
° e 0co0o0e n=2 Probabilistic Lemma 4.2
o0 e o n >3 No probabilistic Lemma 4.3
e oe oOoe n>3 Probabilistic Lemma 4.4

o o e 0 n=2 Impossible Lemma 4.6
oce oce oOe - Probabilistic Lemma 4.7

7%

e” means explicit; “o” means implicit; negative results are in italic
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Table 2. Summary of the main results in crash-prone systems

el )
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oL £8 EZ 02 3
HO =2 o 5 80 Q2 = .. .
<O Ef 822355 Conditions Solution Source
° o o n=3 f=1 Deterministic Lemma 5.1
o0 e e 00 n>4,f>1 No deterministic Lemma 5.2
e 0 oo n>3, f>1 No probabilistic Lemma 5.3
° ° f=1 Probabilistic ~Lemma 5.4
o0 o oo n>3, f>2 weak Impossible Lemma 5.5
° ° f > 2, weak Deterministic Lemma 5.6
° 0coo0o0e f > 2, weak Probabilistic ~Lemma 5.7

‘e” means explicit; “o” means implicit; negative results are in italic

Table 3. Summary of the main results in Byzantine-prone systems

T T
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=Q 23358 u

LEEEEE

<O 2 824% 5 Conditions Solution Source

eo0 o ) n=3 f=1 No deterministic Agmon—Peleg [8]
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o o o n=3 f=1 Deterministic Note 5.1

e0 e0 e @00 n=3, f=1,k>2 No deterministic ~ Lemma 5.9

e o o nodd,n>4, f=1 Deterministic Note 5.2

eo0 eo0 e eo0o0 nevenn>2, f=1,k>n—1 No deterministic Lemma 5.10
";f if n even

eo0 e0 e eo0o0 f>2 k> No deterministic ~ Lemma 5.11
221 | if noodd

o o oe n>3 Probabilistic Lemma 5.12

“e” means explicit; “o” means implicit; negative results are in italic

possibly change some of the lower bounds presented here. We conjecture that
the bounds will hold even if randomization is used differently.
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Abstract. Fast algorithms are presented for performing computations in a prob-
abilistic population model. This is a variant of the standard population proto-
col model—in which finite-state agents interact in pairs under the control of an
adversary schedule—where all pairs are equally likely to be chosen for each
interaction. It is shown that when a unique leader agent is provided in the ini-
tial population, the population can simulate a virtual register machine in which
standard arithmetic operations like comparison, addition, subtraction, and multi-
plication and division by constants can be simulated in O(n log” ) interactions
with high probability. Applications include a reduction of the cost of computing a
semilinear predicate to O(n log® n) interactions from the previously best-known
bound of O(n?logn) interactions and simulation of a LOGSPACE Turing ma-
chine using the same O(n log” n) interactions per step. These bounds on interac-
tions translate into O(log® n) time per step in a natural parallel model in which
each agent participates in an expected ©@(1) interactions per time unit. The cen-
tral method is the extensive use of epidemics to propagate information from and
to the leader, combined with an epidemic-based phase clock used to detect when
these epidemics are likely to be complete.

1 Introduction

The population protocol model of Angluin ef al. [3] consists of a population of finite-
state agents that interact in pairs, where each interaction updates the state of both par-
ticipants according to a transition function based on the participants’ previous states
and the goal is to have all agents eventually converge to a common output value that
represents the result of the computation, typically a predicate on the initial state of the
population. A population protocol that always converges to the correct output is said to
perform stable computation and a predicate that can be so computed is called stably
computable.

In the simplest version of the model, any pair of agents may interact, but which
interaction occurs at each step is under the control of an adversary, subject to a fairness
condition that essentially says that any continuously reachable global configuration is
eventually reached. The class of stably computable predicates in this model is now very
well understood: it consists precisely of the semilinear predicates (those predicates
on counts of input agents definable in first-order Presburger arithmetic [23]), where
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semilinearity was shown to be sufficient in [3] and necessary in [5]. However, the fact
that a protocol will eventually converge to the correct value of a semilinear predicate
says little about how long such convergence will take.

Our fundamental measure of convergence is the total number of pairwise interactions
until all agents have the correct output value, considered as a function of n, the number
of agents in the population. We may also consider models in which reactions occur
in parallel according to a Poisson process (as assumed in e.g. [18, 17]); this gives an
equivalent distribution over sequences of reactions but suggests a measure of time based
on assuming each each agent participates in an expected ©(1) interactions per time
unit. It is not hard to see that this time measure is asymptotically equal to the number
of interactions divided by n.

To bound these measures, it is necessary to place further restrictions on the adver-
sary: a merely fair adversary may wait an arbitrary number of interactions before it
allows a particular important interaction to occur. In the present work, we consider the
natural probabilistic model, proposed in [3], in which each interaction occurs between
a pair of agents chosen uniformly at random. In this model, it was shown in [3] that
any semilinear predicate can be computed in ©(n?logn) expected interactions using
a protocol based on leader election in which the leader communicates the outcome by
interacting with every other agent. Protocols were also given to simulate randomized
LOGSPACE computations with polynomial slowdown, allowing an inverse polynomial
probability of failure.

We give a new method for the design of probabilistic population protocols, based
on controlled use of self-timed epidemics to disseminate control information rapidly
through the population. This method organizes a population as an array of registers
that can hold values linear in the size of the population. The simulated registers sup-
port the usual arithmetic operations, including addition, subtraction, multiplication and
division by constants, and comparison, with implementations that complete with high
probability in O(n log4 n) interactions and polylogarithmic time per operation. As a
consequence, any semilinear predicate can be computed without error by a probabilis-
tic population protocol that converges in O(n log? n) interactions with high probability,
and randomized LOGSPACE computation can be simulated with inverse polynomial
error with only polylogarithmic slowdown. These bounds are optimal up to polyloga-
rithmic factors, because {2(n log n) interactions are necessary to ensure that every agent
has participated in at least one interaction with high probability.

However, in order to achieve these low running times, it iS necessary to assume
a leader in the form of some unique input agent. This is a reasonable assumption in
sensor network models as a typical sensor network will have some small number of
sensors that perform the specialized task of communicating with the user and we can
appoint one of these as leader. Assuming the existence of a leader does not trivialize the
problem; for example, any protocol that requires that the leader personally visit every
agent in the population runs in expected number of interactions at least £2(n? logn).

If a leader is not provided, it is in principle possible to elect one; however, the best
known expected bounds for leader election in a population protocol is still the ©(n?)
interactions or @(n) time of a naive protocol in which candidate leaders drop out only
on encountering other leaders. It is an open problem whether a leader can be elected
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significantly faster. There must also be a way to reinitialize the simulation protocol once
all but one of the candidates drops out. We discuss these issues further in Section 7.

In building a register machine from agents in a population protocol, we must solve
many of the same problems as hardware designers building register machines from elec-
trons. Thus the structure of the paper roughly follows the design of increasing layers
of abstraction in a CPU. We present the underlying physics of the world—the popula-
tion protocol model—in Section 2. Section 3 gives concentration bounds on the number
of interactions to propagate the epidemics that take the place of electrical signals and
describes the phase clock used to coordinate the virtual machine’s instruction cycle.
Section 4 describes the microcode level of our machine, showing how to implement
operations that are convenient to implement but hard to program with. More traditional
register machine operations are then built on top of these microcode operations in Sec-
tion 5, culminating in a summary of our main construction in Theorem 2. Applications
to simulating LOGSPACE Turing machines and computing semilinear predicates are
described in Section 6. Some directions for future work are described in Section 7. Due
to space limitations, most proofs are omitted from this extended abstract.

Many of our results are probabilistic, and our algorithms include tuning parameters
that can be used to adjust the probability of success. For example, the algorithm that
implements a given register machine program is designed to run for n* instructions for
some k, and the probability of failure for each instruction must be bounded by a suitable
inverse polynomial in n. We say that a statement holds with high probability if for any
constant c there is a setting of the tuning parameters that cause the statement to hold
with probability at least 1 — n~¢. The cost of achieving a larger value of c is a constant
factor slowdown in the number of interactions (or time) used by the algorithms.

1.1 Related Work

The population protocol model has been the subject of several recent papers. Diamadi
and Fischer introduced a version of the probabilistic model to study the propagation of
trust in a social network [15], and a related model of urn automata was explored in [2].
One motivation for the basic model studied in [3] was to understand the computational
capabilities of populations of passively mobile sensors with very limited computational
power. In the simplest form of the model, any agent may interact with any other, but
variations of the model include limits on which pairs of agents may interact [3, 1, 4],
various forms of one-way and delayed communication [6], and failures of agents [14].
The properties computed by population protocols have also been extended from pred-
icates on the initial population to predicates on the underlying interaction graph [1],
self-stabilizing behaviors [7], and stabilizing consensus [8].

Similar systems of pairwise interaction have previously been used to model the inter-
action of small molecules in solution [18,19] and the propagation in a human population
of rumors [12] or epidemics of infectious disease [10]. Epidemic algorithms have also
been used previously to perform multicast operations, e.g. by Birman et al. [11].

The notion of a “phase clock™ as used in our protocol is common in the self-stabilizing
literature, e.g. [20]. There is a substantial stream of research on building self-stabilizing
synchronized clocks dating back to to the work of Arora er al. [9]. Recent work such
as [16] shows that it is possible to perform self-stabilizing clock synchronization in



64 D. Angluin, J. Aspnes, and D. Eisenstat

traditional distributed systems even with a constant fraction of Byzantine faults; how-
ever, the resulting algorithms require more network structure and computational capacity
ateach agent that is available in a population protocol. An intriguing protocol of Daliot et
al. [13] constructs a protocol for the closely-related problem of pulse synchronization
inspired directly by biological models. Though this protocol also exceeds the finite-state
limits of population protocols, it may be possible to construct a useful phase clock for
our model by adapting similar techniques.

2 Model

In this paper we consider only the complete all-pairs interaction graph, so we can sim-
plify the general definition of a probabilistic population protocol as follows. A popula-
tion protocol consists of a finite set () of states, of which a nonempty subset X are the
initial states (thought of as inputs), a deterministic transition function (a,b) — (a’,d’)
that maps ordered pairs of states to ordered pairs of states, and an output function that
maps states to an output alphabet Y. The population consists of agents numbered 1
through n; agent identities are not visible to the agents themselves, but facilitate the
description of the model. A configuration C' is a map from the population to states,
giving the current state of every agent. An input configuration is a map from the popu-
lation to X, representing an input consisting of a multiset of elements of X . C' can reach
C’ in one interaction, denoted C' — (", if there exist distinct agents ¢ and j such that
C(i) = a, C(j) = b, the transition function specifies (a,b) — (a’,b") and C'(i) = o/,
C'(j) = V and C'(k) = C(k) for all k other than 7 and j. In this interaction, 7 is
the initiator and j is the responder — this asymmetry of roles is an assumption of the
model [4].

An execution is a sequence C, Cs, . .. of configurations such that for each i, C; —
Ci+1. An execution converges to an output y € Y, if there exists an ¢ such that for
every j > 1, the output function applied to every state occurring in Cj is y. In gen-
eral, individual agents may not know when convergence to a common output has been
reached, and protocols are generally designed not to halt. An execution is fair if for any
C; and Cj such that C; — C; and C; occurs infinitely often in the execution, C; also
occurs infinitely often in the execution. A protocol stably computes a predicate P on
multisets of elements of X if for any input configuration C, every fair execution of the
protocol starting with C' converges to 1 if P is true on the multiset of inputs represented
by C, and converges to 0 otherwise. Note that a fixed protocol must be able to handle
populations of arbitrary finite size — there is no dependence of the number of states on
n, the population size.

For a probabilistic population protocol, we stipulate a particular probability dis-
tribution over executions from a given configuration C as follows. We generate Cly;
from C}, by drawing an ordered pair (7, j) of agents independently and uniformly, ap-
plying the transition function to (C% (), Ck(j)), and updating the states of 4 and j ac-
cordingly to obtain C1. (Note that an execution generated this way will be fair with
probability 1.) In the probabilistic model we consider both the random variable of the
number of interactions until convergence and the probabilities of various error condi-
tions in our algorithms.
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3 Tools

Here we give the basic tools used to construct our virtual machine. These consist of
concentration bounds on the number of interactions needed to spread epidemics through
the population (Section 3.1), which are then used to construct a phase clock that con-
trols the machine’s instruction cycle (Section 3.2). Basic protocols for duplication (Sec-
tion 3.3), cancellation (Section 3.4), and probing (Section 3.5) are then defined and
analyzed.

3.1 Epidemics

By a one-way epidemic we denote the population protocol with state space {0,1}
and transition rule (x,y) — (z,max(z,y)). Interpreting 0 as “susceptible” and 1 as
“infected,” this protocol corresponds to a simple epidemic in which transmission of the
infection occurs if and only if the initiator is infected and the responder is susceptible. In
the full paper, we show, using a reduction to coupon collector and sharp concentration
results of [21], that the number of interactions for the epidemic to finish (that is, infect
every agent) is ©(n logn) with high probability.

It will be useful to have a slightly more general lemma that bounds the time to infect
the first k£ susceptible agents. Because of the high variance associated with filling the
last few bins in the coupon collection problem, we consider only & > n for e > 0.

Lemma 1. Let T'(k) be number of interactions before a one-way epidemic starting
with a single infected agent infects k agents. For any fixed ¢ > 0 and ¢ > 0, there
exist positive constants ¢y and co such that for sufficiently large n and any k > nf,
cainlnk < T(k) < conlnk with probability at least 1 — n™¢.

3.2 The Phase Clock

The core of our construction is a phase clock that allows a leader to determine when
an epidemic or sequence of triggered epidemics is likely to have finished. In essence,
the phase clock allows a finite-state leader to count off ©(nlogn) total interactions
with high probability; by adjusting the constants in the clock, the resulting count is
enough to outlast the con In n interactions needed to complete an epidemic by Lemma 1.
Like physical clocks, the phase clock is based on a readily-available natural phenom-
enon with the right duration constant. A good choice for this natural phenomenon, in
a probabilistic population protocol, turns out to be itself the spread of an epidemic.
Like the one-way epidemic of Section 3.1, the phase clock requires only one-way
communication.

Here is the protocol: each agent has a state in the range 0. . . m — 1 for some constant
m that indicates which phase of the clock it is infected with. (The value of m will be
chosen independent of n, but depending on ¢, where 1 — n™° is the desired success
probability.) Up to a point, later phases overwrite earlier phases: a responder in phase 7
will adopt the phase of any initiator in phases ¢+ 1 mod m through i+m /2 mod m, but
will ignore initiators in other phases. This behavior completely describes the transition
function for non-leader responders.
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New phases are triggered by a unique leader agent. When the leader encounters
an initiator with its own phase, it spontaneously moves to the next phase. The leader
ignores interactions with initiators in other phases. The initial configuration of the phase
clock has the leader in phase 0 and all other agents in phase m — 1. A round consists
of m phases. A new round starts when the leader enters phase 0.

The normal operation of the phase clock has all the agents in a very few adjacent
states, with the leader in the foremost one. When that state becomes populated enough
for the leader to encounter another agent in that state, the leader moves on to the next
state (modulo m) and the followers are pulled along. Successive rounds should be
©(nlogn) interactions apart with high probability; the lower bound allows messages
sent epidemically to reach the whole population, and the upper bound is essential for
the overall efficiency of our algorithms.

Analysis. We wish to show that for appropriate constants ¢ and m, any epidemic (run-
ning in parallel with the phase clock) that starts in phase ¢ completes by the next oc-
currence of phase (¢ + ¢) mod m with high probability. To simplify the argument,
we first consider an infinite-state version of the phase clock with state space Z x
{leader, follower} and transition rules

(z,b), (y, follower) — (x,b), (max(x, y), follower)
(z,b), (z,leader) — (z,0), (x + 1, leader)
(z,b), (y, leader) — (x,b), (y,leader) [y # «]

We assume the initial configuration (at interaction 0) has the leader in state 0 and
each follower in state —1. This infinite-state protocol has the useful invariant that every
agent has a phase less than or equal to that of the leader. We define phase ¢ as starting
when the leader agent first adopts phase ¢. This result bounds the probability that a
phase “ends too early” by n~1/2.

Lemma 2. Let phase i start at interaction t. Then there is a constant a such that for

sufficiently large n, phase i + 1 starts before interaction t + an Inn with probability at
—-1/2

mostn .

Observing that several phases must “end too early” in order for a round to “end too
early” allows us to go from a failure probability of n~'/2 for a phase to n ¢ for a
round.

Corollary 1. Let phase i start at interaction t. Then for any ¢ > 0 and d > 0, there
is a constant k such that for sufficiently large n, phase © + k starts before t + dnlnn
interactions with probability at most n~°.

The following theorem gives probabilistic guarantees for a polynomial number of
rounds of the phase clock. In the proof the probability of failure due to a “straggler”
(agent so far behind that it appears to be ahead modulo m) must be also be appropri-
ately bounded, to ensure that m may be a constant independent of n.

Theorem 1. For any fixed c,d > 0, there exists a constant m such that, for all suffi-
ciently large n, the finite-state phase clock with parameter m, starting from an initial
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state consisting of one leader in phase 0 and n — 1 followers in phase m — 1, completes
n® rounds of m phases each, where the minimum number of interactions in any of the

n® rounds is at least dn Inn with probability at least 1 — n™°.

Proof. The essential idea is to apply Corollary 1 twice: once to show that with high
probability the number of interactions between phase ¢ + 1 and phase i + m/2 is long
enough for any old phase-i agents to be eaten up (thus avoiding any problems with
wrap-around), and once to show the lower bound on the length of a round.

To show that no agent is left behind, consider, in the infinite-state protocol, the fate
of agents in phase ¢ or lower once at least one agent in phase ¢ + 1 or higher exists. If
we map all phases ¢ or lower to 0 and all phases ¢ + 1 or higher to 1, then encounters
between agents have the same effect after the mapping as in a one-way epidemic. By
Lemma 1, there is a constant cs such that all n agents are infected by interaction con Inn
with probability at least 1 —n =3¢, By Corollary 1, there is a constant k; such that phase
1 + k1 + 1 starts at least con In n interactions after phase ¢ + 1 with probability at least
1 — n=3¢. Setting m > 2(k1 + 1) then ensures that all phase i (or lower) agents have
updated their phase before phase i +m /2 with probability at least 1 —2n~3¢. If we sum
the probability of failure over all mn® phases in the first n¢ rounds, we get a probability
of at most 2mn ~2¢ that some phase 7 agent survives long enough to cause trouble.

Assuming that no such trouble occurs, we can simulate the finite-state phase clock by
mapping the phases of the infinite-state phase clock mod m. Now by Corollary 1 there
is a constant ko such that the number of interactions to complete ko consecutive phases
is at least dn Inn with probability at least 1 — n~3¢. Setting m > ko thus gives that
all n° rounds take at least dn Inn interactions with probability at least 1 — nn =3¢ =
1 — n~2¢. Thus the total probability of failure is bounded by 2mn=2¢ 4+ n=2¢ < n=°
for sufficiently large n as claimed.

3.3 Duplication

A duplication protocol has state space {(1,1), (0, 1), (0,0)} and transition rules:

with all other encounters having no effect.

When run to convergence, a duplication protocol starting with a “active” agents in
state (1, 1) and the rest in the null state (0, 0) converges to 2a “inactive” agents in state
(0,1), provided 2a is less than n; otherwise it converges to a population of mixed active
and inactive agents with no unrecruited agents left in the null state. The invariant is
that the total number of 1 tokens is preserved while eliminating as many double-token
agents as possible. We do not consider agents in a (1,0) state as they can be converted
to (0, 1) immediately at the start of the protocol.

When the initial number of active agents a is close to n/2, duplication may take as
much as ©(n?) interactions to converge, as the last few active agents wait to encounter
the last few null agents. But for smaller values of a the protocol converges more quickly.
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Lemma 3. Let 2a + b < n/2. The probability that a duplication protocol starting with
a active agents and b inactive agents, has not converged after (2c+1)n Inn interactions

is at most n™ .

3.4 Cancellation

A cancellation protocol has states {(0,0), (1,0), (0,1)} and transition rules:

It maintains the invariant that the number of 1 tokens in the left-hand position minus
the number of 1 tokens in the right-hand position is fixed. It converges when only (1,0)
and (0,0) or only (0, 1) and (0, 0) agents remain. We assume that there are no (1,1)
agents as these can be converted to (0, 0) agents at the start of the protocol. We refer to
agents in state (1, 0) or (0, 1) as nonzero agents.

As with duplication, the number of interactions to converge when (1,0) and (0, 1)
are nearly equally balanced can be as many as ©(n?), since we must wait in the end
for the last few survivors to find each other. This is too slow to use cancellation to
implement subtraction directly. Instead, we will use cancellation for inequality testing,
using duplication to ensure that there is a large enough majority of one value or the
other to ensure fast convergence. We will use the following fact.

Lemma 4. Starting from any initial configuration, with probability at least 1 — n™¢,

after 4(c + 1)n lnn interactions a cancellation protocol has either converged or has at
most n/8 of each type of nonzero agent.

3.5 Probing

A probing protocol is used to detect if any agents satisfying a given predicate exist. It
uses three states (in addition to any state tested by the predicate) and has transition rules

(z,y) = (z, max(z, y))

when the responder does not satisfy the predicate and

(0,y) — (0,y)
(z,y) — (2,2) [z >0]

when the responder does. Note that this is a one-way protocol.

To initiate a probe, a leader starts in state 1; this state spreads through an initial
population of state 0 agents as in a one-way epidemic and triggers the epidemic spread
of state 2 if it reaches an agent that satisfies the predicate.

Lemma 5. For any ¢ > 0, there is a constant d such that for sufficiently large n, with
probability at least 1 — n™¢ it is the case that after dnInn interactions in the probing
protocol either (a) no agent satisfies the predicate and every agent is in state 1, or (b)
some agent satisfies the predicate and every agent is in state 2.
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4 Computation by Epidemic: The Microcode Level

In this section, we describe how to construct an abstract register machine on top of
a population protocol. This machine has a constant number of registers each capable
of holding integer values in the range O to n, and supports the usual arithmetic op-
erations on these registers, including addition, subtraction, multiplication and division
by constants, inequality tests, and so forth. Each of these operations takes at most a
polylogarithmic number of basic instruction cycles, where an instruction cycle takes
O(nlogn) interactions or O(logn) time.

The simulation is probabilistic; there is an inverse polynomial probability of error
for each operation, on which the exponent can be made arbitrarily large at the cost of
increasing the constant factor in the running time.

The value of each register is distributed across the population in unary. For each
register A, every member 7 of the population maintains one bit A; and the current value
of A is simply >, A;. Thus the finite state of each agent can be thought of as a finite
set of finite-valued control variables, and one boolean variable for each of a finite set of
registers. Recall that the identities of agents are invisible to the agents themselves, and
are used to facilitate description of the model.

We assume there is a leader agent that organizes the computation; part of the leader’s
state stores the finite-state control for the register machine. We make a distinction be-
tween the “microcode layer” of the machine, which uses the basic mechanisms of Sec-
tion 3, and the “machine code” layer, which provides familiar arithmetic operations.

At the microcode layer, we implement a basic instruction cycle in which the leader
broadcasts an instruction to all agents using an epidemic. The agents then carry out this
instruction until stopped by a second broadcast from the leader. This process repeats
until the computation terminates.

To track the current instruction, each agent (including the leader) has a current in-
struction register in addition to its other state. These instructions are tagged with a
round number in the range 0, 1, 2, where round ¢ instructions are overwritten by round
i+ 1 (mod 3) instructions.

The instructions and their effects are given in Table 1. Most take registers as argu-
ments. We also allow any occurrence of a register to be replaced by its negation, in
which case the operation applies to those agents in which the appropriate bit is not set.
For example, SET(—A) resets A;, PROBE(—A) tests for agents in which A; is not set,
COPY(—A, B) sets B; to the negation of A;, and so forth.

To interpret the table entries: when an agent changes its current instruction register
to SET(A), it sets its boolean variable for register A to 1 and waits for the next instruc-
tion. Similarly, when it changes its current instruction register to COPY (A, B), then
the agent sets its boolean variable for register B to the value of its boolean variable for
register A. When its current instruction becomes DUP( A, B), then the agent begins run-
ning the duplication protocol (Section 3.3) on the ordered pair of its boolean variables
for registers A and B. (In the case of (1,0), it immediately exchanges them to (0, 1),
and in the cases of (1, 1) and (0, 0), it participates in the duplication protocol when it
interacts with other agents with current instruction DUP(A, B), until either its pair be-
comes inactive or a new instruction supersedes the current one.) CANCEL(A, B) and
PROBE(A) are handled analogously, where the predicate probed is whether the agent’s
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Table 1. Instructions at the microcode level

Instruction Effect on state of agent ¢
NOOP No effect.
SET(A) Set A; = 1.

COPY(A,B)  Copy A; to B;

DUP(A, B) Run duplication protocol on state (A4;, B;).

CANCEL(A, B) Run cancellation protocol on state (A;, B;).
PROBE(A) Run probe protocol with predicate A; = 1.

boolean variable for register A is 1. We omit describing the underlying transitions as
the details are tedious.

When the leader updates its own current instruction register, the new value spreads
to all other agents in ©(nlogn) interactions with high probability (Lemma 1). The
NOOP, SET, and COPY operations take effect immediately, so no additional interac-
tions are required. The PROBE operation may require waiting for a second triggered
epidemic, but the total interactions are still bounded by O(nlogn) with high proba-
bility (by Lemma 5). Only the DUP and CANCEL operations may take longer to con-
verge. Because subsequent operations overwrite each agent’s current instruction reg-
ister, issuing a new operation has the effect of cutting these operations off early. But
if this new operation is issued {2(nlogn) interactions later, the DUP operation con-
verges with high probability unless it must recruit more than half the agents (Lemma 3),
and the CANCEL operation either converges or leaves at most n/4 uncanceled values
(Lemma 4). Note that for either operation, which outcome occurred can be detected
with COPY and PROBE operations.

Thus, the leader waits for £2(nlogn) interactions between issuing successive in-
structions, where the constant is chosen based on the desired error bound. But this
can be done using a phase clock with appropriate parameter (Theorem 1): if it is large
enough that both the probability that an operation completes too late and the proba-
bility that some phase clock triggers to early is o(n~2¢) per operation, then the total
probability that any of n¢ operations fails is o(n~¢).

5 Computation by Epidemic: Higher-Level Operations

The operations of the previous section are not very convenient for programming. In this
section, we describe how to implement more traditional register operations.

These can be divided into two groups: those that require a constant number of mi-
crocode instructions, and those that are implemented using loops. The first group,
shown in Table 2, includes assignment, addition, multiplication by a constant, and zero
tests. The second group includes comparison (testing for A < B, A = B,or A > B),
subtraction, and division by a constant (including obtaining the remainder). These op-
erations are described in more detail below.

Comparison. For comparison, it is tempting just to apply CANCEL and see what to-
kens survive. But if the two registers A and B being compared are close in value,
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Table 2. Simple high-level operations and their implementations. Register X is an auxiliary reg-
ister.

Operation Effect Implementation Notes
Constant 0 A—0 SET(—A)
Constant 1 A—1 SET(~4)
Aleader —1
Assignment A« B COPY(B, A)
COPY(B, X)
Additon A— A+ B  DUP(X,A) May fail with X # 0if A+ B > n/2.
PROBE(X)
Multiplication A «— kB  Use repeated addition. k=0(1)
Zero test A#0? PROBE(A)
1: A — A. 1: A" — A.
2: B’ « B. 2: B’ «— B.
3: C 1. 3: CANCEL(A’, B).
4: r —0. 4: if B’ = 0 then
5: while true do 50 C— A
6: CANCEL(A’, B). 6:  return.
7: if A’ =0and B’ = 0 then 7: end if
8: return A = B. 8 C 0.
9: elseif A’ =0 then 9: while A’ # B’ + C do
10: return A < B. 10 D« 1.
11:  elseif B’ = 0 then 11:  whileA’ > B +C+ D+ Ddo
12: return A > B. 12: D— D+ D.
13:  endif 13:  end while
14 r—1-r. 4. C—C+D.
15:  if r = 0 then 15: end while
16: C—C+C.
17: if addition failed then Fig. 2. Subtraction algorithm
18: return A = B.
19: end if
20:  endif

21: A — A+ A
22: B — B'+ B
23: end while

Fig. 1. Comparison algorithm

then CANCEL may take ©(n?) interactions to converge. Instead, we apply up to 21gn
rounds of cancellation, alternating with duplication steps that double the discrepancy
between A and B. If A > B or B > A, the difference soon becomes large enough that
all of the minority tokens are eliminated. The case where A = B is detected by failure
to converge, using a counter variable C that doubles every other round.

The algorithm is given in Figure 1. It uses registers A’, B’, and C plus a bit 7 to
detect even-numbered rounds.
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Lemma 6. Algorithm I returns the correct answer with high probability after executing
at most O(log n) microcode operations.

Subtraction. Subtraction is the inverse of addition, and addition is a monotone op-
eration. It follows that we can implement subtraction using binary search. Our rather
rococo algorithm for computing C' — A — B, given in Figure 2 repeatedly looks for the
largest power of two that can be added to the candidate difference C' without making
the sum of the difference C' and the subtrahend B greater than the minuend A. It obtains
one more 1 bit of the difference for each iteration.

The algorithm assumes A > B. An initial cancellation step is used to handle partic-
ularly large inputs. This allows the algorithm to work even when A lies outside the safe
range of the addition operation.

The algorithm uses several auxiliary registers to keep track of the power of two to
add to C (this is the D register) and to perform various implicit sums and tests (as in
computing B’ + C + D + D).

Lemma 7. When A > B, Algorithm 2 computes C' «— A — B with high probability in
O(log® n) microcode operations.

Division. Division of A by a constant k is analogous to subtraction; we set A’ «— A and
B «— 0 and repeatedly seek the largest power of two D such that kD can be successfully
computed (i.e., does not cause addition to overflow) and kD < A’. We then subtract
kD from A’ and add D to B.

The protocol terminates when A’ < k, i.e. when no value of D works. At this point
B holds the quotient | A/k| and A’ the remainder A mod k. Since each iteration adds
one bit to the quotient, there are at most O(lg n) iterations of the outer loop, for a total
cost of O(lg4 n) microcode operations (since each outer loop iteration requires one
subtraction operation).

One curious property of this protocol is that the leader does not learn the value of
the remainder, even though it is small enough to fit in its limited memory. If it is im-
portant for the leader to learn the remainder, it can do so using k addition and compar-
ison operations, by successively testing the remainder A’ for equality with the values
0,1,1+1,1+1+1,..., k. The cost of this test is dominated by the cost of the division
algorithm.

Other operations. Multiplication and division by constants give us the ability to extract
individual bits of a register value A. This is sufficient to implement basic operations like
A« B-C, A« |B/C] in polylogarithmic time using standard bitwise algorithms.

Summary. Combining preceding results gives:

Theorem 2. A probabilistic population can simulate steps of a virtual machine with a
constant number of registers holding integer values in the range 0 to n, where each step
consists of (a) assigning a constant 0 or 1 value to a register; (b) assigning the value
of one register to another; (c) adding the value of one register to another, provided the
total does not exceed n/2; (d) multiplying a register by a constant, provided the result
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does not exceed n/2; (e) testing if a register is equal to zero; (f) comparing the values
of two registers; (g) subtracting the values of two registers; or (h) dividing the value
of a register by a constant and computing the remainder. The probability that for any
single operation the simulation fails or takes more than O(n log* n) interactions can
be made O(n=¢) for any fixed c.

6 Applications

Simulating RL. In [3], it was shown that a probabilistic population protocol with a
leader could simulate a randomized LOGSPACE Turing machine with a constant num-
ber of read-only unary input tapes with polynomial slowdown. The basic technique was
to use the standard reduction of Minsky [22] of a Turing machine to a counter machine,
in which a Turing machine tape is first split into two stacks and then each stack is rep-
resented as a base-b number stored in unary. Because the construction in [3] could only
increment or decrement counters, each movement of the Turing machine head required
decrementing a counter to zero in order to implement division or multiplication. Us-
ing Theorem 2, we can perform division and multiplication in O(n log* n) interactions,
which thus gives the number of interactions for a single Turing machine step. If we treat
this quantity as O(log4 n) time, we get a simulation with polylogarithmic slowdown.

Theorem 3. For any fixed ¢ > 0, there is a constant d such that a probabilistic pop-
ulation protocol on a complete graph with a leader that can simulate n® steps of a
randomized LOGSPACE Turing machine with a constant number of read-only unary

C

input tapes using dlog4 n time per step with a probability of failure bounded by n™°.

Protocols for semilinear predicates. From [3] we have that it is sufficient to be able
to compute congruence modulo k, +, and < to compute any semilinear predicate.
From Theorem 2 we have that all of these operations can be computed with a leader
in O(nlog® n) interactions with high probability. The final stage of broadcasting the
result to all agents can also be performed in O(n logn) interactions with high probabil-
ity using an epidemic.

However, there is some chance of never converging to the correct answer if the pro-
tocol fails. To eliminate this possibility, we construct an optimistic hybrid protocol in
which the fast but potentially inaccurate O(n log4 n)-interaction protocol is supple-
mented by an O(n?) leaderless protocol, with the leader choosing (in case of disagree-
ment) to switch its output from that of the fast protocol to that of the slow protocol
when it is likely the slow protocol has finished. The resulting hybrid protocol converges
to the correct answer in all executions while still converging in O(n log? n) interactions
in expectation and with high probability.

Theorem 4. For any semilinear predicate P, and for any c > 0, there is a probabilistic
population protocol on a complete graph with a leader to compute P without error
that converges in O(n log4 n) interactions with probability at least 1 — n™¢ and in
expectation.
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7 Open Problems

For most of the paper, we have assumed that a unique leader agent is provided in the
initial input. The most pressing open problem is whether this assumption can be elimi-
nated without drastically raising the cost of our protocols.

One problem is the question of whether we can efficiently restart the phase clock
after completing an initial leader election phase. A proof of possibility can be obtained
by observing that the leader can shut off all other agents one at a time in O(n? logn)
interactions, and then restart them in the same number of interactions; however, the
leader may have to wait an additional large polynomial time to be confident that it has
in fact reached all agents. We believe, based on preliminary simulation results, that a
modified version of our phase clock can be restarted much more efficiently by a newly-
elected leader. This would allow us to use our LOGSPACE simulator after an initial
O(n?)-interaction leader election stage. But more work is still needed.

Even better would be a phase clock that required no leader at all. This would allow
every agent to independently simulate the single leader, eliminating both any initial
leader election stage and the need to disseminate instructions. Whether such a leaderless
phase clock is possible is not clear.

It would be interesting to explore refinements of the underlying assumption that pairs
are drawn uniformly at random to interact, for example, to reflect the physical effects
of spatial dispersion of the agents.
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Abstract. We introduce a self-stabilizing data structure, which we call
either a min-maz search tree or a maz-min search tree (both abbrevi-
ated M?ST), depending on whether the root has the minimum or the
maximum value in the tree. Our structure is a refinement of the stan-
dard min-max heap (or max-min heap), with additional property that
every value in the left subtree of a node is less than or equal to every
value in the right subtree of that node. The M2ST has all the power
of a binary search tree and all the power of a min-max heap, combined;
with the additional feature that maintaining balance is easy. We give a
self-stabilizing algorithm for reorganizing the values of an asynchronous
network with a binary tree topology into an M2ST in O(n) rounds. We
then give an algorithm for reorganizing an asynchronous network with a
binary tree topology, which is already in M?ST order, into binary search
tree order in O(h) rounds. This result answers an open problem posed
in [3].

Keywords: Distributed algorithm, min-max heap, search tree,
self-stabilization.

1 Introduction

When transient faults or arbitrary initialization cause a data structure to lose a
desired property, a self-stabilizing [5,7] data structure is able to correct itself, so
that the property is restored in finite time. We present a self-stabilizing search
structure, which we call a min-max search tree on a network with a binary tree
topology.

Related Work. Abstractly, a min-max heap is defined to be a data structure
that allows insertion and deletion of the minimum and the maximum. Min-
max heaps have been defined in [2] as double-ended priority queues. Various
implementations of min-max heaps are proposed in [1,4,6,12,13], but none of
them is distributed or self-stabilizing.

A heap construction that supports insert and delete operations using a vari-
ation of a standard binary heap with the capacity of K items, is given in [9]. In
[11], Herman et al. make the heap ADT (abstract data type) and B-Tree ADT
self-stabilizing with respect to their properties. Stabilizing 2-3 trees are investi-
gated in [10]. Bein et al. [3] present the first snap-stabilizing distributed binary
search tree (BST) algorithm. The stabilization time is O(n) rounds, but every
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© Springer-Verlag Berlin Heidelberg 2006
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process ¢ requires O(log s;) bits where s; is the size of the subtree rooted at i. A
lower bound of £2(n) on the time complexity for the BST problem is also given
in [3]. They also ask, as a open problem, whether there exists a self-stabilizing
algorithm to build a BST in O(n) rounds, using O(1) bits per process.

Contributions. We present a new type of search structure, which we call a
min-maz search tree, (abbreviated M2ST), a binary tree with a value at each
node, with min-max heap order, i.e., where the value at each node at an even-
numbered level (counting the root level to be 0) is the minimum of all values in
the subtree rooted at that node, and the value at each node at an odd-numbered
level is the maximum of all values in the subtree rooted at that node; but with
the additional property that all values in the left subtree of a node are less than
or equal to all values in the right subtree of that node. This structure has the
features of a binary search tree combined with the features of a min-max heap,
with the additional feature that it is easy to keep balanced.

We give a distributed algorithm that sorts a binary tree network into an
M2ST in O(n) rounds using O(1) additional bits per process. The algorithm is
self-stabilizing. We then give a distributed algorithm which sorts a binary tree
network into BST order in O(n) rounds, using O(1) bits per process. The BST
algorithm first sorts the network into a M?2ST order, then sorts it into BST
order in O(h) additional rounds, where h is the height of the tree, and requires
O(1) additional bits per process.

Outline of the paper. In Sections 1 and 2 we introduce the basic concepts
needed in the paper. The M2ST data structure is introduced in Section 3, and
we discuss implementation the usual search structure operators for an M?2ST.
In Section 4 we give an asynchronous distributed algorithm which sorts a binary
tree network into M2ST order starting from an arbitrary initial configuration.
In Section 5. we give an asynchronous distributed algorithm which sorts a binary
tree network into BST order, starting from a configuration which is already in
M?2ST order. We conclude in Section 6.

2 Preliminaries

Throughout this paper, we will let T" be a binary tree network, defined to be
a network of processes with a binary tree topology, such that each process can
only communicate with its immediate neighbors, and each process knows which
of its neighbors is its left child, right child, or parent. Thus, for example, the
root process knows it is the root, since its parent is nil. We will also assume that
each process has one value, and that a process can read its neighbors’ values.
We will say that “T is a heap” if the values of T' are in heap order, and that “T
is a binary search tree” if the values of T" are in inorder, and so forth.

Let T be a binary tree network. We use the following notation, where T is a
binary tree network. Let root(T) be the root process of T'. If x is a process of
T, then V(z) is the value at =, T, is the subtree rooted at x; p(z), r(x), and
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{(z) are the parent, the right, and left child of x, respectively. T% = w(rooty and
Th = Ty(root) are the right and left subtree of the root, respectively.

We assume the local shared memory model of communication: a process can
read and write its own memory, but can only read the memory of its neighbors.
The program of every process consists of a finite set of guarded actions of the
form: < label >::< guard >—< action > that involve the process’ variables and
the variables of its neighbors. If an action has its guard, a Boolean expression,
evaluated to true, then it is called enabled. A process with at least one enabled
guard is called enabled. In a computation step, a distributed daemon selects a
nonempty subset of enabled processes. Each enabled process executes one of its
enabled actions. The guard evaluation and the execution of the corresponding
action are considered to be done in one atomic step.

The state of a process is defined by the values of its variables. A system state
(configuration) is a choice of a state for each process. If ¢, ¢’ are configurations,
we write ¢ — ¢’ to mean that ¢ can change to ¢’ in one step.

An execution e is an infinite sequence of configurations e = ¢; — ¢co — .. ..
Given C, the set of all possible states, and a predicate P over C, the set of all the
states that satisfy P is denoted by Lp C C, and is called the set of all legitimate
states with respect to P. We say that a system is self-stabilizing with respect to
a predicate P is the following two conditions hold:

1. If ce Lp and c+— ¢, then ¢ € Lp.
2. If e = ¢ — co — ... is a computation, then there is some integer j such
that ¢; € Lp for all ¢ > j.

For an asynchronous system, in order to compute time complexity, we use
the concept of a round introduced by Dolev et al. [8]: A round is a minimal
sequence of computation steps such that each process that was enabled in the
first configuration of the sequence executes at least once during the sequence.
We will use the strongest distributed daemon, the unfair daemon. The unfair
daemon is not required to ever select a given enabled process, unless it is the
only enabled process.

3 Min-Max and Max-Min Search Trees

We first recursively define three classes of orderings on the nodes of a binary
tree, T

Definition 1.

— An ordering of the nodes of T is left-to-right if either T is empty, or all
nodes of TT come before all nodes of T® and the induced orderings on T
and T are left-to-right.

— An ordering of the nodes of T is min-max if either T is empty, or the root
node is first and the induced orderings on T and T® are maz-min. An
ordering is min-max-left-right if it is both min-maz and left-to-right.
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— An ordering of the nodes of T is max-min if either T is empty, or the root
node is last and the induced orderings on T™ and TT are min-maz. An or-
dering is max-min-left-right if it is both maz-min and left-to-right.

Property 1. The empty binary tree is vacuously both a min-max and a max-min
search tree. A non-empty binary tree 7" with a value at each node is a min-max
search tree (max-min search tree) if and only if the following conditions hold:

1. The minimum (maximum) value is at the root.
2. Every value in T is less than or equal to every value in T%.
3. Both TL and TF are max-min (min-max) search trees.

Remark 1. Given a binary tree topology of size n and a set of n values, there
is a unique min-max search tree on that topology which has those values. Sim-
ilarly, there is a unique max-min search tree on that topology that has those
values.

For example, given the tree topology shown in Figure 1, and the set of values
{1,2,...,10}, the unique min-max search tree on that topology is given in Figure
1(a), and the unique max-min search tree is given in Figure 1(b).

(a) Min-max search tree (b) Max-min search tree

Fig.1. A min-max and max-min search tree

3.1 Operations on the M?ST Data Structure

The min-max search tree (M2ST) is an interesting concept in its own right. It
allows for all the usual operations of a search structure, as well as functioning
as min-max heap if required.

Another advantage of an M?2ST is that checking whether a given value z is
within the range of the values stored in a binary tree T takes O(h) rounds if the
tree has the BST order, but only one round if the tree is an M?2ST.

We now provide the code for the usual operations on data structures: find,
insert, and delete.

One additional advantage of an M2ST is that it is easy to maintain balance
while inserting an arbitrary sequence of values.
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Min-max search tree
find(x, T)::
if T = nil then return nil
else if X = V (root(T)) then return true
else if X < V (root(T)) then return false
else if X = V ( (root)) then return find(x, T
else return find(x, T L)

R)

insert(X, T)::
if T = nil then T = newNode(x)
else if X < V (r00t(T)) then swap(X,V (root(T))); insert(x, T'—)
else if X = V (root(T)) then insert(x, T'—)
else if (root) = nR" V X <V ( (root)) then insert(x, T
)

5
else insert(x, T

delete(x, T)::
if T = nil then return
else if X = V (r00t(T)) then
if TL = nil A TR = nil then DeleteLeaf(T)
else V (root(T)) = V (root(T) T T); delete(V (root(T)T 1), root(T)+ 1)
else if X < V (r00ot(T)) then return
else if (root) # nil A x < V ( (root)) then delete(x, TL)
else delete(X, TR)

Max-min search tree
find(x, T)::
if T = nil then return nil
else if X = V (root(T)) then return true
else if X = V (r00t(T)) then return False
else if x < V (r(root)) then return find(x, T L)
else return find(X, TR)

insert(X, T )::
if T = nil then T = newNode(x)
else if X = V (r00t(T)) then swap(X,V (root(T))); insert(x, TR)
else if X = V (root(T)) then insert(x, T L)
else if r(root) = Nil V x < V (r(root)) then insert(x, T L)
else insert(x, TR)
delete(x, T)::
if T = nil then return
else if X = V (root(T)) then
if TL = nil A TR = nil then DeleteLeaf(T)
else V (root(T)) = V (root(T )™ 7 ); delete(V (root(T )™ 7 ), root(T )++)
else if X = V (root(T)) then return
else if r(root) # Nil A X < V (r(root)) then delete(x, T
else delete(X, TR)

)

We now give the details of this balanced insert operation.

More generally, let insertOK(v) be a predicate which means that it is allowed
to insert a value into the subtree rooted at v. There are many several ways to
implement this predicate, for example:

1. insertOK(v) could mean that the height of T, is no greater than the height
of its sibling subtree.

2. insertOK(v) could mean that the number of values currently in 7}, is no
greater than the number of values currently in its sibling subtree.

3. Suppose that we are implementing a search structure using a fixed binary
tree topology, perhaps hard-wired to a chip. Then insertOK(v) could mean
that T, has a vacancy, i.e., a process where no current value is stored.

The above code can then be rewritten to use the predicate insertOK(v) instead
of specifically asking about heights. In the third case, i.e., where the binary tree
topology is fixed, the structure will never experience false overflow; meaning that
insertion can always take place if there is a null node anywhere in the tree.
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Min-max search tree
balancedinsert(x, T )::
if T = nil then T = newNode(x)
else
if X < V (root(T)) then swap(x, V (root(T)))
/% if TL and TR have the same height, then insert X appropriately */
if hTI— = hTR then
if x < V ( (root)) then balancedinsert(x, T )
else balancedinsert(x, TR)
/* if TL has smaller height, then insert x into T if the M2ST property is satisfied,
else move the minimum value from TR into TL and then insert x into TR */
else it h | <h g then
if x < V ( (root)) then balancedinsert(x, T )
else
/* move the smallest value from TR into TL */
tmp = V ( (root) 1)
balancedinsert(tmp, T L)
delete(tmp, T R )
/* insert X into TR*/
balancedinsert(X, TR)
/*if TL has greater height, then insert X into TR if the M2ST property is satisfied
else move the maximum value from T and then V (' (root)), into TR and
insert X into T& */
else if th— > hTR then

if X > V ( (root)) then balancedinsert(x, TR)
else

/* move V ( (root)) into TR */
tmp = V ( (root))
balancedinsert(tmp, T R)
delete(tmp, TL)

/* insert X into TL */
balancedinsert(x, T L)

4 A Self-stabilizing Algorithm for Building a Min-Max
Search Tree

In this section, we describe two self-stabilizing asynchronous distributed algo-
rithms Api, and Apax, which sort a binary tree network T' into a min-max
search tree and a max-min search tree, respectively. We can think of these as
just one algorithm A(PARITY), where A(0) = Apin and A(1) = Amax-

A takes O(n) rounds, where n is the number of processes of T, and requires
O(1) additional bits per process.

We say that v is at a MiIN-level if v is required to hold the minimum value
of T, after sorting, and that v is at a MAX-level if v is required to hold the
maximum value of T, after sorting. Thus, the root of T is at a MiN-level if T
is to be sorted into a min-max search structure, and at a MAX-level if T is to
be sorted into a max-min search structure; and if v is not the root, v is at a
MinN-level if its parent is at a MaX-level and vice-versa. Each process v has a
level bit, level(v), which must, after stabilization, be 0 if that process is at a
Min-level and 1 if that process is at a MAX-level. We say a level bit is correct if
it has the value that it must have after stabilization. We say that the level bit of
v is consistent if either it is correct and v is the root, or it is different from the
level bit of p(v), the parent of v. Note that, although a level bit could be both
consistent and incorrect, all level bits are consistent if and only if all level bits
are correct.

The successor process of a process v in a min-max (or max-min) search
tree is the process which is the successor of p in the min-max (or max-min)



82 D. Bein, A.K. Datta, and L.L. Larmore

left-right order of the tree. The predecessor process of a process is defined sim-
ilarly. Note that the successor process of p depends only on its position (with
respect to topology), not on the values held in the processes. A works by con-
structing a virtual chain consisting of all the processes of T" in min-max-left-right
order, and then emulating an asynchronous distributed chain sorting algorithm
on that virtual chain. This requires each process to “pretend” that it is adja-
cent to its predecessor and successor processes, although there may actually be
as many as two intervening processes between them. For example, given the
tree topology in Figure 1, the virtual chain obtained by considering 7" in min-
max-left-right order is given in Figure 4(a), and the virtual chain obtained by
considering T in max-min-left-right order is given Figure 4(b). To emulate the
chain sorting algorithm, intervening processes must relay messages. We refer to
the emulation of adjacency as a “virtual link” from a process to its successor or
predecessor process. An emulated action along this link takes O(1) rounds, as we
explain below. In Subsection 5.1, we show, in detail, how the successor process
of any process in a min-max or max-min search tree is computed.

The initial state is arbitrary. The root process knows it is the root, and can
thus correct its level bit in one round. Correctness of all level bits descends from
the root in a wave in O(h) rounds. Using its level bit, each process = knows
how to send a message to its successor process, which we call 7, or to its
predecessor process, which we call = . Figure 2 illustrates the definition of
27" in the case that z is at a MiN-level, while Figure 3 illustrates the definition
of 7T in the case that z is at a MaX-level. (In both figures we represent a nil
link as a short double-crossed line segment.) If a figure does not indicate either
a child or a nil link in a particular place, then either possibility is allowed. For
example, the right pointer from the middle node of Figure 3(a) could be nil, or
could point to a node.

74N A e £

@ o (© @ (e) ® (€9) (h) ®

Fig. 2. Process x is a MIN-level process

We do not actually define the needed message-passing and swapping protocols
in this paper, but the following two properties guarantee they can be defined so
that each needed operation can be executed in O(1) rounds.

Property 2. For any process z in T, either z is the last process in the min-max-
left-right order, or ™ has at most distance 3 from z.
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Fig. 3. Process = is a MAX-level process

Property 3. For any process y in T, there are at most two choices of = such that
y lies on the interior of the shortest path from = to 7. We call y a relay process
of that virtual link.

Lemma 1. The amount of memory necessary in every process to maintain the
virtual chain is constant (O(1) bits per process).

Proof. By Properties 2 and 3, every process x must keep routing information
for at most than six virtual pointers: the pointers to its predecessor z~~ and its
successor 71, and at most four virtual pointers that pass through z. Thus, the
additional memory needed by each process is finite.

4.1 Asynchronous M?2?ST

Let T be a binary tree network.

We start by choosing S to be any asynchronous distributed sorting algorithm
on an oriented chain which is self-stabilizing under the unfair daemon, and which
stabilizes in O(n) rounds from an arbitrary initial configuration, and which uses
O(1) bits per node in addition to the stored values. Our technique is to emulate
S on the virtual chain of T', while increasing the time of the algorithm by only
a constant factor. We do not give the details of this emulation, rather, we only
prove that such an emulation exists.

We will need a predicate OKtoezecute(v), which returns true if the emulation
of the next action of S on v is ready to commence, false otherwise. The action
execute(v) commences the emulation of the next action of S on v, whatever that
may be. The exact details of this predicate and this action depend on the details
of the emulation of S, which we do not give in this paper.

Predicate levelOK returns true if the level bit of v is consistent, otherwise
false.

Action L, sets the level bit of the root to be 0. Action L, sets the correct
levels for all other processes. Action S sorts the value of the process and the
value of successor.

Property 4. For any process x, the processes of T, form an interval in the virtual
chain such that:

(i) If « is a MiIN-level process, then process x is the first process of the interval.
(ii) If  is a MAX-level process, then process z is the last process of the interval.
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Algorithm 4.1. Algorithm .4(0)
Predicate level OK(v,1) = ((p(v) = L Alevel(v) = 0) V (p(v) # L A level(v) # level(p(v))))

Actions for any process v

e p(v) = L A-levelOK(v) —  level(v) =0

Lar p(v) # L A —levelOK(v) —  level(v) = —level(p(v))

s level OK(v) AvTt # L AlevelOK(v™™) A OKtoevecute(v) —  evecute(v)

(a) Min-max-left-right order (b) Max-min-left-right order

Fig. 4. The Virtual Chain

Let T™™ be the tree in which the root is a MIN-level process, and the values
in the processes are sorted in ascending order of the min-max-left-right chain.
Let T™%" be the tree in which the root is a MAX-level process, and the values
in the processes are sorted in ascending order of the max-min-left-right chain.

Property 5. Let T*°™ be either T™™ or T™a?,
For any process « € T, one of the following is true:

(i) if x is a MiN-level process, then V(x) is the minimum value in T5°"* and
Tzort has left-right order.

(i) if = is a MAX-level process, then V(z) is the maximum value in 7" and
T3 has left-right order.

Proof. For (i), by Property 4, process z is the first process in the min-max-left-
right chain. By applying Algorithm A(0) to 7°°", in at most O(n) rounds the
values in the chain are sorted in non-descending order, thus V' (z) will hold the
minimum value in the chain, and subtree T},.

For (ii), by Property 4, process x is the last process in the min-max-left-
right chain. By applying Algorithm A(1), in at most O(n) rounds to T5°", the
values in the chain are sorted in non-descending order. thus V' (z) will hold the
maximum value in the chain, and subtree T,.
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In summary, we have:

Theorem 1. A binary tree network of n nodes and height h can be sorted into
min-mazx-left-right (or maz-min-left-right) order in O(n) rounds and O(1) bits
per process in the asynchronous model, using an unfair daemon.

Note that the minimum number of rounds needed for any M2ST algorithm using
the same computational model is 2(n) in the worst case, since it might be
necessary to move almost every value through the root.

5 Asynchronous BST Construction

We define algorithms B(0) and B(1) that run on an M2ST, T. The result of
either algorithm that the network is sorted into binary search tree order.

Algorithm B(0)::

Step 0. Let T be in min-max-left-right order.
Note that the value of every process in T is greater than or equal to the
value of every process not in TT.
Therefore, we do not need to move values across the link from the root to T®.
Let B(1) run independently on 7.
If T* is empty, we do nothing else. Otherwise, V (¢(root)) is the value
that belongs in root. We continue with Step 1.

Step 1. Swap the values of root and ¢(root).
From now on, ignore the root.

Step 2. The last process in the maz-min-left-right chain of T* is £(root), but it now
holds the minimum item in 7.
Create a circular linked list consisting of the maz-min-left-right chain of T*,
together with one link from £(root) to the first process in the chain.

Step 3. Push every item in the circular list one step forward.
The order to push descends the tree TT in a wave: thus, a process of
depth d in T will finish this step in O(d) rounds.

Step 4. T% is now in max-min-left-right order.
Let B(1) run independently on T*.

For example, given the min-max search tree in Figure 1(a), by applying the
steps of Algorithm B(0), the tree changes are presented in Figure 5.
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Algorithm B(1):

Step 0. Let T be in max-min-left-right order.
Note that the value of every process in T'* is smaller than or equal to the
value of every process not in TF.
Therefore, we do not need to move values across the link from the root to T'X.
Let B(0) run independently on T'.
If T% is empty, we do nothing else. Otherwise, V (r(root)) is the value
that belongs in root. We continue with Step 1.

Step 1. Swap the values of root and r(root).
From now on, ignore the root.

Step 2. The first process in the min-maaz-left-right chain of T™ is r(root), but it now
holds the maximum item in TF.
Create a circular linked list consisting of the min-magz-left-right chain of T,
together with one link from r(root) to the last process in the chain.

Step 3. Push every item in the circular list one step backward.
The order to push ascends the tree 7T in a wave: thus, a process of
depth d in T will finish this step in O(d) rounds.

Step 4. T® is now in min-max-left-right order.
Let B(0) run independently on 7.

Given that the subtree TT of the tree in Figure 5(d) is max-min-left-right
order, the tree changes resulting from applying Algorithm B(1) are presented in
Figure 6.

Lemma 2. A binary tree T in min-maz-left-right order or max-min-left-right
order can be sorted into BST order in O(h) rounds in the asynchronous model,
using O(1) bits per process.

Proof. The remarks in Step 0. follow from the definition of an M2ST tree. No
actions are executed during this step. Step 1. requires one round. The remark
in Step 2. follows from Property 5. Step 2. requires one round to add the extra
link, since the virtual chain of T is already constructed and the two processes
of the extra link are adjacent. Step 3. requires O(h) rounds, since pushing the
value of any process in the circular list occurs when the order to push, which
descends the subtree in a wave, reaches that process. Step 4. requires no extra
rounds.

Theorem 2. A binary tree can be sorted into binary search tree (BST) order in
O(n) rounds in the asynchronous model, using only O(1) states and O(1) values
M any process.

Theorem 2 follows from Lemma 2.
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L
virtual chain of T
additional link

(a) Min-max search tree (b) After Step 0. (c) After Step 1. and 2.

(d) After Step 3. (e) After Step 4.

Fig. 5. Execution of Algorithm 5(0)

6
TL 6 4
4
) 6
5 @ I Vimfél chairll of TR
5 5 — — — additional link
(a) Max-min search tree (b) After Step 0. (c) After Step 1. and 2.
4
4
& / “
: BO) BO)
(d) After Step 3. (e) After Step 4.

Fig. 6. Execution of Algorithm B(1)

5.1 Finding the Successor of a Process in an M2ST

Let x be the a process in a binary tree network 7'. Assume that the processes have
already been partitioned into MIN-level and MAX-level processes. The successor
process z 1T is defined as follows.

MIN: Process x is a MiN-level process (see Figure 2).

a. Process £(z) has a left child. Then 7+ = ¢(¢(z)) (Figure 2(a)).
b. Process ¢(z) is an internal node that does not have a left child. Then

2t =L(r(z)) (Figure 2(b)).
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. Process £(x) is a leaf node. Then 7+ = £(z) (Figure 2(c)).
. Process z is an internal node without a left child, and process r(z) has

a left child. Then ™+ = r(¢(z)) (Figure 2(d)).

. Process z is an internal node without a left child, and process r(x) is an

internal node without a left child. Then ™ = r(r(z)) (Figure 2(e)).

. Process z is an internal node without a left child, and the process r(x)

is a leaf. Then x** = r(z) (Figure 2(f)).

. Process z is a leaf node and is the left child of its parent p(z), and process

p(x) has a right child. Then 2™ = r(p(z)) (Figure 2(g)).

. Process x is a leaf node and is the left child of its parent p(z), and process

p(z) has no right child. Then 27 = p(z) (Figure 2(h)).

. Process z is a leaf node and is the right child of its parent p(x). Then

2+ = p(z) (Figure 2(i)).
Process z is a leaf node and also the root. Then zt* is undefined.

Max: Process x is a MaX-level process (see Figure 3).

a.

b.

Process x is the left child of its parent p(z), and process r(p(x)) has a
left child. Then 2™+ = ¢(r(p(z))) (Figure 3(a)).

Process x is the left child of its parent p(x) and the process r(p(z)) is
an internal node without a left child. Then process xt+ = r(r(p(z)))
(Figure 3(b)).

. Process z is the left child of its parent p(x), and the process r(p(z)) is a

leaf node. Then process 7+ = r(p(x)) (Figure 3(c)).

. Process z is the left child of its parent p(z), process p(z) has no right

child. and process p(p(x)) has a right child. Then x*+ = r(p(p(z)))
(Figure 3(d)).

. Process x is the right child of its parent p(x), and process p(zx) is the

right child of its parent p(p(z)). Then x++ = p(p(z)) (Figure 3(e)).

. Process x is the right child of its parent p(z), p(z) is the left child of

its parent p(p(x)), and process p(p(x)) has a right child. Then 2+ =
r(p(p(x))) (Figure 3(f)).

. Process x is the right child of its parent p(x), p(x) is the left child of

its parent p(p(x)), and process p(p(z)) has no right child. Then z++ =
p(p(z)) (Figure 3(g)).

. Process z is the left child of its parent p(z), process p(z) has no right

child, and process p(p(z)) has no right child. Then 2™ = p(p(x)) (Figure
3(h))-

. Process z is the root. Then 2+ is undefined.
. Process x is the left child of process p(x), p(x) is the root, and p(x) has

no right child. Then z+7 is undefined.

. Process z is the right child of process p(x) and p(z) is the root. Then

2T is undefined.

6 Conclusion

In this paper we define a data structure, M2ST, which has the combined proper-
ties of a search structure and a min-max heap. We give a self-stabilizing algorithm
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for sorting a binary tree network into M2ST order. The time to make an an ar-
bitrary tree into an M2ST is O(n) rounds (Algorithm B), and the algorithm
needs O(1) space.

Algorithm A reorganizes a min-max search tree on a binary tree network
into a binary search tree in O(h) rounds. Starting from an arbitrary state, by
combining algorithms .A(0), B(0), and B(1), we obtain a distributed algorithm
to build a binary search tree on a binary tree network in an arbitrary state in
O(n) rounds, using only O(1) bits per process.
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Abstract. We consider the problem of dynamic aggregation of inputs
over a large fixed graph. A dynamic aggregation algorithm must contin-
uously compute the result of a given aggregation function over a dynam-
ically changing set of inputs. To be efficient, such an algorithm should
refrain from sending messages when the inputs do not change, and should
perform local communication whenever possible.

We present an instance-based lower bound on the efficiency of such
algorithms, and provide two algorithms matching this bound. The first,
Multl-LEAG, re-samples the inputs at intervals that are proportional to
the graph size, achieving quiescence between samplings, and is extremely
message efficient. The second, DynI-LEAG, more closely monitors the
aggregate value by sampling it more frequently, at the cost of slightly
higher message complexity.

1 Introduction

We consider the problem of continuous monitoring of an aggregation function
over a set of dynamically changing inputs on a large fixed graph. We term this
problem dynamic aggregation. For example, the inputs may reflect sensor read-
ings of temperature or seismic activity, or load reported by computers in a com-
putational grid. The aggregation function may compute the average temperature,
or whether the percentage of sensors that detect an earthquake exceeds a certain
threshold, or the maximum computer load. It is desirable to seek local solutions
to this problem, whereby input values and changes thereof do not need to be
communicated over the entire graph.

Since virtually every interesting aggregation function has some input instances
on which it cannot be computed without global communication, a priori, it is
not clear whether one can do better. Nevertheless, we have recently shown that
when computing an aggregation function on a large graph for fixed (in time)
inputs, it is often possible to reach the correct result without global commu-
nication [1]. Specifically, while some problem instances trivially require global
communication, many instances can be computed locally, i.e., in a number of
steps that is independent of the graph size. We introduced a classification of in-
stances according to a measure called Veracity Radius (VR), which captures the
degree to which a problem instance is amenable to local computation. The VR
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is computed by examining the r-neighborhood of a node v, which is the set of all
nodes within radius r from v. Roughly speaking, the VR identifies the minimum
neighborhood radius 7, such that for all neighborhoods with radius r > ry the
aggregation function yields the same value as for the entire graph. (The formal
definition of VR allows some slack in the environments over which the aggregate
function is computed.) VR provides a tight lower bound on computation time. In
addition, [1] presents an efficient aggregation algorithm, I-LEAG, which achieves
the lower bound up to a constant factor.

The results of [1], however, are restricted to the computation of a static aggre-
gation instance, and do not directly extend to dynamic aggregation. If - LEAG
is to be used in a dynamic setting, the entire computation must be periodically
invoked anew, even if no inputs change. Specifically, all nodes must periodi-
cally send messages to their neighbors, which can lead to considerable waste of
resources, especially when input changes are infrequent.

In this paper, we extend the results of [1] to deal with dynamic aggregation.
We focus on algorithms that continuously compute the result of a given aggrega-
tion function at each node in the graph, and satisfy the following requirements:
(1) the algorithm’s output converges to the correct result in finite time once all
input changes cease; and (2) once the algorithm has converged, no messages are
sent as long as the input values persist.

In Sect. 3, we derive a lower bound on computation time for dynamic aggrega-
tion algorithms satisfying the above requirements. We show that if an algorithm
has converged for some input 7°'9, and subsequently the inputs change to 1™V,
then the computation of I™°" must take a number of steps that is proportional to
the maximum between the VRs of I°'4 and I™®V. The lower bound is proven for
both the time until the correct result is observed at all nodes (output stabilization
time) and the time until no messages are sent (quiescence time).

We provide two efficient dynamic aggregation algorithms that achieve this
lower bound up to a constant factor. Our algorithms employ the basic principles
of I.LEAG, but are more involved as they need to refrain from sending messages
when there are no changes.

In Sect. 4, we consider a scenario wherein it suffices to update the output
reflecting the aggregation result periodically, e.g., every few minutes. For this
setting, we present Multl-LEAG, which operates in a multi-shot fashion: the
inputs are sampled at regular intervals, and the correct (global) result relative
to the last sample is computed before the next sample is taken. The sampling
interval is proportional to the graph diameter. Multl-LEAG selectively caches
values according to the previous input’s VR to avoid sending messages when the
inputs do not change. After every sample, Multl-LEAG reaches both output-
stabilization and quiescence in time proportional to the lower bound, which
never exceeds the sampling interval and may be considerably shorter. We call
this sample-compute-output cycle an iteration. Multl-LEAG is very efficient, and
does not send more messages than necessary.

In Sect. 5, we consider a scenario wherein the output must reflect the correct
aggregation value promptly. That is, the input is sampled very frequently, e.g., at
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intervals on the order of a single-hop message latency between neighboring nodes,
and not proportional to the graph’s diameter as in MultI-LEAG. For this setting,
we present Dynl-LEAG, which invokes multiple MultI-LEAG iterations in par-
allel. Although each MultI-LEAG iteration is comprised of several phases with
different durations, Dynl-LEAG manages to carefully pipeline a combination
of complete and partial Multl-LEAG iterations to achieve O(log?(diameter))
memory usage per node. Note that Dynl-LEAG inspects multiple input sam-
ples during the time frame in which Multl-LEAG conducts a single sample. The
corresponding lower bound on algorithms that operate in this mode reflects not
only two inputs, 7°4 and IV, as described above, but rather all inputs sampled
within a certain time window.

There is a tradeoff between our two algorithms: whereas Multl-LEAG deliv-
ers correct results corresponding to relatively old snapshots, DynI-LEAG closely
tracks the aggregate result at the expense of a somewhat higher message com-
plexity. Nevertheless, the total number of messages sent in both algorithms de-
pends only on the actual number of input changes and on the VR, values of recent
inputs but not on the system size.

Related work. Following the proliferation of large-scale distributed systems such
as sensor networks [2,3], peer-to-peer systems [4], and computational grids [5],
there is growing interest in methods for collecting and aggregating the massive
amount of data that these systems produce, e.g., [6,7,8,9,10]. The semantics of
validity for dynamic aggregation have been discussed in [11]. However, most of
this work has not dealt with locality.

The initial work on using an “instance-based” approach to solve seemingly
global problems in a local manner has focused on self-stabilization [12,13,14].
Instance-local solutions have also been proposed for distributed error confine-
ment [15], location services [16] and Minimum Spanning Tree [17]. The first
work that demonstrated instance-local aggregation algorithms by means of an
empirical study is [18,19]. Ounly recently, instance-local aggregation has been
formalized [1]. However, this work did not consider dynamic scenarios.

2 Preliminaries

Model and Problem Definition. Given a set D, we denote a multi-set over D
by {di*...d'm}, where d; € D and n; € IN indicates the multiplicity of d;.
We denote the set of multi-sets over D by INP. An aggregation function is a
function F:INP? — R, where R is a discrete totally-ordered set, and F satisfies
the following: (i) convezity: VX,Y € NP: F(X UY) € [F(X),F(Y)]; and (ii)
onto (in singletons): Vr € R,3x € D: F(x) = r. Many interesting functions
have these properties, e.g., min, max, majority, median, rounded average (with
a discrete range) and consensus (e.g., by using OR/AND functions).

We model a distributed system as a fixed undirected graph G = G(V, E).
Computation proceeds in synchronous rounds in which each node can commu-
nicate with its immediate neighbors. A graph G and an aggregation function F’
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define the aggregation problem Pg r as follows: Every node v has an input value
I, € D, which can change over time, and an output register O, € RU {L}.
Initially, O, = L and v only knows its own input. We denote by I(¢) the input
assignment (of all nodes) at time ¢. For a set of nodes X C V, we denote by Ix
the multi-set induced by the projection of I on X, e.g., Iyy = I. Assume that
there exists a time to such that V¢ > to: I(t) = I(to). An algorithm solves Pg r
if it has finite output-stabilization and quiescence times after tg, and its final
outputs are Vv € V: O = F(I(ty)).

For a multi-shot algorithm A, given two consecutive sampled input assign-
ments 1° and 1"V, we denote by OS(I°4,1"%) and QA (I°9, I"*%) the
output-stabilization and quiescence times, respectively, following I™%. In the
general case, we denote by 0S4 (Z) and Q 4(Z) the output-stabilization and qui-
escence times for an infinite input sequence Z in which the inputs do not change
after some time tg.

Finally, we note that every aggregation function can be represented as a tuple
F = (R, Fr, F,44, Fo), where: R is some internal representation, and Fr:D — R,
Faggﬁ" — R and Fo:R — R are functions such that for every set of nodes
V = {v1,...,v,} and an input assignment I:

F(Iy) = Fo (Fagg({FI(Iv) |ve V})).

In many cases, the internal representation R can be extremely compact. For
example, for computing OR, it can be a single bit, and for simple majority
voting, the number of “yes” and “no” votes.

Graph Notions. Let G = G(V, E) be a graph. Denote G’s diameter and radius
by Diam(G) and Rad(G), respectively. We use the following graph-theoretic
notation:

Cluster. A subset S C V of vertices whose induced subgraph G(.5) is connected.

Distance. For every two nodes vy,vy € V, the distance between v; and v in
G, dist(v1,v2), is the length of the shortest path connecting them.

Neighborhood. The r—neighborhood (r € R*) of a node v, I'.(v), is the set
of nodes {v | dist(v,v') < r}. I'(v) = I'i(v) — {v} denotes the neighbors of
a node v. For a cluster S: I'.(S) = U,cg I'r(v) and f’(S) =TI1(5)-S.

3 Lower Bound

In [1], we introduced an inherent metric for locality, the Veracity Radius (VR),
which is defined as follows. A K-bounded slack function, is a non-decreasing
continuous function a:R™ — R* such that a(r) € [, r], for some K > 1. Given
a graph G and an aggregation function F', the VR (parameterized by a slack
function «) of an input instance I is:

VRo(I) £ min{r e RT |Vr' > rv € V,S CV s.t. I)(v) €S C I(v):
F(ls) = F(I)}.
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Simply speaking, VR identifies the minimum neighborhood radius 7y such that
for all neighborhood-like environments with radius r» > ro (i.e., all subgraphs
S that include an a(r)-neighborhood and are included in an r-neighborhood),
the aggregation function yields the same value as the entire graph. If F'(I,) =
F(I) for every v € V, then VR(I) = 0 and [ is called a trivial input
assignment.

Given an aggregation problem Pg r, we proved in [1] that for every r > 0,
every slack function « and every deterministic algorithm A that solves P, there
exists an assignment I with VR,(I) < r for which 0OS4a(I) > min{|a(r)],
Rad(G)}. A similar bound was also proven for quiescence. However, this single-
shot lower bound is overly restrictive for dynamic systems because it ignores
previous inputs. We now show that for dynamic aggregation, in which an al-
gorithm is not allowed to send messages after it converges, both current and
previous inputs are inherent to computation time. Due to lack of space, the
proofs are detailed in the full paper [20].

For multi-shot algorithms, in which convergence is guaranteed following every
input sample, it suffices to consider only the two latest input samples:

Theorem 1 (Multi-shot Lower Bound). Let Pg r be an aggregation prob-
lem. For every slack function o, every r' r"% > 0 such that a(r°'), a(r"ev) <
Rad(G), and every deterministic multi-shot algorithm A that solves F, there ex-
ist two input samples 199, I"*V such that V R (I°'%) < rold VR, (I"W) < phev,
and OS A({1°'9, 1**%}) > maz{|a(r°'?) /6], [a(r*®¥)|}. The same holds for qui-

escence.

For algorithms that do not necessarily converge between consecutive samples,
the multi-shot lower bound implies that the effects of an input assignment may
impact algorithm performance during multiple future samples; the duration of
these effects is proportional to the input’s VR:

Corollary 1 (Dynamic Lower Bound). Let Pg g be an aggregation problem.
For every slack function a, every r°4 "V > 0 such that a(r°'?), a(r"e") <
Rad(G), every constant C > 1, and every deterministic algorithm A that solves
F, there exist an input sequence T and time to such that: (1) ¥r > r°'9: for
every t € [to — C - r,t9), VR(I(t)) <r; (2) VR(I(tg)) < r"¥; and (8) ¥Vt > to:
I(t) = I(to); for which OS4(Z) > maz{|c(r°'Y) /6], [a(r™®V)]}. The same holds
for quiescence.

Finally, we note that for output-stabilization, these bounds are nearly tight: in
[20], we show how full information (FI) protocols, in which every node broad-
casts all input changes to all other nodes, achieve O(maz{|a(r°d)], [a(r*e¥)]|})
output-stabilization time (for both multi-shot and ongoing operation), albeit at
high memory usage and communication costs. Nevertheless, eventual quiescence
is still guaranteed.
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4 Multl-LEAG: An Efficient Multi-shot Aggregation
Algorithm

We now introduce MultI-LEAG, an efficient aggregation algorithm that operates
in a multi-shot fashion. Multl-LEAG is quiescent and maintains fixed outputs
when the input does not change, while leveraging the veracity radius of the inputs
to reach fast quiescence and output stabilization when changes do occur. This
enables Multl-LEAG to achieve an extremely low communication complexity,
which depends only on the number of changes and the VR of the previous and
current input samples, rather than on graph size.

Let G = G(V,E) be a graph, and let A9 = [logy(Diam(G))]. In order to
operate, Multl-LEAG requires a (6, «)-local partition hierarchy of G, which was
first defined in [1] and utilized by the I-LEAG algorithm:

Definition 1 ((, a)-Local Partition Hierarchy (LPH)). Let 6 > 2 and let
a be a slack function. A (0, a)-local partition hierarchy of a graph G is a triplet
{8}, {Pi}. {T:}),0 <i < Ag, where:

— {8} is a set of partitions, in which for every cluster S’ € S;,_1 there exists
a cluster S € S; such that 8" C S. The topmost level, Sa,, contains a single
cluster equal to V.. Denote by S;(v) the cluster S € S; such that v € S.

— {P;} is a set of pivot sets. P; includes a single pivot (sometimes called cluster
head) for every cluster S € S;. For every p € P;, denote Sub;,—1(p) = {p’ €
Py | p' € Si(p)}

— {T:} is a set of forests. For every p € P;, T; contains a directed tree T;(p)
whose Toot is p and whose leaves are either Sub;—1(p) or the nodes in Sy(p)
if i = 0. For every i > 0, denote by T;(p) the logical tree formed by con-
catenating Ty(p) and Ti_1(p') at every p' € Sub;_1(p), where Vp' € Po:

To(p') = To(p')-

In addition, the following conditions must hold for every p € P;, S;(p) € S;, and
Ti(p) € Ti: (1) Taoiy(p) < Si(p) < Toi(p); (2) Ti(p) < Silp); (3) the height of
Ti(p) is at most 6°.

Apart from the second condition, this definition of an LPH is identical to [1],
which provides general LPH construction algorithms. Although we can do with-
out it, it greatly simplifies the presentation. Note that this condition also implies
that clusters must be connected within themselves (i.e., clusters are not weak
[1)).

An LPH can be computed once per graph, and used for any duration and any
aggregation function. We next introduce two notions that link an aggregation
problem and an LPH for it, which are closely related to VR:

Cluster in conflict. Let Pz r be an aggregation problem. Given an input as-
signment [ and an LPH for G, for every level i > 0, a cluster S C §; is
in conflict if at least two of the level-(i — 1) clusters that constitute S have
different aggregate results. Level-0 clusters are always considered in conflict.
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Algorithm 1. (Multl-LEAG) for node v € V

Parameters: F:IN” — R, (6, a)-local hierarchy ({S;}, {P:},{7:}),0 < i < Ag of
G(V,E)
Input: I, € D
Output: O, € RU {1} initially L
Definitions: P;_1 £ V, Phases =2 {—1,0, ..., Ag},
Treet & Ui,pePi T (p) ignoring edge directions (i.e., Treet C E),
Si(v) £ Si(v) U {w e I'(Si(v) | Fu € Si(v): (u,w) € Tree*}
Variables:
Vu € I'(v): O € RU{L} initially L,
VP,, VP € Phases initially 0,
Conf ,(i):Phases — {true,false}, initially true for ¢ = 0 and false otherwise,
Agg, (i):Phases — RU {1} initially L,
Agge™ (i): Phases — R U {L} initially L,

Aggf)ecv(i,p):PhaseS XV — ﬁ U {J_} 1n1t1ally 1

Synchronous phases:
1: loop  /* forever */

2:  Agg,(—1) < Fr(I,) /* read changes in input */
3: Vi>0: Conf,(i) — false

4: VP, «— VPV

5: for phase i = 0 to Ap do

6: do-phase(i)

Veracity Level (VL). Let Pg r be an aggregation problem. Given an input
assignment I and an LPH for G, a node v’s Veracity Level is defined as:

VL,(I) & maz{i € [0, Ag] | Si(v) is in conflict}.

It directly follows from convexity that the aggregate result of any level-
i cluster whose nodes’ VL is i, equals the global outcome. We denote by
VL(I) the maximum VL over all nodes.

MultI-LEAG is presented in Algorithm 1.. It is provided with an LPH, and
uses two procedures, do-phase and converge-cast, which are depicted in Algo-
rithms 2. and 3., resp. Code in gray only applies to the Dynl-LEAG algorithm
presented in the next section, which also uses these procedures. Apart from its
input I, and output register O,, every node v holds the following variables: Oy,
the output of every neighbor u € f’(v)7 VP, and VP,°™, v’s veracity phase
(used to compute v’s VL as explained shortly) in the previous and current input
samples, resp. Additionally, for every level ¢ in which v is a pivot, v holds the
following mappings: Conf,, a boolean indicating if S;(v) is in conflict; Agg,,, the
internal aggregate representation of the input values in S;(v); Aggs™, the last
value of Agg, sent to v’s pivot in the next level; and Agg;’®", the last internal
representation received from every p’ € Sub;_1(v).
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Algorithm 2. (do-phase procedure) for node v € V

Function do-phase(i. /)

1: set timer to 56

2: let p € P; s.t. v € Si(p)

3: if ¢ > VP, (/) then  /* fall back to I-LEAG */

4: ifveTi(p) AN Jue f(v) s.t. w is v’s parent in T;(p) and O, (1) # Oy (1) then
5: send (conflict,i,p.t) to u

6: else /¥ i< VP (1) */

7. if v € Subi—1(p) A Aggi™(i—1) # Agg,(i—1.1) then  /* send changes */
8 Aggy™ (i —1) — Agg,(i—1.1)

9: forward (change, i, v, Agg,(i — 1.1),p) towards p in T;(p)

10:  if v = p then

11: wait until timer < 40°  /* wait for all changes to arrive */

12: if 3p’,p" € Subi—1(v) s.t. Fo(Aggi® (i,p')) # Fo(Aggs® (i,p")) then

13: Conf (i, 1) « true

14: Agg,(i.1) < Fagg( {Aggy’ (4,p") | p’ € Subi—1(v)} )

15: if i = VP,({) then /* reached prev. VL: update output and VP */

16: if O,(t) # Fo(Agg,(i,t)) then

17: multicast (output, i, v, Fo(Agg,(i.1)).1) to §Z(v)

18: if i >0 A Conf,(i,!) = false then multicast (update-vp,i,v,0.) to T;(v)

19: wait until timer expires

Message handlers:
upon receiving the first (conflict,i,p,t) message:
if v = p then
Agg, (i,1) < converge-cast(i. () /* see Algorithm 3. */
Conf ,(i,1) « true
multicast (output, i,v, Fo(Agg, (i.1)). 1) to Si(p)
multicast (update-vp,i,v,1, 1) to T;(v)
else forward message to v’s parent in T;(p)

upon receiving a (change,i,p’, ﬁ,p) message:
if v = p then Agg*®V(i,p’) «— R
else forward message to v’s parent in 7T;(p)
upon receiving a (output, i, p, val, () message:
wait until timer expires
if v € S;(p) then O, (1) «— val
Vu € I'(v): if u € S;(p) then Oy (1) «+ val

upon receiving a (update-vp, i, p,l, ) message:
if i = 0 then

wait until timer expires, VPyeY —1
else if v € P;_1 then

ifl=0 A Conf, (i —1.1) =true then ! « (i — 1)

multicast (update-vp,i — 1,v,1, ) to Ti—1(v)
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Algorithm 3. (converge-cast RPC) for node v € V

Function converge-cast(i, 1) — R
if i > VP,(t) A Conf,(i.t) = false then
for all p’ € Sub;_1(v) parallel do
tmp(p') « p'.converge-cast(i — 1,1) /* p’ is reached via T;(v) */
Agg,(i.1) < Fagg( {tmp(p) | p’ € Subi-1(v)} )
return Agg, (i, 1)

MultI-LEAG operates in iterations (the outer loop). An iteration begins by
sampling the input and ends with all nodes holding the correct aggregate re-
sult matching the sampled inputs. Within an iteration, Multl-LEAG executes
Ag synchronous phases that correspond to the levels of the partition hierarchy,
calling do-phase each time. (A timer ensures that the next phase is not started
before all nodes complete the current phase.) It is convenient to think of do-phase
as a sequential operation that takes place concurrently in every cluster S of the
current level. Informally, for every phase 7 and cluster S € S;, do-phase operates
in one of two modes. The first is to react according to S’s conflict state: if S is in
conflict, explicitly compute its aggregate result and assign it to the output of all
nodes in S. (If not in conflict, do nothing.) The second is to merely propagate
input changes in S, if any exist, to S’s pivot.

The decision regarding which mode to use, from a node v’s perspective, is as
follows. Let j be v’s VL in the previous input, I°'4. Until phase j for the current
input, 1™V, is reached, we just propagate changes if there are any, and otherwise
do nothing. At phase j, we additionally verify that all nodes in S;(v) hold the
correct output according to I™°V; if they do not, we multicast the correct output
to them. Subsequently, we reactively handle conflicts as they occur. Note that
for every phase 4 higher than v’s current VL, S;(v) does not incur conflicts.
Thus, Multi-LEAG achieves O(maz{ VR(I°'Y), VR(I"*")}) output stabilization
and quiescence times (Theorem 2). In any case, no messages are sent when there
are no input changes.

Had we chosen to operate in conflict detection mode at all times, the resulting
protocol would closely resemble I-LEAG [1], and would send messages for every
non-trivial input (because at least one cluster would suffer a conflict) regardless
of whether any inputs change, which is unacceptable.

We now describe Multl-LEAG’s operation in more detail. For every node v,
VP, equals v’s VL according to the previous input, and remains unchanged
until the end of the iteration. VP," is gradually updated to reflect the current
VL, and is only used to set VP, in the next iteration. Therefore, for facility of
exposition, we currently ignore the Conf, mapping and the update-vp message
handler, which are responsible for updating VP;°". For every phase i, p € P;,
and S;(p) € S;, we distinguish among the following cases:

Vv € Si(p): i < VP, (change propagation). Every p’ € Sub;_1 sends changes

in Agg,, (i—1) to p (lines 7-9). Every such update is saved in Agg,*" (i, p") by
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the change message handler. After all updates are accepted (this is ensured
by the wait statement in line 11), Agg,(7) is recalculated (line 14).

Vv € Si(p): i = VP, (change propagation and output validation). First,
we update Agg, (i) as described above. Next, we ensure that the output of
every v € Si(p) equals F'(Ig;(p)). As previous phases (which follow the first
case) have not altered S;(p)’s outputs at all, every v € S;(p) holds the same
output, which equals the aggregate result according to the previous input.
Therefore, it is sufficient to check only p’s output. If O}, # Fo(Agg,(i)) (line

16), then S;(p)’s correct aggregate result is multicast to 51(11) and assigned
by the output handler. Specifically, every v € S;(p) updates O,, and every
neighbor u of v such that u € S;(p) or (u,v) € Tree™ updates OY. (Tree™
denotes the union of all tree edges; see definition in Algorithm 1..) Otherwise,
the outputs of all nodes in S;(p) remain unaltered.

Vv € Si(p): i > VP, (conflict detection). Assuming that all nodes within a
level-(i — 1) cluster have the same output (see previous case), conflicts are
detected without communication by comparing outputs of neighboring nodes
along T;(p), which know each other’s output. Detected conflicts are reported
to p and handled by the conflict handler. In this case, p issues a converge-cast
call (see Algorithm 3. and explanation below) to explicitly update Agg, (7).
Finally, S;(p)’s aggregate result, Fo(Agg,(i)), is multicast to S;(v) as in the
previous case.

Note that according to VL’s definition, no other cases are possible.

To show how VP,Y is gradually adjusted to reflect the current input, we begin
by describing Conf,, which records cluster conflict states. At the beginning of
an iteration, Conf, maps trivially to false for every phase other than 0 in all
nodes. In every phase i and pivot p € P;, Conf (i) is assigned true if S;(p) is in
conflict. This is done either by examining updated aggregate results if i < VP,
(line 12), or by receiving a conflict message if i > VP,.

When a new iteration begins, VP, is equal to VP,. Subsequently, it is
updated by update-vp messages, which are initiated by pivot nodes and flooded
along their logical trees. Specifically, at phase 4, a pivot p € P; changes VP,¥
for every node v € S;(p) in two cases. If i > VP, and S;(p) is in conflict (i.e., a
conflict message is received by p at level i), p increases VP,Y to i. Alternatively,
ifi >0,4= VP, and S;(p) is not in conflict (line 18), p decreases VP, to the
highest level for which v’s cluster wan in conflict so far. This is done by sending
the first update-vp messages with a VP value (the last parameter) of 0. When a
descendent pivot p’ of p at some level j < i receives a 0 VP value and its cluster
is in conflict, it replaces this value with j for the rest of the subtree.

Thus, for any node v, VP;®" can be lowered at most once when phase VP,
is reached (by v’s pivot in level VP,), and possibly increased one or more times
in subsequent phases. At the end of the iteration, VP,*" equals the input’s VL,
and is assigned to VP,.

The converge-cast procedure is described in Algorithm 3. using remote pro-
cedure call (RPC) semantics. At every phase j and pivot p € Pj;, invoking
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p.converge-cast(j) aggregates the inputs of S;(p) recursively based on p’s logical
tree, fj (p). Note that for every level ¢ < j and pivot p’ € P;, if i < VP, then
Agg,, (i) is already up to date because all input changes in S;(p’) have already
been accounted for during phase i. In addition, if i > VP, but Conf,, (i) = true,
then Agg,, (i) was updated by a prior converge-cast operation during conflict
handling in phase i. Thus, Agg,, (i) needs to be recalculated only if i < VP
and Conf (i) = false.

MultI-LEAG’s correctness and complexity are proved in [20]. Specifically, we
show that Multl-LEAG achieves the multi-shot lower bound (Theorem 1) up to
a constant factor:

Theorem 2. Let Pg p be an aggregation problem. Given a (0,a)-LPH of G,
for every two consecutive iterations with non-trivial input assignments, I°'Y and
1"V Multl-LEAG’s output stabilization and quiescence times for 1™ are at

most: (53?)7“, where 7 = maz{ VR, (I°'Y), VR, (I*%)}.

5 Dynl-LEAG: An Efficient Dynamic Aggregation
Algorithm

While MultI-LEAG is efficient in terms of communication and converges rapidly
after sampling the inputs, its sampling interval is proportional to the graph
diameter. Therefore, it is not suitable for applications in which fast output sta-
bilization is desirable at all times. In this section, we present Dynl-LEAG, an
efficient aggregation algorithm with fast output stabilization.

Dynl-LEAG achieves this by concurrently invoking multiple Multl-LEAG iter-
ations, one per sample, and pipelining their phases. This is challenging, however,
because phases have exponentially increasing durations. Dynl-LEAG’s samples
occur frequently, at intervals reflecting the operation time of the first phase.
Thus, invoking a full iteration upon each sample would create a number of con-
current iterations that is linear in the graph’s diameter, which would lead to
considerable resource (messages and memory) consumption. We overcome this
challenge by invoking partial Multl-LEAG iterations, i.e., iterations that do not
execute all phases, to ensure that at every level of the LPH only a single corre-
sponding Multl-LEAG phase is executed at any given moment. This results in a
“ruler-like” schedule that executes only O(log(Diam(G))) concurrent iterations,
which we call Ruler Pipelining. Figure 1 illustrates ruler pipelining for an LPH
with # = 2. As a consequence, DynI-LEAG requires only O(log®(Diam(G)))
memory per node (each MultI-LEAG iteration has practically the same memory
utilization as I'LEAG, which requires O(log(Diam(G))) memory for reasonable
LPHs [1]), while the interval between two consecutive Multl-LEAG phases at
the same level is only 6 times that of an algorithm that requires 2(Diam(Q))
memory.

A Multl-LEAG iteration ensures that its calculated output and VP values are
correct only after it completes. Since this takes O(Diam(G)) time, yet another
challenge is to select the proper output and VP (for new iterations) from among
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Fig. 1. Ruler Pipelining for a 3-level LPH with 6 = 2

multiple ongoing iterations, while achieving output-stabilization and quiescence
times proportional to the lower bound rather than the diameter.

DynI-LEAG is depicted in Algorithm 4., and uses the do-phase and converge-
cast procedures (code in gray applies). To execute concurrent Multl-LEAG it-
erations, Dynl-LEAG holds for every Multl-LEAG variable, except Aggs®™ and
Aggie®v, a mapping that associates each value the variable holds with a time
stamp. This is also done for MultI-LEAG’s output register, O,,, which is renamed
to OF to distinguish between the outputs of different iterations and the actual
Dynl-LEAG output. Note that the VP, and VP;°" variables are expanded to
include a qualifier u € r (v), which enables nodes to hold the corresponding val-
ues of their neighbors. (u = v designates v’s values.) In addition, Dynl-LEAG
introduces one new variable, t,(4), which designates the starting time of the last
level-i phase. Aggs®™ and Aggr®®Y are not associated with time stamps since they
can be perfectly pipelined, i.e., for every level i, Aggs®™*(i — 1) and Agg*¥ (i)
are only accessed by phase i. This enables Dynl-LEAG to use partial iterations
at no extra cost: each input change is communicated at most once to higher
levels.

Dynl-LEAG runs Ay threads at each node, corresponding to the LPH levels,
each of which repeatedly calls the do-phase procedure (line 14) for the matching
level. An individual Multl-LEAG iteration is identified by its starting time, which
is also passed during do-phase invocations. For every level-i phase, ¢, (¢) equals
the current time when it starts and is incremented by the phase duration, 56°,
when it completes (line 15). The starting time of the corresponding iteration is
found by subtracting from ¢, (i) the duration of previous phases, A(i — 1). Ruler
pipelining is obtained as a direct outcome of this timing: the results of each
completed level-i phase are either used in the level-(i + 1) phase that starts at
the same time or ignored in the case of a partial iteration that ends at phase i.
The barrier in line 16 eliminates data races between phases.

The crux of the algorithm is concentrated at the beginning of a new iteration
(i-e., it is executed only by the thread handling phase 0), and comprises four op-
erations: (1) sampling the input; (2) choosing the VP and initial output values
for the new iteration; (3) estimating the output; and (4) performing some book-
keeping. The second operation is done both for a node itself and its neighbor
information to ensure that neighboring nodes know each other’s output upon
starting the iteration.
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Algorithm 4. (Dynl-LEAG) for node v € V/

Parameters: F:IN” — R, (6, a)-local hierarchy ({S;}, {P:},{7:}),0 < i < Ag of
G(V,E)
Input: I, € D
Output: O, € R initially 0
Definitions: P;_1 £ V, Phases =2 {—1,0, ..., Ag},
Tree™ £ |J; pep; Li (p) ignoring edge directions (i.e., Tree™ C E),
§1(p) 2 8i(p) U {ve F( () | 3u € Si(p): (u,v) € Tree™},
Ai) £ 305, 567,
LastIter(i,t) £ t — (t mod 56%) — A(7)
Variables:
ty(i): Phases — Z initially 0,
Vu € I'(v): Oy (t):Z — RU{L} initially L,
Conf ,(i,t): Phases x Z — {true, false} initially true for ¢ = 0 and false otherwise,
Yu € I'(v): VP4 (t), VPR "(t):Z — Phases initially 0,
Agg,(i,t):Phases X Z — RU {L} initially L,
Agge™ (i): Phases — RU {J_} initially L,
AggiV(i,p):Phases x V. — RU {1} initially L

1: for all ¢ € [0, Ag] parallel do

2:  loop /* forever */

3: if i =0 then

4: Agg,(—=1,t,(2)) < Fr(I,) /* read input */

5: for alluw € I, do

6 Candidates — {k € [0, Ag] | VP4 (Lastlter(k,t,(0))) <k A
VPL""(Lastlter(k,t,(0))) = k}

7 VP (tv(0)), VPV (t,(0)) < maz(Candidates U {0})

8: Oy (t4(0)) < Oy (') where t' = Lastlter( VP (t,(0)), t,(0))

9: do-bookkeeping(t,(0))

10: O, «— Op (tv(0))  /* adjust output */

11: if t, (i) > A(i — 1) then

12: do-phase(i, t, (1) — A(i — 1))

13: else

14: wait for 50° time steps

15: ty (i) < ty (i) + 50

16: barrier(t,(¢)) /* synchronize all threads and message handlers that

complete a phase at time ¢, (i) */

Function do-bookkeeping(t)
T« {t]3j€]0,Ap] s.t. t — (t mod 567) — ' = A(j) or A(j —1) }
Vj € Phases,u € I'(v),t' € T:0%(t') «— L, Conf,(j,t") < false,
VPy(t), VP (') 0, Agg, (5,1') — L

To choose a VP value, we initially prepare a list of candidate levels. Level k is
considered a candidate if Si(v) is known to be in conflict according to the most
recent information. More formally, we look at the last iteration that completed
phase k, i.e., the iteration that started at Lastlter(k,t,(0)), where t,(0), at
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this point, is the current time. During an iteration, nodes can learn if their
cluster at a certain level is in conflict by the reception (or absence) of update-vp
messages during the corresponding phase. Specifically, upon completing phase
k, if VR;®™" = k, then Si(v) is in conflict. However, as update-vp messages
are only sent after an iteration completes its VP phase, this information is not
available beforehand. Consequently, we only accept k as a candidate if both
VP, (Lastlter(k,t,(0))) < k and VP,*""(Lastlter(k,t,(0))) = k hold. Next, we
choose the highest candidate, where 0 is always considered a candidate. Both the
initial output value and Dynl-LEAG’s output estimate, O,, are simply taken as
the current output of the iteration corresponding to the chosen candidate. Thus,
after the inputs stabilize, the choices of VP converge to VL and the outputs
converge to the global aggregate result, thereby guaranteeing both quiescence
and output stabilization (Theorem 3).

Finally, the do-bookkeeping procedure ensures that every mapping that is
never referenced again, i.e., the time its iteration has started corresponds to
neither the current nor last phase of any level, is reset to its default value. Thus,
every node has to maintain state for only 24y Multl-LEAG iterations.

DynI-LEAG’s correctness and complexity are proved in [20]. Specifically, we
show that DynI-LEAG achieves the dynamic lower bound (Corollary 1) up to a
constant factor:

Theorem 3. Let Pg r be an aggregation problem. For every slack function o,
every 19, r"V > 0, and every input sequence I such that all input changes cease
at time tg and:

1. Yr > 719 for every t > tg — 300 -7, VR, (t) <r
2. VRal(to) = rme™

Dynl-LEAG reaches both quiescence and output-stabilization by time 400 -
maz {rold, rievy,

6 Conclusions

We provided two efficient algorithms, Multl-LEAG and Dynl-LEAG, for dynamic
aggregation in large graphs with fixed topologies. When the inputs are stable, the
algorithms are quiescent and hence do not waste any resources from the commu-
nication network. When changes do occur, the performance of these algorithms is
proportional to the Veracity Radius of the inputs at hand, which enables them to
achieve optimal instance-local operation and resource utilization.

Consequently, these algorithms are extremely attractive for data aggrega-
tion tasks in dynamic, resource-constrained environments in which topological
changes are infrequent compared to the sampling rate, be it for periodically
obtaining the result according to the most recent sample in a very efficient man-
ner (MultlI-LEAG) or for closely tracking the monitored environment to capture
global trends as fast as possible (Dynl-LEAG).
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Abstract. We consider a network of processors in the absence of unique
identities, and study the k- Grouping problem of partitioning the proces-
sors into groups of size k and assigning a distinct identity to each group.
The case k = 1 corresponds to the well known problems of leader elec-
tion and enumeration for which the conditions for solvability are already
known. The grouping problem for k > 2 requires to break the symmetry
between the processors partially, as opposed to problems like leader elec-
tion or enumeration where the symmetry must be broken completely (i.e.
a node has to be distinguishable from all other nodes). We determine
what properties are necessary for solving these problems, characterize
the classes of networks where it is possible to solve these problems, and
provide a solution protocol for solving them.

For the case k = 2 we also consider a stronger version of the problem,
called Pairing where each processor must also determine which other
processor is in its group. Our results show that the solvable class of net-
works in this case varies greatly, depending on the type of prior knowledge
about the network that is available to the processors. In each case, we
characterize the classes of networks where Pairing is solvable and deter-
mine the necessary and sufficient conditions for solving the problem.

1 Introduction

Consider a distributed system consisting of a network of n processors and sup-
pose we want to partition the n nodes of the network into uniquely identified
groups, each consisting of £ nodes, where k£ divides n. This problem, called k-
Grouping, is of simple resolution if the nodes have unique identifiers. However, in
absence of distinct nodes identities (i.e., in an anonymous network), the solution
of the k-Grouping problem becomes difficult, if at all possible. The goal of this
paper is to understand under what conditions this problem is solvable in such a
setting.

Notice that when & = 1, the grouping problem is equivalent to the well
known Node-Labelling and Enumeration problems, where each node has to be
assigned a distinct label (ranging from 1 to n, in case of Enumeration). The
1-Grouping problem is also computationally equivalent to the Leader FElection

S. Dolev (Ed.): DISC 2006, LNCS 4167, pp. 105-119, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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problem, where one of the nodes has to become distinguished from all others.
Although a natural extension to these problems, the k-Grouping problem for
k > 1 has never been studied before, to the best of our knowledge.

For the leader election problem, it is known that the solvability of the prob-
lem depends on the (presence or absence) of symmetry between the nodes in the
network. However, even if election is not solvable in a given network, it may be
still possible to solve the grouping problem in that same network. In fact, the
k-grouping problem for k£ > 2 requires to break the symmetry between the nodes
only partially, as opposed to problems like leader election or enumeration where
the symmetry must be broken completely (i.e. a node has to be distinguishable
from all other nodes). Hence our investigation focuses on the computational as-
pects of partial symmetry-breaking; more precisely, our interest is in determining
what conditions are necessary for solving these problems and in characteriz-
ing the solvable instances. A case of particular interest is when k = 2, called
the Matching problem in which the nodes of the network are to be grouped in
pairs’.

It is interesting to note that the solvability of these problems depends not only
on the symmetry of the network but also on what information is initially available
to the nodes of the network, for instance, whether they know the topology or
the size of the network or whether they have a map of the network.

We are also interested in a stronger version of the grouping problem, which
we call k- Relating, where each node must also determine which other nodes have
been grouped with it. Specifically, each node should be able to compute a path
between itself and any other processor in its group. In the case k = 2, this
problem is called Pairing. and each node must know a path to the other node it
is paired with.

Related Results: The study of computability in an anonymous network of
processors, has been a subject of intense research starting from the pioneering
work of Angluin [1] who studied the problem of establishing a “center” in the
network. This work was extended by Johnson and Schneider [10] and later by
Yamashita and Kameda who gave a complete characterization of graphs where
the leader election problem is solvable [16] and of graphs where any arbitrary
function can be computed [17]. Boldi et al. [2] characterized labelled networks
based on the election problem, whereas Boldi and Vigna [3] have studied the
problem of general computability in directed graphs using the concepts of graph
fibrations [4] and coverings, (which we also use in the present paper). Others
have studied the computability issues in specific topologies or restricted to spe-
cial functions (see [11] for a survey of such results). Sakamoto [15] studied the
effects of initial conditions of the processors on computability in anonymous net-
works, while Flocchini et al. [8] investigated the impact of sense of direction on
computability in anonymous networks.

! This problem is un-related to the distributed client-server match-making problem
studied in the literature [14], where nodes are already divided into clients and servers
and the network is not anonymous.
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Mazurkiewicz [13] gave an algorithm (in the local-computation model) for the

distributed enumeration problem, i.e. for numbering the nodes of an undirected
graph G with integers from 1 to |V(G)|. They showed that it is possible to do
this only when the graph G is “unambiguous”. Godard et al. [9] translated this
property in terms of coverings of simple graphs. Chalopin and Métivier [6] later
adapted the Mazurkiewicz algorithm to the message passing model and showed
that the enumeration problem is solvable in a symmetric directed graph G, if
and only if G is symmetric-covering-prime.
Our Results: We first consider the k- Grouping problem and provide a complete
characterization of its solvability. First of all, we show that the knowledge of the
ezact size of the network is necessary for solving the problem. Then we determine
the necessary and sufficient condition for solving the k- Grouping problem, when
such knowledge is available. For the case k = 1, this characterization corresponds
precisely (as it should) to that given in [3,16] for the leader election problem.
We then present an algorithm (Algorithm 1) that solves the k- Grouping problem
using a simple extension to the Mazurkiewicz algorithm. As part of our solution,
we introduce a deterministic procedure with explicit termination, that computes
the minimum base of any given network in the message-passing system. Our
solution is able to detect if k- Grouping is solvable for any given k in any given
network and reports failure when the problem is not solvable in that network.

Building on the above results, in section 4.1, we investigate the Pairing prob-
lem under three different types of prior information that may be available to the
processors in the network, and we provide an almost complete characterization
of its solvability. The types of prior knowledge we consider are: (i) a complete
map of the network?; (ii) just the number of nodes; (iii) only an upper bound on
the number of nodes. We determine sufficient conditions for solving the Pairing
problem under all three different types of knowledge.

Finally, in section 4.2, we determine necessary conditions for solving the Pair-
ing problem in each of the different cases. We show that when a complete map is
available or, when only an upper-bound on n is known, the sufficient conditions
we have established for these two cases are necessary too; that is, our charac-
terization is complete in case (i) and (iii). In case (ii), when the nodes have
prior knowledge of the exact size of the network, there is a still gap between the
necessary and sufficient conditions.

2 The Model and the Definitions

2.1 Directed Graphs

A directed graph(digraph) D = (V(D), A(D),sp,tp) possibly having muli-
ple arcs and self-loops, is defined by a set V(D) of vertices, a set A(D) of
arcs and by two maps sp and tp that assign to each arc two elements of
V(D) : a source and a target (in general, the subscripts will be omitted). A
digraph D is strongly connected if for all vertices u,v € V(D), there exists

2 The map is unanchored i.e. a node may not know its location in the map.
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a path between u and v. A symmetric digraph D is a digraph endowed with
a symmetry, that is, an involution Sym : A(D) — A(D) such that for every
a € A(D),s(a) = t(Sym(a)). In a symmetric digraph, the mirror of a path
P = (ag,a1,...,ap) is the path (Sym(ap), Sym(ap—1),...,Sym(ap)). In this
paper, we will only consider strongly connected symmetric digraphs.

A digraph homomorphism ~ between the digraph D and the digraph D’ is
a mapping v: V(D) U A(D) — V(D') U A(D’) such that if u,v are vertices of
D and a is an arc such that u = s(a) and v = t(a) then v(u) = s(vy(a)) and
~v(v) = t(y(a)). We consider digraphs where the vertices and the arcs are labelled
with labels from a recursive label set L and such digraphs will be denoted by
(D, A), where A: V(D) U A(D) — L is the labelling function. A homomorphism
from (D, A) to (D', X') is a digraph homomorphism from D to D’ which preserves
the labelling, i.e., such that X (v(x)) = A(x) for every x € V(D) U A(D).

2.2 The Message-Passing Network Model

We represent a point-to-point message passing network by a connected sym-
metric digraph G without self-loops and multiple arcs. The vertices represent
processors and if there is a (bidirectional) communication link between proces-
sors corresponding to some vertices u and v, there is an arc a,, from u to v,
an arc ., from v to u and Sym(au,) = ay,. The initial state of the proces-
sors is encoded by a vertex labelling function AV : V(G) — X, where X is a
set with a total order <y. In particular, if all vertices have the same label i.e.
N (v) =AY ('), Yu,0" € V(G), then the network is anonymous.

We assume the presence of a local orientation A* on the network: for each
vertex u (of degree d), there exists an injective mapping A\? that associates a
unique number A\ (v) € [1,d] to each neighbor v of u. This local orientation
defines a labelling on the arcs of G as follows. For any pair of neighboring nodes
{u,v} in G, M (aun) = (A2 (v), A2 (1)) and A\ (apy) = (A2 (1), A2 (v)). From this
construction, one can notice that for any arc a € (G, \), if M (a) = (p, ¢), then
A (Sym(a)) = (g, p)-

The labelled digraph (G, A) would be called a network, if and only if it satisfies
each of the following: (i) There does not exist any arc a € A(G) such that
s(a) = t(a) (i-e. no self loops), (ii) There does not exist two distinct arcs a,a’ €
A(G) such that s(a) = s(a’) and t(a) = t(a’) (i.e. no parallel arcs), and (iii)
A=AV, 2, where AV : V(G) — X and M is a local orientation on G, as
defined above.

The vertices of the network (G, \) would be called nodes or, processors. Each
processor v in the network represents an entity that is capable of performing
computation steps, sending messages on any outgoing arcs, and receiving any
message that was sent on any of the incoming arcs. Notice that the entity can
distinguish among the arcs due to the presence of local orientation. The follow-
ing procedure calls are available to the entity at a node v : Send< M,p > and
Receive< M, p >, to send (respectively receive) the message M on the communi-
cation link labelled by p. Every entity executes the same algorithm provided to
it which consists of a sequence of computation steps interspersed with procedure
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calls of the two types mentioned above. Each of the steps of execution may take
an unpredictable (but finite) amount of time (i.e. we consider fully asynchronous
systems).

For any path P = (a1, as,...,qa;) in the network (G, A), the sequence of arcs
labels corresponding to it is denoted by A(P) = (AM(a1), A (az2),..., A (a;)).
For any sequence of edge-labels «, we define the function T,, for a network (G, A)
as follows. A node u = T, (v) if and only if there is path P from v to v in G
whose label-sequence A(P) is «. Notice that if A is a local orientation then there
can be at most one node of this kind and then T, (v) is a mapping.

Each processor, at the beginning of computation would have the same knowl-
edge about the network. As in [16] we will focus on three different kinds of initial
knowledge that may be available to the processors:

[UB] Knowledge of an upper bound on n, the size of G,
[ES] Knowledge of the exact value of n, the size of G
[MP] Knowledge of a map (i.e. an isomorphic copy) of the labelled graph (G, ).

2.3 Problems and Definitions

Informally speaking, the problem of k-GROUPING is to partition the nodes of
the network into groups of k nodes, where nodes in the same group are identified
by a common label assigned to them.

k-GROUPING: Given the network represented by (G, ), compute at each
node v the value LABEL(v) where LABEL : V(G) — IN satisfies the condition
that for each v € V(G), [{u € V(G) : LABEL(u) = LABEL(v)}| = k.

In the particular case, where k = 1, this problem corresponds to the well-
studied problems of naming/enumeration and election. For the case k = 2, we
call it the MATCHING problem where the nodes of the network are matched-
up in pairs such that nodes in a pair share the same label. Notice that the
nodes matched to each-other may not be adjacent and in general, a node may
not know which other node it has been matched with. A more difficult version
of MATCHING (or, 2-GROUPING) is the PAIRING problem which involves
forming pairs among the nodes of the graph, such that each node v knows a
path leading to the other node it is paired with, denoted by Pair(v). This is
defined formally as:

PAIRING: Given a network represented by (G, \), compute at each node v
the sequence of edge-labels representing a path from node v to the node pair(v),
where the function pair : V(G) — V(G) is such that (i) pair(v) = u < pair(u) =
v, (ii) pair(u) = pair(v) & u = v, and (iii) pair(v) # v for any v € V(G).

The generalized version of the Pairing problem, called k-relating, k > 1, is not
considered in the present paper.

Definition 1. For each of the above problems, we say that the problem is solv-
able on a given instance (G, \), under the knowledge MP(respectively ES or, UB) if
there exists a deterministic (distributed) algorithm A such that every exzecution of
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algorithm A on (G, \), succeeds in solving the problem (i.e. produces the required
output), when provided with the appropriate input according to MP(respectively
ES or, UB).

We are interested in generic solution protocols for the problems, i.e. algorithms
which, when executed on any given instance (G, \), always terminates within a
finite time, either successfully solving the problem, or reporting failure to do so.

Definition 2. We say that an algorithm A is effective for a given problem,
under the knowledge MP(respectively ES or, UB) if for every instance (G, \) of
the problem, the algorithm A succeeds in solving the problem if and only if the
problem is solvable on (G, \) under the knowledge MP(respectively ES or, UB)

2.4 Fibrations and Coverings

The notions of fibrations and coverings were defined by Boldi and Vigna in [4].
We present the main definitions and properties here, that are going to be used
in this work.

A fibration between the digraphs D and D’ is a homomorphism ¢ from D to
D’ such that for each arc a’ of A(D’) and for each vertex v of V(D) such that
p(v) = v = t(a’) there exists a unique arc a in A(D) such that ¢(a) = v and
¢(a) = a’. The fibre over a vertex v (resp. an arc a) of D’ is the set ¢~ !(v) of
vertices of D (resp. the set p~1(a) of arcs of D).

An opfibration between the digraphs D and D’ is a homomorphism ¢ from
D to D’ such that for each arc a’ of A(D’) and for each vertex v of V(D) such
that p(v) = v = s(a’) there exists a unique arc a in A(D) such that s(a) = v
and p(a) =d'.

A covering projection is a fibration that is also an opfibration. If a covering
projection ¢ : D — D’ exists, D is said to be a covering of D’ via ¢ and D’
is called the base of . A symmetric digraph D is a symmetric covering of a
symmetric digraph D’ via a homomorphism ¢ if D is a covering of D’ via ¢ such
that Ya € A(D), p(Sym(a)) = Sym(p(a)). A digraph D is symmetric-covering-
minimal if there does not exist any graph D’ not isomorphic to D such that D
is a symmetric covering of D’.

Property 1 ([4]). Given two non-empty strongly connected digraphs D, D', each
covering projection ¢ from D to D’ is surjective; moreover, all the fibres have the
same cardinality. This cardinality is called the number of sheets of the covering.

The notions of fibrations and of coverings extend to labelled digraphs in an ob-
vious way: the homomorphisms must preserve the labelling. Given a labelled
symmetric digraph (G, ), the minimum base of (G, \) is defined to be the la-
belled digraph (H, Ag) such that (i) (G, A) is a symmetric covering of (H, Ag)
and (ii) (H, Ag) is symmetric covering minimal.

The above definition is equivalent to that given in [12,4] where the minimum
base is defined using the degree refinement technique that is related to techniques
used for minimizing deterministic automata.
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Given a labelled digraph (G, Ag) and its minimum base (H, Ay ), the quantity
q = |V(H)|/|V(G)| is called the symmetricity (see [16]) of the labelled digraph
(G, Ag)- This quantity is same as the number of sheets of the covering projection
v from (G, \g) to (H, Ag).

The following property says that if (G, \g) is a covering of (H, Ag), then
from any execution of an algorithm on (H,\g), one can build an execution
of the algorithm on (G, Ag). This is the counterpart of the lifting lemma that
Angluin gives for coverings of simple graphs [1] and the proof can be found in
[4,6].

Property 2. If (G, \g) is a covering of (H, Ay) via ¢, then any execution of an
algorithm A on (H, Ag) can be lifted up to an execution on (G, Ag), such that
at the end of the execution, for any v € V(G), v would be in the same state as

o(v).

In particular, if we consider a synchronous execution of an algorithm A4 on (G, \),
then this execution is obtained by lifting up the synchronous execution of A on
the minimum base (H, \). As a result of the above property we have the following
additional property, which is useful for proving impossibility results.

Property 3. Consider two labelled digraphs (G1, A1) and (G2, A2) that both cover
the same labelled digraph (H, Ay ) via ¢1 and @9 respectively. For any algorithm
A, there exist executions of A on (G1, A1) and (Gg, A2) such that at the end
of these executions, any vertex v1 € V(G1) would be in the same state as any
vertex vy € @y (¢1(v)) C V(Gq) provided that the vertices are given the same
input initially.

3 Solving the k-Grouping Problem

3.1 Conditions for Solvability

Throughout the rest of this paper, we shall assume that the values of k£ and n
are such that k divides n, which is a necessary condition for solving the problems
that we consider.

Lemma 1. For solving the k-Grouping problem for a given k in a network
(G, ), (i) knowledge of the exact size of the network, is necessary (i.e. the
knowledge [UB] is not sufficient) and (ii) q must divide k, where q is the sym-
metricity of (G, \).

Proof Omitted.

3.2 Solution Protocol

We give below an algorithm Grouping(n, k) for solving the k-Grouping problem
in a network of size n. The algorithm computes the minimum base (H, Ag) of the
network (G, A), using the sub-procedure Fnumerate which is based on Chalopin
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and Métivier’s version of the Mazurkiewicz enumeration algorithm. However, we
modify the algorithm to obtain a pseudo-synchronous algorithm that labels the
vertices of the network with integers from 1 to |V (H)|, such that all nodes that
map to the same vertex v in H share the same label. This enables us to com-
pute the minimum base (H, Ay ) based on the labelling. (Note that computing
the minimum-base of a digraph is a fundamental problem which is related to
state-minimization of automata and also to graph-partitioning and isomorphism
detection [5,7]. However the known solutions are not directly applicable in the
present model.)

Algorithm 1. Grouping(n,k)
(H,num) := Enumerate(n) ;
q:=n/|V(H)[;
z:=n/k;
if ¢ divides k and k divides n then

return (num modulo z) + 1 ;

else
Terminate with failure ;

Procedure Enumerate(n) at node v
n(v) :=1;
N(w):=0;
M(v) == {(1, M(v),0} ;
for A iterations do
for p := 1 to dg(v) do send < (n(v), M(v)),p > via port p ;
for p := 1 to dg(v) do
receive < (z, M), q > via port p ;
N(v) = N@)\{(,p, )} U{(z,p,9)} ;
M(v) := M(U)UMU{( (v), A(v), N(v)} ;
if I(n(v),l,N) € M(v) | (A(v),N(v)) < (I, N) then
n(v) =1+ max{z | I(z,l[,N) € M(v)} ;
M(v) := M(v) U{(n(v), A(v), N(v))} ;
Map := Construct-Graph(M (v)) ;
return (Map,n(v)) ;

During the procedure Enumerate, the state of each processor v; € V(G) is
represented by (AV (v;), c(v;)), where c(v;) = (n(v;), N(v;), M (v;)) represents
the following information obtained during the computation:

— n(v;) € IN is the number assigned to v; by the algorithm.

— N(v;) is the local view of v;, i.e., the information the vertex v; has about
its neighbours. This contains elements of the form (n;,p;,q;) where n; is
the number assigned to a neighbor v; and the arc from v; to v; is labelled
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— M (v;) is the mailbox of v; containing all of the information received by v
at previous computation steps. Formally, it is a set of elements of the form
(nj,1;, Nj) where nj, l;, and N; are respectively the number, the initial label
and the local view of some node at some previous step of the algorithm.

As in the original algorithm of Mazurkiewicz [13], we need a total order on
the local views. Given two local views N7 and No, we shall say that N7 < No
if the maximum element for the lexicographic order of the symmetric difference
N; A Ny = Ny U N3 \ N1 N Na belongs to No. We will also say that (I3, N7) <
(ll,Nl) if [y <x Iy orif [y =1y and N1 < Ns.

Procedure Construct-Graph(M)
Nmax := max{x | I(z,l,N) € M} ;
V(H) :={vi |1 <i < nmax}
AH):=0;
for 7 := 1 to nmax do

(Mg (vq), Ny) := max<{(I, N) | (i,[,N) e M} ;
foreach (j,p,q) € N; do
A(H) := A(H) U{aijpq} ;
s(@ijpq) = vi ;
t(aijpg) = vj ;
AH (ijpq) = (P: ) ;
return (H,\g) ;

Lemma 2. During the execulion of algorithm Enumerate(n) on a network
(G, \g) of size < 7, the map constructed by Procedure Construct-graph rep-
resents the minimum base (H, \g) of (G, \g).

Once the minimum base of (G, Ag) has been constructed, it is quite straightfor-
ward to solve k-Grouping as shown in Algorithm 1. Notice that the algorithm
always succeeds if ¢ divides k which is the necessary condition for solving k-
Grouping. Hence we have the following results:

Theorem 1. Under the knowledge [ES], k-Grouping is solvable (for any k that
divides n) in the network (G, \) if and only if q divides k, where q is the sym-
metricity of (G, A).

Corollary 1. When the size of the network is known, Matching is solvable in

(G, \) if and only if the symmetricity of (G, \) is either 1 or 2.

4 Solving the Pairing Problem

4.1 Sufficiency Conditions and Solutions

Lemma 3. If k-Grouping is solvable in (G, \) for k = |G|/2, then Pairing is
also solvable in (G, \).
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Combining the results of Lemma 1 and Lemma 3, we know that Pairing is
solvable in (G, \) if the symmetricity ¢ divides n/2. However, since ¢ always
divides n, the above condition is equivalent to the condition that 2 divides n/q
(i.e. the size of the minimum base). This gives us the following corollary:

Corollary 2. Pairing is solvable in (G, \) if it is solvable in (H, Ag), the min-
imum base of the network (or equivalently, if H has even size).

In the minimum base (H, Ay ), each vertex is uniquely labelled. Thus, Pairing
is solvable in (H,\g) if and only if H has even number of vertices. From a
solution for Pairing in (H, Ay ), we can easily construct a corresponding solution
for (G, Ag). (We only need to ensure that if a node u is paired to v, using the
label sequence «, then v should be paired to u using the inverse sequence of
a.) In case H has an odd number of vertices, then some node in G should be
paired with another node having the same label (which is possible if there is a
symmetric arc joining them).

Theorem 2. Under the knowledge [UB], Pairing is solvable for (G, Ag) having
minimum base (H, \g) and symmetricity q, if any one of the following holds:

(i) (H,Am) has an even number of vertices (i.e. n/q is even) or,
(ii) (H,\g) contains a symmetric self-loop (i.e. an arc a, s.t. Sym(a) = a).

Let us now consider the case when the exact value of the network size is known.

Theorem 3. Under the knowledge [ES|, Pairing is solvable for the network
(G, A\¢) having minimum base (H, \g) and symmetricity q, if one of the fol-
lowing holds:
(i) (H,\g) has an even number of vertices (i.e. n/q is even),
(i) there exists a symmetric self-loop in (H,Ag) (i.e., a self-loop whose label
has the form (p,p)),
(iii) the minimum base has 2|V (H)| arcs , i.e., |A(H)| =2n/q,
(iv) q =4 and there exists a self-loop in (H, \p),
(v) q =2 and there exists two distinct arcs a,a’ € A(H) such that s(a) = s(a’)
and t(a) = t(a’).

Proof. Suppose that the size of (H,\y) is odd and that it does not contain
any symmetric self-loop (otherwise, from Lemma 2, we already know that it is
possible to solve Pairing). Since (H, Ay ) does not contain any symmetric self-
loop, for each arc a € A(H), there exists a’ # a such that Sym(a) = a’.
Suppose that (H, Ay) has 2|V(H)| arcs. Then there exists exactly two simple
cycles C,C" in (H, Apr) where C’ is the mirror of C. The preimage of a cycle in
(H, Mg ) is a set of disjoint cycles in (G, Ag). If the preimage of C contains at least
two cycles, then (G, A\g) would be disconnected. Consequently, the preimage of
C must be a single cycle of length |C|.q in (G, Ag). Moreover there does not exist
any other cycle in (G, A\g) different from the preimage of C' or C’. Since |V (H)|
is odd, and |V(G)| = ¢q|V (H)] is even, we know that ¢ is even. Let us fix a vertex
v = s(ap) belonging to the cycle C. Then for each vertex z € ¢! (v), we use the
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label sequence a(x) = A(C)%/? to pair it with another vertex y € o ~'(v). Now,
the remaining vertices in G can be easily paired-up.

Suppose there exists a (non-symmetric) self-loop in (H, Ag) and ¢ = 4. Let a
be such a self-loop and let v = s(a) = t(a). As explained above, the preimage of a
is a set of cycles and the sum of the lengths of these cycles must be 4. Since (G, A)
is a network that contains neither self-loop, nor multiple arcs, the preimage of
a cannot contain cycles of length 1 or 2, and then, the preimage of a is a set
of cycles of length 4. Consequently, we can associate to each vertex x € o ~1(v)
the label a(x) = A(aa). If T, ;) (z) = z, then it means that there exists a cycle
of length 2 in (G, Ag) which is impossible. Let us now consider y = Ty 4)(x).
Since p(y) = v, a(y) = a(z) and consequently Ty, (y) = Tu(a)(Ta@m)(z)) =
To(2)2 (%) = T'h(aaaa) (¥) = z, since the preimage of a consists of cycles of length
4. Consequently all the vertices in ¢ ~!(v) will be paired in (G, \g). For all the
other vertices we proceed as before.

Suppose that ¢ = 2 and that there exists two arcs a,a’ € A(H) such that
s(a) = s(a’) and t(a) = t(a’). Let v = s(a) and consider the cycle (a, Sym(a’))
of length 2. The preimage of this cycle in G, \g is a set of cycles and the
sum of the lengths of these cycles must be 4. As before, it implies that the
preimage of this cycle consists of a set of cycles of length 4. Then, one can
associate to each vertex z € ¢~ !(v) the label a(x) = A(aSym(a’)). Consider
a vertex & € ¢ 1(v), if Th(y)(z) = @, then it means that there exists a cycle
of length 2 in (G, Ag) which is impossible. Let us now consider y = Ty 4)(x).
Since ¢(y) = v, a(y) = a(z) and consequently Ty(,)(y) = To(a)(Ta@) (®)) =
To@)2(®) = Ta(asym(a’)aSym(ar))(x) = o and consequently all the vertices in
@ (v) will be paired in (G,\g). For all the other vertices we proceed as
before. O

Theorem 4. Under the knowledge [MP], Pairing can be solved for (G, Ag) whose
minimum base is (H, \g) if one of the following holds:
(i) (H,\g) has an even number of vertices (i.e. n/q is even),
(ii) there exists a vertex v € V(H) and a closed path P(v,v) in (H,Ag) such
that for any vertex u € o= (v), To(u) # u and To(Tu(u)) = Th2(u) = u
where a = A(P) is the sequence of labels corresponding to the path P(v,v).

The above result clearly indicates how to solve the Pairing problem, when pro-
vided with a map of the graph. Observe that the condition (i¢) in Theorem 2
and the conditions (%), (#i%), (iv), (v) in Theorem 3 are particular cases of the
condition (7¢) in Theorem 4.

4.2 Necessary Conditions

We now show that most of the sufficient conditions presented in Section 4.1 are
in fact, also necessary. First we state a general result about solving Pairing in
networks whose minimum base has odd number of vertices.

Lemma 4. If (G, \¢g) is a network whose minimum base (H, Ag) has an odd
number of vertices, then for any solution to the Pairing problem in (G, Ag), by
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some algorithm A, there exists v € V(H) such that each node u € ¢~ 1(v) is
paired with another node u' € p~1(v).

Theorem 5. Under the knowledge [MP|, Pairing cannot be solved for any net-
work (G, Ag) whose minimum base (H, \g) has the following properties:
(i) (H,\g) has an odd number of vertices, and
(i1) there does not exist a vertexv € V(H) and a closed path P(v,v) in (H,
such that for every verter u € o '(v), Ta(u) # u and To(Ta(u)
T,2(u) = u where a = A(P) is the sequence of labels of the arcs in P(v,

Am)
) =
v)-
Notice that there are indeed networks (of even size) which satisfy the conditions

of Theorem 5, and thus, Pairing is unsolvable in such networks even when a map
of the network is available. One such example is shown in Figure 1.

Fig. 1. A simple network, G and (its minimum base H) where Pairing is not solvable.
Here each edge between two nodes represents a pair of arcs, one in each direction (For
clarity, the edge labels have been removed from G).

Theorem 6. Under the knowledge [ES], Pairing is not solvable for any network
(G, A\¢) having minimum base (H, Ag) and symmetricity q, if all of the following
hold:
(i) (H,\g) has an odd number of vertices,
(ii) the minimum base has strictly more than 2|V (H)| arcs , i.e., |A(H)| >
2n/q,
(iii) there does not exist any self-loop in (H, i), and
(iv) there does not exist two distinct arcs a,a’ € A(H) such that s(a) = s(a’)
and t(a) = t(a’).

The above result shows that there is a gap between the necessary and sufficient
conditions for the case when the exact network size is known. In fact, if the
minimum base of the network contains asymmetric self-loop and parallel arcs,
then we do not know the exact conditions necessary for solving the Pairing
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problem. In these cases, it may be possible to characterize the networks in terms
of the number of self-loops or parallel arcs in their minimum base, and thus
minimize this gap between the necessary and sufficient conditions.

Theorem 7. Under the knowledge [UB], Pairing is not solvable in any network
(G, \g) having minimum base (H, Ag), if the following holds:
(i) (H,\g) has an odd number of vertices, and
(i) there does not exist any symmetric self-loop in (H, A\g) (i.e. an arc a such
that Sym(a)=a).

Proof. Let (H, Ag) be any symmetric digraph with odd number of vertices and
having no symmetric self-loops. If there is an algorithm A that solves Pair-
ing in (G, Ag) under the knowledge [UB] then this algorithm should work for
every network (G’, A\;;) which covers (H, A\g) (the algorithm cannot differenti-
ate between two networks with a common minimum base, when only an upper
bound on the network size is known). We shall now show that the algorithm
A would fail for at least one network (G, Ag) that covers (H, Agr). First note
that |[A(H)| > 2 |[V(H)| because otherwise either G is disconnected or G is an
odd-sized tree (where Pairing is not possible anyway).

If |[A(H)| > 2 |V(H)|, then there exists an arc a € A(H) such that H' =
H\ {a,Sym(a)} is strongly connected. (a could be either a self-loop or one of
the pair of parallel arcs or, one of the arcs in a cycle). Let u = s(a), v = t(a),
and @’ = Sym(a) # a. Consider the connected digraph H’ that is obtained from
H by removing the arcs a and a’. Suppose (G’, ;) be a network of odd size,
whose minimum base is (H’, Ag). Notice that it is always possible to construct
such a G’, if H' has no symmetric self-loops.

We now construct two networks (G1, Ag1) and (Ga, Ag2) defined as follows. To
construct (G1, Ag1), we take 4 distinct copies (G, Ap), - - ., (G5, Aj) of (G', A\).
We will denote by w1, uia, ... (resp. v;1,v;2,...) the vertices that corresponds to
u (resp. v) in (G}, \;). We then add the arc a;; with the same label as a (and
the symmetric arc agj with the same label as a’) between w;; and vy, r =i+ 1
mod 4 for all 4,5. To construct (Gag, Ag2), we do the same but we consider
8 distinct copies of (G’, \;;). Clearly, the two graphs we have constructed are
symmetric coverings of (H, Ag). Thus, due to Lemma 4, there exists a vertex
v € V(H), such that all nodes in ¢! (v) are paired among themselves, both in
network (Gi, Ag1) and network (Ga, Ag2).

Due to property 2, there exists an execution of A on (G1, Ag1) (respectively
(G2, AG2)) where the each node in the pre-image of v computes the same label
sequence « as computed by v in an execution of A on (H, Ay ). Consider the path
P(v,v) in (H, Apr), which corresponds to the sequence «. Let |P|, (resp. |Plar)
be the number of times the arc a (resp, a’) appears in P and let n, = |P|,—|P|a’-

CLAIM (1): ng is of the form 4r; + 2 for some integer r;.
CLAIM (2): ng is of the form 8ry + 4 for some integer ro.

To see why the first claim is true, consider the subgraph G of G1. There are
an odd number of vertices in G}, which belong to the preimage of v. Thus, at
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least one of these nodes must be paired with a node in some other subgraph
G%,j # i of Gi. ( Notice that whenever we traverse an arc belonging to the
pre-image of a, we move from one subgraph G to the next G ; 4 4.) Thus,
in this case, j =7+ mn, mod 4 and also i = j +n, mod 4. So, n, must be of
the form 4r; + 2 for some integer r1. This proves the first claim. For the second
claim, we consider the graph (Ga, Ag2) where, using a similar argument we can

show that n, must be of the form 8r; + 4 for some integer 2.
Note that the two claims above cannot be true simultaneously. This implies
that the algorithm A must fail for one of the networks (G, Ag1) or (Ga, Ag2).
(]

Due to the earlier results and Theorem 7, we have a complete characterization
of those networks where Pairing is solvable when provided with an upper bound
on the network size.

5 Conclusions and Open Problems

In this paper, we studied the problem of k-Grouping which is a generalization
of the node-enumeration or the election problem, in anonymous networks. In
particular we also studied the problem of Matching or Pairing the nodes of the
network. For the Pairing problem, the solvability depends on the amount of prior
knowledge available. When an upper bound on the network size is known, it is
possible to compute the minimum base for the network. We characterized the
solvable instances of the Pairing problem in terms of the minimum base of the
network. When the exact network size is known, the network can be represented
by its minimum base and its symmetricity. In this case, the characterization pre-
sented in this paper is not complete and there is a gap between the necessary and
sufficient conditions, which needs to be investigated. Another possible extension
of this work would be to study the generalization of the Pairing(or 2-Relating)
problem to other values of k (say for k = 3,4,5,...) or for arbitrary values of k.
It would also be interesting to consider the problem of approximate k-groupings
in the case when k does not divide n.
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Abstract. This paper provides a proof of correctness for the celebrated
Minimum Spanning Tree protocol of Gallager, Humblet and Spira
[GHSS83]. Both the protocol and the quest for a natural correctness proof
have had considerable impact on the literature concerning network pro-
tocols and verification. We present an invariance proof that is based on a
new intermediate-level abstraction of the protocol. A central role of the
intermediate-level configurations in the proof is to facilitate the state-
ment of invariants and other properties of the executions of GHS at the
low level. This provides a powerful tool for both the statement and the
proof of properties of the algorithm. The result is the first proof that
follows the spirit of the informal arguments made in the original paper.

1 Introduction

In a seminal paper, Gallager, Humblet and Spira presented a communication-
efficient protocol for computing the minimum spanning tree (MST) of an asyn-
chronous network in which communication links have unique weights [GHS83].
The protocol is very elegant and intuitive. It is also special for employing a very
high degree of asynchrony among the nodes of the network, without forcing its
execution to proceed in a well-formed sequence of phases of computation. The
importance of the GHS protocol has made the task of proving its correctness
a natural challenge for verification and formal methods. The arguments given
in [GHS83] for why the protocol should be correct, while informal, are convine-
ing. Formalizing them, however, has proven to be extremely elusive. Two PhD
theses have offered extensive refinement proofs of its correctness [W88, S01].
Both of these proofs are quite long (circa 170-180 pages). Many other attempts
to prove the correctness of the GHS algorithm have been attempted. A few of
them resulted in proofs of modified versions of the algorithm, which solve the
MST problem with similar complexity [CG88, Hes99, JZ92, SAR&7]. In granting
the Edsger W. Dijkstra prize! in distributed computing: 2004 for [GHS83], the
committee pointed out that “Finding a proof [of correctness for the GHS algo-
rithm] that copes with the intricacies of this algorithm in a natural way is still very

! See www.podc.org/dijkstra,/2004.html
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much an open problem in protocol verification and formal methods.” Our goal in
this paper is to present such a proof. The full version of our proof is roughly
half the size of the previous proofs, but presenting it in detail is still beyond the
scope of this abstract. We will therefore attempt to describe the overall structure
of the proof, the novel aspects of the proof technique used, and to provide some
insights into what makes proving this particular protocol elusive.

The GHS algorithm grows a minimum-spanning forest by adding MST edges
one by one, until the forest turns into the MST.? In the spirit of Bortivka’s
centralized MST algorithm [Bor26], each fragment in the forest computes its
minimum-weight outgoing edge (mwe), and adds it to the forest. In order to
control the communication costs, the GHS algorithm enables only some MST
edges to be added to the forest at any given stage, while blocking others. As a
result, one well-known issue underlying the correctness of GHS is the fact that
progress in the search for an mwe in one fragment depends on what happens
in neighboring fragments. Indeed, only progress of searches in fragments of the
lowest existing level is guaranteed, and even this is true only provided that no
sleeping node is awakened. Carefully capturing this interdependence is subtle.
The GHS algorithm makes use of a number of optimizations (such as not sending
a Reject message when it can be inferred by the recipient), adding a further
layer of complexity to any proof of correctness. We believe that a major barrier
to taming the correctness proof of the GHS algorithm comes from a lesser-known
subtlety in the algorithm: While the GHS algorithm does not employ all of the
nodes of a fragment in the search for the fragment’s mwe, it is not possible
in general to use a node’s local information (local state and local history) in
order to determine its role in the current search. More specifically, the following
three states of a node v in the network with respect to the search in its current
fragment are undistinguishable:

(a) v has participated in the current search and completed its role in the search;

(b) v will participate in the current search, but has not actively started its
participation; and

(¢) v will not participate in the current search.

This matters in reasoning about the GHS algorithm because nodes in each of
the three states satisfy fundamentally different invariance properties.

This paper offers a new approach and new invariance proof for the GHS
algorithm. Its main contributions are:

— The proof is natural in that
e Correctness is proven for the original algorithm within the exact model
and assumptions of [GHS83];
e The proof directly formalizes the informal argument for correctness sket-
ched in the original paper [GHS83], and its development provides insight
into what makes proving the correctness of GHS difficult; and

2 We assume that the reader is familiar with the GHS algorithm, as presented in
[GHSS83].
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e The full proof is roughly half the length of the previous proofs (under
100 pages long, most of which is a simple case analysis to verify that all
invariants hold under all possible transitions). Given that the GHS algo-
rithm contains seven possible message types, nine variables per process
and over fifty possible branches of control when treating a message, any
rigorous manual proof would necessarily involve a few tens of invariants,
whose verification would require tens of pages of (boring) detail.

— We introduce a new intermediate-level description of the GHS algorithm,
called the rainbow construction. It is obtained by abstracting away all com-
munication events and most of the state information in the GHS execution,
and maintains just enough detail to properly account for the state of nodes
with respect to the search in their fragments. The rainbow construction re-
fines the standard high-level abstraction of the GHS algorithm at the level of
a forest of fragments, and its configuration (called a painted forest), is much
more compact and intuitive than that of the detailed GHS algorithm. The
rainbow construction is of independent interest, as it may be a useful level of
abstraction for simplifying other proofs of GHS, such as those of [W88, S01].

— We use configurations of the intermediate-level rainbow construction as aux-
iliary global variables associated with configurations of the detailed GHS
algorithm. Safety and Liveness properties of GHS are then stated based on
the values and terminology of the intermediate configuration.

— By breaking the GHS algorithm into three levels of abstraction and reasoning
about the algorithm at each of the levels, this proof provides insight into the
issues and sources of difficulty involved in establishing the correctness of the
GHS algorithm.

This paper is structured as follows. Section 2 describes a high-level construc-
tion in the style of [Bor26] that is typically used to describe the GHS protocol at
the level of fragments of a minimum-spanning forest. Section 3 refines the top-
level view to the rainbow construction, which accounts for essential aspects of
the GHS algorithm, while abstracting away communicated messages and details
of variable’s values. Essential structural properties of the executions of GHS
are established at the level of the rainbow construction. Section 4 overviews
our correctness proof for the GHS algorithm. It describes how the intermediate-
level configurations are used for expressing invariants of the GHS algorithm, and
sketches the liveness proof that ties all of the pieces together, formalizing the
intuitive argument in the original paper [GHS83].

2 The Top-Level View of GHS

Given is an asynchronous network modelled as a weighted, connected undirected
graph G = (V,E, ), in which the edge weights are denoted by e for each edge
e € E. The edge weights are assumed to be pairwise distinct, and hence G has a
unique minimum-spanning tree (see, e.g., [Bol79, Har69]), which we shall denote
simply by MST. Every node of V stands for a processor, and edges stand for
bidirectional FIFO communication links. Processors are aware of the ports and
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weights of the edges they are adjacent on. The problem is to design an efficient
distributed algorithm that will result in every node marking each of its local
ports (standing for incident edges) as either Branch if it is an MST edge, or as
Rejected if it is not.

The GHS algorithm can be viewed as an attempt to distribute Boruvka’s
centralized MST algorithm [Bor26]. Starting from singleton nodes, it “grows”
fragments by adding MST edges one by one. Every edge added to the forest
combines a pair of fragments to create a larger fragment. We will denote the
number |V] of processors by n throughout the paper. Once n — 1 edges have
been added, there is a single fragment left, and it is the MST. By assigning a
level to each fragment, and taking care that fragments combine only in specific
ways, the GHS algorithm ensures that a node will participate in at most logn
searches for the minimum weight edge of a fragment. As a result, the protocol
uses O(|V|log|V|+ |E|) short messages.

2.1 Minimum Spanning Forests

The GHS algorithm maintains a forest of fragments, each of which corresponds
to a triple F' = (L, ¢, G), where L—the level of F—is a natural number, G =
(V, E)—the graph of F—is a subtree of the MST, and either

— F=(0,{},{v},{})), where v € V (so F is a singleton node and its core is
the empty set), or

— L > 0and ¢ = {v,w} € E. In this case, we call ¢ = {v,w} the core edge
of F', with v and w being its core nodes.

A minimal spanning forest (msf) of G is a set F = {F1,..., F}} of fragments
whose node sets define a partition of V. Thus, every node of G appears in exactly
one fragment of F. We use F, = (L, ¢;, G,) to denote the fragment of a node v
and its components.

The edges of the fragments F' € F are called forest edges (of F). If {u,v} is
a forest edge, then the directed edge (u,v) is called inbound if (i) {u,v} # ¢,
and (ii) v is closer to ¢, than u is. If (u,v) is inbound, we consider (v,u) to be
outbound. These notions extend to paths. A directed path of fragment edges is
called inbound (resp., outbound) if all the edges in the path are inbound (resp.,
outbound). We denote by T, the graph consisting of all outbound paths that
start at v. Thus, T, is a subtree of F), rooted at v. With each node in a non-
singleton fragment we associate a parent node as follows. For nodes v and w on
a core edge (i.e., if ¢, = {v,w}), we say that v is the parent of w (and vice-
versa), and write parent(w) = v. Otherwise, we define parent(w) = v to hold
if (w,v) is inbound. As a partial converse, we define the set of children of v by
child(v) = {w : (v,w) is outbound}. Notice that nodes of a core edge are not
children of one another.

An edge e = {v,w} € E is an external edge (w.r.t. F) if F, # F,. Let V
be a subset of nodes of V. We define mwe(V,F) to be the edge of minimal
weight among the external edges in F that have at least one node in V. The
parameter F is omitted whenever the forest is clear from context, so e.g., we
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write mwe(V) instead of mwe(V, F). Again for ease of exposition, we shall abuse
notation slightly and allow, for any structure X that contains a set of nodes
V(X), to write mwe(X) instead of mwe(V (X)). We denote the weight of mwe(V")
by mwe(V).3 If there is no external edge in F with at least one node in V, then
mwe(V') does not exist, and we define mwe(V') = oo. Finally, if mwe(V) = {v, w}
where v € V, then we denote by dmwe(V') the directed edge (v, w). This is the
result of directing mwe(V) away from V.

2.2 The Merge and Absorb (M&A) Construction

At the level of fragments and forests, the GHS algorithm starts out with an
initial msf F, consisting of all singleton fragments. Adding an MST edge to the
forest combines two fragments into one. This can occur in two manners: One is
a merge, in which two fragments of equal level L combine, and form a fragment
of level L + 1 whose core is the MST edge that was just added. The second
is via an absord, in which a fragment of lower level is added into one with a
higher level. The resulting fragment maintains the level and core of the latter.
The Merge and Absorb operations combining two fragments F = (L, ¢, G) and
F' = (I',d,G") are formally defined in Table 1. Given graphs G; = (V1, E1)
and Go = (Va, E3) we use comb(G1, e, G2) in the table to denote the graph G =
(Vi UVa), (E1 U EyU{e})). The Guard field in the table describes the conditions
under which an operation may be performed, and the Action field describes the
transition caused by this operation.

Table 1. The M&A Construction

Operation Guard Condition Action
Merge(F, F') L=1r, F— FU{F"}\{F, F'},
mwe(F) = mwe(F') =e where F” = (L +1,e,comb(G,e, G"))
Absorb(F, F’) L<L, F— FU{F"}\{F, F'},
mwe(E) NV’ # 0 where F" = (L',c/,comb(G, mwe(F),G"))

We view Table 1 as defining a nondeterministic (sequential) construction that
starts with F, and where at each step one operation whose guard condition is
enabled is performed, for as long as enabled operations exist. Obviously, this
construction cannot perform more than n — 1 operations, since at each step one
new MST edge is added to the forest.

We write F — F if 7' can be obtained from F by performing a single Merge
or Absorb operation as described above. To capture reachability in the M&A
construction, we define ~» to be the reflexive transitive closure of —. Thus,

3 Note that edge-weights are not specified explicitly in subgraphs and fragments, since
they are always inherited from G.
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F ~» F' if F' can be obtained by starting from F and performing a sequence
of (zero or more) Merge and Absorb operations. We will only be interested in
forests F that are reachable from the initial forest F,, so that F, ~ F.

A number of properties that are relevant in the analysis of the GHS algorithm
can be shown already at the level of the M&A construction. Such, for example, is
the well-known fact that fragment levels can never exceed logn. Other properties
are useful tools for bounding the dynamic behavior of the GHS algorithm. We
think of the GHS algorithm in terms of broadcast and convergecast waves gen-
erated from and returning to the core of a fragment. In the M&A construction,
the inbound/outbound orientation of a directed forest edge (v, w) can change as
a result of a Merge or Absorb operation. It is not immediate that these changes
do not interfere with these communication waves. The following claim shows
essentially that such changes occur only on the path between a core edge and
the fragment’s mwe:

Lemma 2.1. Let (v,w) be an outbound edge in the F, and assume that F — F'.
If (v,w) is inbound in F', then mwe(T,, F) = mwe(F,, F).

During the reporting (convergecast) phase of a search, nodes send information
about the mwe of their subtree towards the core. A node’s subtree, however,
might change before this message even arrives at its parent. The following prop-
erty is used to show that the reported information remains valid. We say that
a directed external edge (v,w) is ascending if L, < L, and (v,w) is strictly
ascending if L, < L,,. We can show

Lemma 2.2. If dmwe(T,) is ascending, then mwe(T,) remains unchanged as
long as the identity of ¢, is unchanged.

In the convergecast phase of the search for an mwe(F,), a node v sends the
value of mwe(T},) to its ancestors only if dmwe(T},) is ascending.* Lemma 2.2
establishes that this information will remain valid throughout the search for
mwe(F,).

3 The Rainbow Construction

A central tool in our analysis of the GHS algorithm is a novel intermediate-level
abstraction called the rainbow construction. The M&A construction abstracts
away the process of searching for an mwe(F). The rainbow construction tries
to mimic essential aspects of the search process in the GHS algorithm, while
completely abstracting away details of communication between processes and
practically all information about local variables. The rainbow construction op-
erates on an enriched ghs forest. In addition to the partition into fragments, it
assigns color states to nodes in order to keep track of their role in the current
fragment’s search. In the spirit of the GHS algorithm, a non-singleton fragment
is identified with its core edge; in particular, we think of searches as being per-
formed on behalf of a given core edge.

4 In fact, an outgoing edge node is found out to be external only if it is ascending.
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Define the set Colors = {slp,wkn, W, G, R, B} of possible colors for nodes,
whose elements stand for Asleep, Awake, White, Green, Red and Blue, re-
spectively. The colors slp and wkn will be used to describe the state of a node
in a singleton fragment. In non-singleton fragments, a node is White if it will
participate in the current search, but hasn’t actively joined the search yet. A
node turns Green when it starts to actively participate in the search, and then
becomes Red once it has completed its role in the search. Finally, a Blue node is
excluded from participating in the current search. Roughly speaking, since the
search is activated via an outbound (broadcast) wave from the core edge, and
completes via in inbound (convergecast) wave, the search completes once both
core nodes are Red.

Formally, a configuration of the rainbow construction is represented by a
painted forest, which is a pair P = (F,col) consisting of a ghs forest F and an
assignment col : V. — Colors of colors to the nodes. With respect to a painted
forest P, a directed edge (v,w) is pending, denoted by Pend(v,w), if either (i)
L, =0 (so v is a singleton), col(v) = wkn, and dmwe(v) = (v, w), or (ii) L, > 0,
both nodes of the core edge ¢, are Red, and dmwe(F},) = (v,w). Pending edges
play a role in our definition of the rainbow construction. Intuitively, a pending
edge is an MST edge for which the search has completed; the edge will, in due
time, be added to the forest.

Table 2. The Rainbow Construction

Op Guard Condition Action description
Mv,w] Pend(w,v) and Pend(v, w) Merge( vy Fu) merge on edge {v,w}
col(Vpy UV,) « W
Afw,v] Pend(w,v) Absorb( Fw, v) absorb on edge (w,v)

col(Vay) — col(v) € {R, B}
W otherwise.

G[v] col(v) = W and either col(v) — G search at v begins
(i) v € ¢y or (Initiate(..Find) received)
(it) v € child(w), col(w) = G

Rv] col(v) =G col(v) — R search at v ends
mwe(v) is ascending (Report sent by v)

Yu € child(v) : col(u) = R

Walv] col(v) =slp col(v) — wkn wakeup

The rainbow construction, depicted in Table 2, starts out with the initial
painted forest P, = (F,,col,), where F, is the initial msf from the top level
construction, and col,(v) = slp for all v € V. The construction consists of five
operations that may be applied to a painted forest. As in the M&A construction,
each operation is specified by a guard condition, and an action on the painted
forest that is enabled (allowed) if the guard is true. Two of the operations add
an edge to the forest and perform Merge and the Absorb on fragments, while
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the other three change the color of nodes to track progress in the search at the
node level. In the latter, a node v turns Green by G[v], which is allowed only
if v is White and is either a core node or the child of a Green node. It turns
Red via R[v], which may happen only if it is Green, all of its children are Red,
and its local mwe is ascending. More trivially, Wa[v] corresponds to a singleton
node waking up. The Merge and Absorb operations in the rainbow construction
extend those of the M& A construction by keeping track of the role of nodes in the
fragments whose core is modified by the operation. (In the Table 2, we denote by
col(V') « X the simultaneous assignment of the color X to all nodes of V'.) A
Merge colors all nodes in the resulting fragment White, while the Absorb A [w, v]
comes in two flavors: It paints the nodes of the absorbed fragment F,, White
if they are intended to participate in the search in the combined fragment, and
paints them Blue if not. In the spirit of the M&A construction, we interpret the
rainbow construction as performing at each step one nondeterministically chosen
operation whose guard condition is enabled, for as long as enabled operations
exist.

We write P — P’ if P’ can be obtained from P by performing a single step of
the rainbow construction, and define ~» on painted forests as the reflexive and
transitive closure of —. As with ghs forests, we will be concerned exclusively
with painted forests that are reachable from the initial forest P,.

3.1 Properties of the Rainbow Construction

In terms of the colors provided by the rainbow construction, the first phase of a
“search” for the mwe in a fragment consists of an outbound moving front from
the core edge that turns White nodes to Green. This is followed by an inbound
front moving from the outermost formerly White nodes to the core, which turns
Green nodes to Red. We think of the search as having completed once both core
nodes are Red. The following lemma characterizes the patterns of colors that
can appear on outgoing paths starting from the core:

Lemma 3.1. Let p = wug,u1,...,ur be an outbound path starting at a core
node ug. The sequence {(col(ug),...,col(ur)) of colors along p forms a string
in the regular language G*W* + G*R*RB*.

A major difficulty in any attempt to rigorously reason about the GHS algorithm
is caused by the fact that the sets of nodes and edges in a fragment change while
the search within the fragment is being performed. An induction on the number
of steps performed in the rainbow construction can be used to show:

Lemma 3.2. Let col(v) € {W,G,R}. Then ¢, is unchanged as long as col(v)
does not turn from R to non-R.

The combination of Lemmas 3.1 and 3.2 guarantees that the outbound paths
from the fargment’s core remain stable during the broadcast and convergecast
activities involved in the search for a fragment’s mwe. The analogous result sup-
porting the success of broadcast to Blue (non-searching) nodes is slightly more
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subtle, and it depends on a refinement of Lemma 2.1 from the M&A construc-
tion, which states that an edge can change orientation only if both its nodes are
Red:

Lemma 3.3. Assume that P — P’ and that (v,w) is not inbound in P but is
inbound in P’. Then col(v,P) = col(w, P) = R.

Based on Lemma 3.3 and Lemma 3.1, the following lemma will allow us to show
that paths near the leaves are stable for long enough to ensure the success of
broadcast to non-searching (Blue) nodes in the GHS algorithm:

Lemma 3.4. Let col(w) = B and assume that p is a path with color pattern
RB*B ending in node w. Then p remains outbound as long as col(w) # G.

While reasoning about paths in the searching part of the fragment, as done in
Lemma 3.2, does not appear to be very complex, the ability to express and
prove properties such as Lemma 3.4, concerning the distant “dark side” of the
fragment, is another indication of the power of the rainbow construction. Both
lemmas are instrumental in establishing liveness of the GHS algorithm.

Lemma 3.1 is used both for proving other structural properties of painted
forests and the rainbow construction, and to considerably reduce the case analy-
sis involved in proving invariants of the GHS algorithm. We now present two
useful claims whose proofs make essential use of Lemma 3.1.

The Absorb operation Afw,v] in the rainbow construction has two possible
outcomes, that differ in the colors they assign to nodes of the absorbed frag-
ment. Specifically, the nodes of an absorbed fragment F, are colored Blue if
the connecting node v at the absorbing fragment is either Red or Blue; other-
wise, the nodes of F,, are colored White. Notice that a node’s role in the search
process of its current fragment, as determined by the distinction between Blue
(non-participant) and White (future participant) and Red (past participant) de-
pends on an event that occurs at the connecting edge in the absorb operation,
which may be very distant from the node. In particular, it is independent of
the node’s actions or history. The distinction between White and Blue nodes is
worthwhile, because nodes of these colors satisfy different invariants, as we shall
illustrate in the next section. Intuitively, the GHS algorithm ignores the mwe’s
of Blue nodes during the search for a fragment’s mwe. Using Lemma 2.1 and 2.2
from the top-level M&A construction and Lemma 3.1, we can show that this is
justified by

Lemma 3.5. If col(u) = R then mwe(T,) depends only on the non-Blue nodes
of T.

As a result, if u has reported a value for mwe(T,) in the convergecast phase,
and a fragment is absorbed at one of the nodes in u’s subtree, then the reported
value remains correct, because the absorbed fragment consists exclusively of Blue
nodes. By Lemma 3.5, we can now show:

Lemma 3.6. If Pend(v,w) then (v, w) is ascending.
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The proof is roughly as follows. By definition of Pend(v, w), both nodes of ¢, are
Red. Lemma 3.5 implies that col(v) # B, and so by Lemma 3.1 we obtain that
col(v) = R. The guard for R[v] in the rainbow construction ensures that mwe(v)
is ascending when v turns Red, and by Lemmas 2.2 and 3.2 it remains ascend-
ing as long as col(v) = R. Lemma 3.6 implies that when the guard conditions
for M[v, w] and A[v, w] are satisfied in the rainbow construction, the guards of
their counterpart Merge and Absorb operations in the M&A construction hold
as well.

4 Proving Correctness of the GHS Algorithm

The top-level and the rainbow constructions play two roles in our proof. First
of all, they allow us to reason about certain aspects of the algorithm at a higher
level of abstraction, avoiding many details of the low level. The second, less
common, role is to provide a compact description of the current state of the
algorithm at a given time. This provides us with an invaluable tool for reasoning
about properties of the algorithm at the detailed low level. Various properties
that are very difficult to express solely at the level of the GHS algorithm become
expressible in a reasonably compact way. In this section we present a rough
overview of the proof, and illustrate the role that the higher-level constructions
play in the proof.

The correctness proof of the GHS algorithm is performed by reasoning about
executions of the GHS program. For the model of computation we adopt the
exact model® described in [GHS83]. A run of the (standard) GHS algorithm is a
sequence Cy, a1, Cy, aq, Cy, ..., where Cj is an initial global state, and the «; are
scheduler actions. Processor activations are interleaved and each response to a
scheduler action executes atomically to completion. Formally, the MST problem
is specified as follows:

Definition 4.1. MST Problem Specification: For every weighted network
G = (V,E, ) with unique weights, if at least one node spontaneously awakens,
the algorithm must eventually reach a configuration in which:

ST1 Every node in V. marks each of its ports as either Branch (an MST edge)
or Rejected (a non-MST edge); and
ST2 All channels are empty.

In order to use the rainbow construction as a description of the GHS executions,
we augment the GHS algorithm by adding, for each of the five rainbow construc-
tion operations, a single line at an appropriately chosen location in the text of
the GHS algorithm, at which the rainbow operation is performed. An execution
of the augmented algorithm constructs an execution of the rainbow construction

5 We make one additional assumption regarding an initial value for one of the local
variables, since without this extra assumption the GHS algorithm is incorrect, as
discovered by Chou [C88].
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in tandem with the execution of the standard GHS algorithm. Starting from an
extended initial configuration of the form Cy = (Cp,P,), the augmented algo-
rithm maintains an extended configuration of the form C = (C,P), where C' is a
global state of the original GHS algorithm, and P is a painted forest. As we prove
in the full paper, whenever a rainbow operation is reached in an execution of the
augmented algorithm, its guard is satisfied. As a result, the auxiliary painted
forest is able to usefully track the standard configuration. Since the original GHS
algorithm has no access to the painted forest component of the configuration,
and neither it nor the rainbow construction modify the other’s state, that there
is an isomorphism between the set of executions of the GHS algorithm and that
of the augmented algorithm. of the configuration.

Reasoning about GHS executions can thus be performed using the extended
configuration of the augmented GHS program. The proof has two main parts.
The first establishes a list of invariant (safety) properties that hold throughout
the execution. The second part consists of a proof of liveness, guaranteeing that
the algorithm will achieve its goal: compute the MST and terminate.

4.1 Invariants

Since a painted forest is associated with every configuration of GHS, every node
has a well-defined and easily accessible fragment and color in each configuration.
The proof makes essential use of the painted forest for stating invariants and
for proving liveness properties. We shall now illustrate this use on one of the
invariants of the GHS algorithm. Each node (processor) v maintains a number
of local variables in the GHS algorithm. These include the variables FN,,, LN, and
SN, that stand for v’s local view of its fragment (FN, ), the fragment’s level (LN, ),
and whether v is actively searching (SN, = Find) or not (SN, = Found). We use
a table that states an invariant for the value of each local variable as a function
of the node’s color. To illustrate this, the row stating the invariant properties
for the level variable LN, is copied here in Table 3. In Green and Red nodes v,
the variable LN, must portray the true level L, of v’s current fragment F,,. For a
White node v, which is yet to start its search, the value of LN,, must be strictly
lower than L,, and if v is a (White) core node then necessarily LN, = L, — 1.
For a Blue node v, which does not participate in the search on behalf of c,,
the invariant for LN, is that LN, < L,. Since whether a node is Red, White,
or Blue is independent of the node’s local history, distinctions such as those
presented in Table 3 are at best very cumbersome to express without access
to the terminology provided by using the painted forest as an auxiliary global
history variable.

Table 3. Invariant properties for the LN, variable
COLOR: slp wkn G R W B

ProPERTY: LN, =7 LN, =0LN, =L, LN, =L, LN, < L, A LN, < L,
(don’t care) vEc, = LN, =L, —1
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Another useful invariant of the GHS algorithm states that the values of the
LN, variables decrease in a weakly monotone fashion along outbound paths from
the core to leaves of a fragment. Formally,

Lemma 4.1. If v € child(w) then (i) LN, < LNy, and (i) LN, = LN, iff
FN, = FNy,.

The claim in Lemma 4.1 is expressed in terms of the forest and is independent of
the colors in the painted forest. Proving that the lemma is an invariant, however,
makes use of colors. The subtlety involved in proving this lemma stems from
the fact that fragments are not static: They change when fragments combine.
Moreover, Merge and Absorb cause some inbound paths to become outbound
paths and vice-versa. To prove the lemma we must demonstrate that the changes
that occur do not invalidate the truth of this invariant. Lemma 3.3 implies that
a forest edge can change orientation in the rainbow construction only if both of
its nodes are Red. By Table 3 we have that LN, = L, holds for Red nodes v. For
a forest edge {v,w} both nodes are in the same fragment, hence in particular
L, = L. It follows that whenever an edge flips orientation, the LN variables at
both ends are equal, and so the monotonicity property stated in Lemma 4.1 is
not foiled.

In addition to the invariants on variable values mentioned above, we present 17
lemmas that state invariant properties of channels and communication. These pro-
vide constraints on what messages and what message sequences can appear in chan-
nels of different types. They are expressed via extensive use of the painted forest
to determine fragment information as well as to distinguish between channel states
based on the colors of the nodes at their endpoints. One of the lemmas, for example,
implies that a Changeroot message can appear only in an outbound channel con-
necting two Red nodes. Other invariants can be used to show that only Changeroot
messages can appear in such a channel. Special treatment is given to the merging
activity at core edges, to the testing performed at Green nodes with a complicating
optimization employed by GHS, and to the patterns of Initiate messages along
outgoing paths. The Initiate (broadcast) messages are the only type of message
of which multiple instances can appear in a single channel.

An extended configuration is called legal if it satisfies all of the stated invari-
ants. The invariant theorem states that every reachable configuration is legal.
Roughly speaking, it is proven via one joint induction argument. The basis es-
tablishes that the invariants are all true in the initial (extended) configuration of
every GHS execution, and the inductive step shows that each single atomic step
of GHS—consisting of one of the Response procedures of the GHS algorithm
that starts out in a legal configuration, yields a legal configuration. The proof
of the inductive step is a long case analysis of limited interest. It is a natural
candidate for a computer-aided proof.

4.2 Liveness

We now sketch the liveness claims for the proof, formalizing the informal argu-
ments given in [GHS83]. A basic low-level claim, which we omit, shows based on
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the model of communication that every message in a channel will be repeatedly
received at the destination unless it is consumed. One of the ingenious aspects
of the GHS algorithm has to do with the fact that many messages are not im-
mediately responded to. Rather, they are returned to the channel to be received
again and considered at a later time. As a result, progress in the algorithm is
not a priori guaranteed. The two scenarios in which such delays may occur are
as follows.

Testing: A Green node u that has not yet discovered the value of mwe(u) sends
a Test(L,, F,,) message, where L, = LN, and F}, = FN,, on its lightest candidate
(port) for an external edge. A node v receiving such a message will reply to it
provided LN, > L. The message will be delayed otherwise.

Connecting: A fragment’s mwe(F;,) edge, which is directed from the fragment’s
node v, is discovered once the Pend(v, w) condition holds. Given the reliability
of communication, we can use the invariants and the rainbow construction to
show by induction on the distance between ¢, and v that:°

Lemma 4.2. Pend(v,w) = <(Connect(Ly) € (v,w)).

Consumption by w of the Connect(L, ) message, that the lemma guarantees will
be in the channel (v, w), is, however, delayed by the GHS algorithm until LN,,
grows enough to satisfy L, < LN, and often even until L, < LN,,.

To establish that progress takes place in spite of this inhibiting behavior of
GHS, perhaps the most essential liveness property, which can be proved using
Lemma 3.1, Lemma 3.2, and Lemma 3.4, is:

Lemma 4.3. (Lv=f>OAcU:é) = O(LNU:iAFNU:é).

Lemma 4.3 states that, for every node of a given fragment, the local variables will
eventually display the current level and fragment name. (For a Blue node, this
may happen at a time when the node’s fragment may already have a different
name and level.) The lemma can be used to show that progress is guaranteed in
testing on ascending edges and when trying to connect on ascending or strictly
ascending edges.

We now consider progress in the search process in a non-singleton fragment.
Using invariants on the possible contents of core channels to reason about core
nodes, and Lemma 3.2 for non-core nodes, we can show by induction on the
distance between v and ¢, that:

Lemma 4.4. (col(v) =W A ¢, =¢) = <O(col(v) € {G,R} A ¢, =é).

Once Green, a node v searches its untested ports for a mwe(v), and awaits mwe
reports from its children. Using Lemma 4.3 we can show that v’s local search
will complete successfully if dmwe(v) is ascending. Moreover, the node v will
eventually turn Red if dmwe(w) is ascending for every w € T,,.

% We use the temporal logic < operator for “eventually’ [MP95]. In addition, all of
our liveness claims are implicitly universally quantified—they apply to all configu-
rations C and all nodes v, w, etc.
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Let us denote by WakeNo and EdgeNo the number of non-sleeping nodes,
and the number of forest edges, respectively. Clearly, 0 < WakeNo < n and 0 <
EdgeNo < n — 1. Moreover, FEdgeNo < n — 1 iff there is more than one fragment
in the forest, so that at least one more MST edge needs to be added. Think of a
fragment as being active if it is not a sleeping singleton node. Let L, (C) be the
minimal level of any active fragment in C. In [GHS83] the authors argue that, if
EdgeNo < n — 1 then one fragment of level L,,;, will be guaranteed to succeed
in adding an MST edge. We now present a slightly more rigorous argument.

For a fragment of level L,,;,(C), every external edge is either ascending, or
connected to a sleeping singleton. It follows that in a fragment of minimal level,
every local search at a Green node will either succeed, or will wake up a sleeping
singleton. Formally, we can show:

Lemma 4.5. L, = Ly, A collv) =G =
O (WakeNo will strictly increase V (col(v) = R)).

Applying Lemma 4.5 by induction on the structure of F,, we obtain that minimal-
level fragments complete their unless new nodes are awaken.

Lemma 4.6. L, = L, A mwe(F,) 00 =
O (WakeNo will strictly increase vV Pend(dmwe(F,))).

Combining this with Lemmas 4.2 and 4.3, we can establish:

Lemma 4.7. FEdgeNo<n—-1 =
O(WakeNo will strictly increase V' EdgeNo will strictly increase).

Sketch of proof: The problem specification assumes that at some point at
least one node wakes up. Thus, initially we have WakeNo = 0 and are guaranteed
that WakeNo will increase. Ultimately, at most n nodes can be woken up overall.
Thus, in every execution there must be some point after which no sleeping node
ever wakes up. Let C be a such a configuration with FdgeNo < n — 1 (so there
are at least two fragments in C). By Corollary 4.6 all searches in fragments of
level L,,;, are guaranteed to complete, and by Lemma 4.2 their dmwe’s will
contain Connect messages. If any of these dmwe’s point to fragments of strictly
higher levels, then we have by Lemma 4.3 and the GHS behavior that an Absorb
will result, and EdgeNo will increase. Otherwise, all of these dmwe’s point to
fragments of level L,,;,. Because edge weights are distinct, one of these mwe’s
is the lightest of them all. This edge must be the mwe of both fragments it is
incident on. A Merge will thus take place on this edge, and FdgeNo will increase.

Since 0 < WakeNo + EdgeNo < 2n — 1 with equality only when the MST is
complete, we immediately obtain:

Lemma 4.8. In every execution of the GHS algorithm, the forest eventually
consists of the MST.

Once the forest consists of a single tree, we have that WakeNo = n and can use
Lemma 4.5 to prove that the search will complete with both core nodes Red.
Further reasoning using the invariants then shows that at that point all ports
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are properly marked, and all messages remaining in the channels are consumed
without modifying the port markings, and so eventually all channels are empty.
We thus obtain our main theorem:

Theorem 4.1. Every run of the GHS algorithm reaches a state satisfying the
specification of the MST problem given by conditions ST1 and ST2 in Defini-
tion 4.1.

5 Conclusions

It is no accident that the GHS algorithm has become a notorious challenge for
verification of distributed protocols. The considerable nondeterminism inherent
in the scheduler’s timing choices results in the runs of GHS lacking a natural
phase structure. A fragment may concurrently be engaged in many activities
involving outbound broadcasts, inbound convergecasts, and local testing. More-
over, while all of these are taking place, the structure of the fragment may change
as a result of other fragments being absorbed into it.

The main novelty of our proof comes from the introduction of the intermediate-
level of abstraction that we called the rainbow construction. Executions of the
rainbow construction refine the standard high-level description of GHS in terms
of Merge and Absorb at the graph level, and they are refined by executions of the
detailed GHS algorithm. We do not, however, prove refinement mappings between
the three levels. Rather, we prove structural properties at the abstract levels, and
use configurations of the rainbow construction as global auxiliary history variables
when reasoning about the detailed GHS algorithm. The auxiliary configurations
of the rainbow construction enable cleaner and simpler statement of invariance
properties, and facilitates the reasoning about progress guarantees in executions
of GHS. Structural properties such as the characterization of color patterns along
outgoing path in Lemma 3.1 considerably reduce the amount of case analysis re-
quired in the proofs.

We believe that the rainbow construction as well as some of our analysis
can help in simplifying the proofs of GHS in other frameworks, such as the I/O
automata approach of [W88], and the Petri-net based proof of [S01]. There is also
hope that our decomposition of the problem will enable an efficient mechanized
proof for GHS.”

Earlier attempts at proving the GHS algorithm have led some of the re-
searchers involved to conclude that, in the end, there is no alternative to a large
invariance proof in this case, and such a proof is necessarily tedious and boring.
This paper suggests that generating a manageable invariance proof of GHS is
itself nontrivial. In our proof, the use of the rainbow construction made this
task tractable. The fact that our liveness proof is a direct formalization of the
argument described in [GHS83] suggests that our correctness proof is “natural.”

" Hesselink [Hes99] set out to produce such a proof, and ended up proving correctness
of a related MST algorithm.
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Abstract. Consider a distributed system /N in which each agent has an input
value and each communication link has a weight. Given a global function, that
is, a function f whose value depends on the whole network, the goal is for every
agent to eventually compute the value f(IN). We call this problem global function
computation. Various solutions for instances of this problem, such as Boolean
function computation, leader election, (minimum) spanning tree construction,
and network determination, have been proposed, each under particular assump-
tions about what processors know about the system and how this knowledge can
be acquired. We give a necessary and sufficient condition for the problem to be
solvable that generalizes a number of well-known results [3, 28, 29]. We then pro-
vide a knowledge-based (kb) program (like those of Fagin, Halpern, Moses, and
Vardi [8, 9]) that solves global function computation whenever possible. Finally,
we improve the message overhead inherent in our initial kb program by giving
a counterfactual belief-based program [15] that also solves the global function
computation whenever possible, but where agents send messages only when they
believe it is necessary to do so. The latter program is shown to be implemented
by a number of well-known algorithms for solving leader election.

1 Introduction

Consider a distributed system /N in which each agent has an input value and each com-
munication link has a weight. Given a global function, that is, a function f whose value
depends on the whole network, the goal is for every agent to eventually compute the
value f(NN). We call this problem global function computation. Many distributed proto-
cols involve computing some global function of the network. This problem is typically
straightforward if the network is known. For example, if the goal is to compute the
spanning tree of the network, one can simply apply one of the well-known algorithms
proposed by Kruskal or Prim. However, in a distributed setting, agents may have only
local information, which makes the problem more difficult. For example, the algorithm
proposed by Gallager, Humblet and Spira [11] is known for its complexity.! Moreover,

! Gallager, Humblet, and Spira’s algorithm does not actually solve the minimum spanning tree
as we have defined it, since agents do not compute the minimum spanning tree, but only learn
relevant information about it, such as which of its edges lead in the direction of the root.

S. Dolev (Ed.): DISC 2006, LNCS 4167, pp. 136150, 2006.
(© Springer-Verlag Berlin Heidelberg 2006
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the algorithm does not work for all networks, although it is guaranteed to work correctly
when agents have distinct inputs and no two edges have identical weights.

Computing shortest paths between nodes in a network is another instance of global
function computation that has been studied extensively. [10, 4]. The well-known leader
election problem [21] can also be viewed as an instance of global computation in all
systems where agents have distinct inputs: the leader is the agent with the largest (or
smallest) input. The difficulty in solving global function computation depends on what
processors know. For example, when processors know their identifiers (names) and all
ids are unique, several solutions for the leader election problem have been proposed,
both in the synchronous and asynchronous settings [6, 19,25]. On the other hand, An-
gluin [1], and Johnson and Schneider [18] proved that it is impossible to deterministi-
cally elect a leader if agents may share names. In a similar vein, Attiya, Snir and War-
muth [3] prove that there is no deterministic algorithm that computes a non-constant
Boolean global function in a ring of unknown and arbitrarily large size if agents’ names
are not necessarily unique. Attiya, Gorbach, and Moran [2] characterize what can be
computed in what they call fotally anonymous shared memory systems, where access to
shared memory is anonymous.

We aim to better understand what agents need to know to compute a global function.
We do this using the framework of knowledge-based (kb) programs, proposed by Fagin,
Halpern, Moses and Vardi [8, 9]. Intuitively, in a kb program, an agent’s actions may
depend on his knowledge. To say that the agent with identity ¢ knows some fact ¢ we
simply write K;p. For example, if agent ¢ sends a message msg to agent j only if he
does not know that j already has the message, then the agent is following a kb program
that can be written as

if K;(hasj(msg)) then skip else send(msg).

Knowledge-based programs abstract away from particular details of implementation
and generalize classes of standard programs. They provide a high-level framework for
the design and specification of distributed protocols. They have been applied to a num-
ber of problems, such as atomic commitment [14], distributed commitment [22], Byzan-
tine agreement [7, 16], sequence transmission [17], and analyzing the TCP protocol
[27].

We first characterize when global function computation is solvable, i.e., for which
networks N and global functions f agents can eventually learn f(N). As we said ear-
lier, whether or not agents can learn f(N) depends on what they initially know about
N. We model what agents initially know as a set A/ of networks; the intuition is that
N is the set of all networks such that it is common knowledge that N belongs to A.
For example, if it is commonly known that the network is a ring, N is the set of all
rings; this corresponds to the setting considered by Attiya, Snir and Warmuth [3]. If, in
addition, the size n of N is common knowledge, then A is the (smaller) set of all rings
of size n. Yamashita and Kameda [28] focus on three different types of sets N (1) for
a given n, the set of all networks of size n, (2) for a fixed d, the set of all networks of
diameter at most d, and (3) for a graph G, the set of networks whose underlying graph
is G, for all possible labelings of nodes and edges. In general, the more that is initially
known, the smaller AV is. Our problem can be rephrased as follows: given N and f, for
which sets A is it possible for all agents in N to eventually learn f(N)?
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For simplicity, we assume that the network is finite and connected, that communi-
cation is reliable, and that no agents fail. Consider the following simple protocol, run
by each agent in the network: agents start by sending what they initially know to all
of their neighbors; agents wait until they receive information from all their neighbors;
and then agents transmit all they know on all outgoing links. This is a full-information
protocol, since agents send to their neighbors everything they know. Clearly with the
full-information protocol all agents will eventually know all available information about
the network. Intuitively, if f(N) can be computed at all, then it can be computed when
agents run this full-information protocol. However, there are cases when this protocol
fails; no matter how long agents run the protocol, they will never learn f(N). This can
happen because

1. although the agents actually have all the information they could possibly get, and
this information suffices to compute the value of f, the agents do not know this;

2. although the agents have all the information they could possibly get (and perhaps
even know this), the information does not suffice to compute the function value.

In Section 2, we illustrate these situations with simple examples. We show that there is
a natural way of capturing what agents know in terms of bisimilarity relations [23], and
use bisimilarity to characterize exactly when global function computation is solvable.
We show that this characterization provides a significant generalization of results of
Attiya, Snir, and Warmuth [3] and Yamashita and Kameda [29].

We then show that the simple program where each agent just forwards all the new
information it obtains about the network solves the global function computation prob-
lem whenever possible. It is perhaps obvious that, if anything works at all, this program
works. We show that the program terminates with each agent knowing the global func-
tion value iff the condition that we have identified holds.

Our program, while correct, is typically not optimal in terms of the number of mes-
sages sent. Generally speaking, the problem is that agents may send information to
agents who already know it or will get it via another route. For example, consider an
oriented ring. A simple strategy of always sending information to the right is just as
effective as sending information in both directions. Thus, roughly speaking, we want to
change the program so that an agent sends whatever information he learns to a neighbor
only if he does not know that the neighbor will eventually learn it anyway.

Since agents decide which actions to perform based on what they know, this will be
a kb program. While the intuition behind this kb program is quite straightforward, there
are subtleties involved in formalizing it. One problem is that, in describing kb programs,
it has been assumed that names are commonly known. However, if the network size is
unknown, then the names of all the agents in the network cannot be commonly known.
Things get even more complicated if we assume that identifiers are not unique. For
example, if identifiers are not unique, it does not make sense to write “agent ¢ knows
¢”; K, is not well defined if more than one agent can have the id :.

We deal with these problems using techniques introduced by Grove and Halpern
[12,13]. Observe that it makes perfect sense to talk about each agent acting based on
his own knowledge by saying “if  know ¢, then ...”. I here represents the name each
agent uses to refer to himself. This deals with self-reference; by using relative names
appropriately, we can also handle the problem of how an agent refers to other agents.
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A second problem arises in expressing the fact that an agent should send informa-
tion to a neighbor only if the neighbor will not eventually learn it anyway. As shown
by Halpern and Moses [15] (HM from now on), the most obvious way of expressing it
does not work; to capture this intuition correctly we must use counterfactuals. These
are statements of the form ¢ > 1), which are read “if ¢ then 1", but the “if ... then” is
not treated as a standard material implication. In particular, the formula is not necessar-
ily true if ¢ is false. In Section 3.1, we provide a kb program that uses counterfactuals
which solves the global function computation problem whenever possible, while con-
siderably reducing communication overhead.

As areality check, for the special case of leader election in networks with distinct ids,
we show in Section 4 that the kb program is essentially implemented by the protocols
of Lann, Chang and Roberts [19, 6], and Peterson [25], which all work in rings (under
slightly different assumptions), and by the optimal flooding protocol [21] in networks
of bounded diameter. Thus, the kb program with counterfactuals shows the underlying
commonality of all these programs and captures the key intuition behind their design.

The rest of this paper is organized as follows. In Section 2, we give our character-
ization of when global function computation is possible. In Section 3 we describe the
kb program for global function computation, and show how to optimize it so as to min-
imize messages. In Section 4, we show that the program essentially implements some
standard solutions to leader election in a ring. For space reasons, we defer the detailed
formal definitions and the proofs of results to the full paper.

2 Characterizing When Global Function Computation is Solvable

We model a network as a directed, simple (no self-loops), connected, finite graph, where
both nodes and edges are labeled. Each node represents an agent; its label is the agent’s
input, possibly together with the agent’s name (identifier). Edges represent communi-
cation links; edge labels usually denote the cost of message transmission along links.
Communication is reliable, meaning that every message sent is eventually delivered and
no messages are duplicated or corrupted.

We assume that initially agents know their local information, i.e., their own input
value, the number of outgoing links, and the weights associated with these links. How-
ever, agents do not necessarily know the weights on non-local edges, or any topological
characteristics of the network, such as size, upper bound on the diameter, or the un-
derlying graph. Additionally, agents may not know the identity of the agents they can
directly communicate with, or if they share their names with other agents. In order
to uniquely identify agents in a network N of size n, we label agents with “external
names” 1, ..., n. Agents do not necessarily know these external names; we use them
for our convenience when reasoning about the system. In particular, we assume that the
global function f does not depend on these external names; f(IN) = f(N’) for any two
networks N and N’ that differ only in the way that nodes are labeled.

Throughout the paper we use the following notation: We write V' (V) for the set of
agents in N and E (V) for the set of edges. For each i € V(N), let Out (i) be the set
of ’s neighbors on outgoing links, so that Outy (i) = {j € V(N) | (i,5) € E(N)};
let Iny (i) be the set of i’s neighbors on incoming links, so that Iny (i) = {j €
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V(N) | (j,i) € E(N))}; let iny (i) denote 4’s input value. Finally, if e is an edge
in E(N), let wy (e) denote e’s label.

We want to understand, for a given network N and global function f, when it is
possible for agents to eventually know f (V). This depends on what agents know about
N. As mentioned in the introduction, the general (and unstated) assumption in the lit-
erature is that, besides their local information, whatever agents know initially about the
network is common knowledge. We start our analysis by making the same assumption,
and characterize the initial common knowledge as a set A/ of networks.

In this section, we assume that agents are following a full-information protocol. We
think of the protocol as proceeding in rounds: in each round agents send to all neighbors
messages describing all the information they have; messages are stamped with the round
number; round k for agent ¢ starts after he has received all round & — 1 messages from
his neighbors (since message delivery is reliable, this is guaranteed to happen). The
round-based version of the full-information protocol makes sense both in synchronous
and asynchronous settings, and for any assumptions about the order in which messages
are delivered.

Intuitively, the full-information protocol reduces uncertainty. For example, suppose
that A/ consists of all unidirectional 3-node rings, and let N be a three node ring in
which agents have inputs a, b, and ¢, and all edges have the same weight w. Let @
be the external name of the agent with input a. Initially, ¢ considers possible all 3-
nodes rings in which the weight on his outgoing edge is w and his input is a. After
the first round, ¢ learns from his incoming neighbor, who has external name 7, that
J’s incoming edge also has weight w, and that j has input c. Agent j learns in the
first round that his incoming neighbor has input b and that his incoming edge also has
weight w. Agent 7 communicates this information to ¢ in round 2. At the end of round
2, 7 knows everything about the network NV, as do the other two agents. Moreover, he
knows exactly what the network is. But this depends on the fact that ¢ knows that the
ring has size 3.

Round 0 Round 1 Round 2

Fig. 1. How ¢’s information changes with the full-information protocol

Now consider the same network N, but suppose that agents do not know the ring
size, i.e., \V is the set of all unidirectional rings, of all possible sizes and for all input
and weight distributions. Again, at the end of round 2, agent ¢ has all the information
that he could possibly get, as do the other two agents. However, at no point are agents
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able to distinguish the network N from a 6-node ring N’ in which agents look just like
the agents on the 3-node ring (see Figure 2). Consider the pair of agents ¢ in N and
i’ in N’. It is easy to check that these agents get exactly the same messages in every
round of the full-information protocol. Thus, they have no way of distinguishing which
is the true situation. If the function f has different values on N and N’, then the agents
cannot compute f(N). On the other hand, if A/ consists only of networks where inputs
are distinct, then ¢ realizes at the end of round 2 that he must be £’s neighbor, and then
he knows the network configuration.

Fig. 2. Two indistinguishable networks

We want to characterize when agent ¢ in network N thinks he could be agent i’ in
network N’. Intuitively, at round k, ¢ thinks it possible that he could be ¢’ if there is a
bijection p that maps 4’s incoming neighbors to i’’s incoming neighbors such that, at
the previous round k — 1, each incoming neighbor j of ¢ thought that he could be pi(5).

Definition 1. Given networks N and N’ and agents i € V(N) and i’ € V(N'), i and
i’ are 0-bisimilar, written (N, i) ~¢ (N',i'), iff

- ZTLN(Z) = iTLN/(i/),'
— there is a bijection f°“ : Outy (i) — Out - (i) that preserves edge-labels; that
is, for all j € Out (i), we have wy (i, j) = wn: (i, fO"(5)).

Fork >0, i and i’ are k-bisimilar, written (N, i) ~j (N', 1), iff
- (N,i) ~o (N',i'), and
— there is a bijection ' : Iny (i) — Inn/ (i) such that for all j € Iny(4)
hd wN(jai):wN'(fin(j)7i/)’ )
o the (j,1) edge is bidirectional iff the (f**(j), ") edge is bidirectional, and
o (N,j) ~i—1 (N, f7(j))-

Note that ~, is an equivalence relation on the set of pairs (IV,7) with ¢ € V(NNV), and
that ~; 4 is a refinement of ~.
The following lemma relates bisimilarity and the full-information protocol:

Lemma 1. The following are equivalent:

(a) (N,i) ~p (N',i).
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(b) Agents i € V(N) and i’ € V(N') have the same initial local information and
receive the same messages in each of the first k rounds of the full-information pro-
tocol.

(c) If the system is synchronous, then i and ' have the same initial local information
and receive the same messages in each of the first k rounds of every deterministic
protocol.

Intuitively, if the function f can be computed on N, then it can be computed using a
full-information protocol. The value of f can be computed when f takes on the same
value at all networks that the agents consider possible. The round at which this happens
may depend on the network N, the function f, and what it is initially known. Moreover,
if it does not happen, then f is not computable. Using Lemma 1, we can characterize if
and when it happens.

Theorem 1. The global function f can be computed on networks in N iff. for all net-
works N € N, there exists a constant kar .z, such that, for all networks N' e N, all
i € V(N), andalli' € V(N'), if (N,i) ~pp e (N',7') then f(N') = f(N).

Proof: First suppose that the condition in the statement of the theorem holds. At the
beginning of each round k, each agent 7 in the network proceeds as follows. If ¢ received
the value of f in the previous round, then ¢ forwards the value to all of its neighbors and
terminates; otherwise, ¢ computes f’s value on all the networks N’ such that there exists
an ¢’ such that agent 7 would have received the same messages in the first k — 1 rounds
in network N’ as 7 actually received. (By Lemma 1, these are just the pairs (N’, ') such
that (N',i") ~k_1 (N, ).) If all the values are equal, then 4 sends the value to all his
neighbors and terminates; otherwise, ¢ sends whatever new information he has received
about the network to all his neighbors.

Let k; be the first round with the property that for all N’ € A and i’ in N, if
(N,i) ~, (N',i'), then f(N') = f(N). (By assumption, such a k; exists and it is at
most kxr v, r.) It is easy to see that, by round k;, 4 learns the value of f(IV), since either
i gets the same messages that it gets in the full-information protocol up to round k; or
it gets the function value. Thus, ¢ terminates by the end of round k; + 1 at the latest,
after sending the value of f, and the protocol terminates in at most kar, v, s + 1 rounds.
Clearly all agents learn f(N) according to this protocol.

Now suppose that the condition in the theorem does not hold and, by way of contra-
diction, that the value of f can be computed by some protocol P on all the networks
in AV. There must exist some network N for which the condition in the theorem fails.
Consider a run where all messages are delivered synchronously. There must be some
round & such that all agents in /N have computed the function value by round k. Since
the condition fails, there must exist a network N’ € A and agents 7 € V(N) and
i’ € V(N') such that (N,i) ~p (N',i’) and f(N) # f(N'). By Lemma 1, ¢ and ¢’
have the same initial information and receive the same messages in the first k rounds of
protocol P. Thus, they must output the same value for the function at round k. But since
F(N) # f(N'), one of these answers must be wrong, contradicting our assumption that
P computes the value of f in all networks in A"

Intuitively, kar, v, r is a round at which each agent ¢ knows that f takes on the same value
at all the networks 7 considers possible at that round. Since we are implicitly assuming
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that agents do not forget, the set of networks that agent ¢ considers possible never grows.
Thus, if f takes on the same value at all the networks that agent ¢ considers possible
at round k, then f will take on the same value at all networks that 4 considers possible
at round k' > k, so every agent knows the value of f(N) in round ky n,s. In some
cases, we can provide a useful upper bound on ks v, s. For example, if A/ consists
only of networks with distinct identifiers, or, more generally, of networks in which no
two agents are locally the same, i.e., (N,i) %o (N,j) for all i # j, then we can take
kar,w,f = diam(N) + 1, where diam(N) is the diameter of N.

Theorem 2. [finitially it is common knowledge that no two agents are locally the same,
then all global functions can be computed; indeed, we can take kxr n,y= diam(N) + 1.

Attiya, Snir, and Warmuth [3] prove an analogue of Lemma 1 in their setting (where
all networks are rings) and use it to prove a number of impossibility results. In our
language, these impossibility results all show that there does not exist a k£ such that
(N, i) ~g (N',4") implies f(N) = f(N') for the functions f of interest, and thus are
instances of Theorem 1.2

Yamashita and Kameda characterize when global functions can be computed in undi-
rected networks (which have no weights associated with the edges), assuming that an
upper bound on the size of the network is known. They define a notion of view and
show that two agents have the same information whenever their views are similar in a
precise technical sense; f (V) is computable iff for all networks N’ such that agents in
N and N’ have similar views, f(N’) = f(N). Their notion of similarity is essentially
our notion of bisimilarity restricted to undirected networks with no edge labels. Thus,
their result is a special case of Theorem 1 for the case that N consists of undirected
networks with no edge labels of size at most n* for some fixed constant n*; they show
that k-, v, r can be taken to be n* in that case. Not only does our result generalize theirs,
but our characterization is arguably much cleaner.

Theorem 2 sheds light on why the well-known protocol for minimum spanning tree
construction proposed by Gallager, Humblet, and Spira [11] can deal both with systems
with distinct ids (provided that there is a commonly-known ordering on ids) and for net-
works with identical ids but distinct edge-weights. These are just instances of situations
where it is common knowledge that no two agents are locally the same.

3 Standard and kb Programs for Global Function Computation

3.1 Dealing with Shared Names

A knowledge-based (kb) program Pg;,;, has the form

if t1 A k1 then acty
if t5 A ko then acty

R
2 We remark that Attiya, Snir, and Warmuth allow their global functions to depend on external

names given to agents in the network. This essentially amounts to assuming that the agent’s
names are part of their input.



144 J.Y. Halpern and S. Petride

where the ;s are standard tests (not involving knowledge or beliefs, but possibly in-
volving temporal operators such as ¢ and counterfactuals), the k;s are knowledge tests
(that could also involve belief, as we shall see), and the act;s are actions. The intended
interpretation is that agent ¢ runs this program forever. At each point in time, ¢ nonde-
terministically executes one of the actions act; such that the test ¢; A k; is satisfied;
if no such action exists, 7 does nothing. We sometime use obvious abbreviations like
if .. .then...else. A standard program is one with no knowledge tests.

Even in a standard program, there are issues of naming if we work in networks where
the names of agents are not common knowledge (see [24, 13]). Following Grove and
Halpern [12, 13] (GH from now on), we distinguish between agents and their names. We
assume that programs mention only names, not agents (since in general the programmer
will have access only to the names, which can be viewed as denoting roles). We use N
to denote the set of all possible names and assume that one of the names is I. In the
semantics, we associate with each name the agent who has that name. With each run
(or execution) of the program, we associate the set of agents that exist in that run. For
simplicity, we assume that the set of agents is constant over the run; that is, we are
not allowing agents to enter the system or leave the system. However, different sets of
agent may be associated with different runs. We assume that each agent has a way of
naming his neighbors, and gives each of his neighbors different names. However, two
different agents may use the same name for different neighbors. For example, in a ring,
each agent may name his neighbors L and R; in an arbitrary network, an agent whose
outdegree is d may refer to his outgoing neighbors as 1, 2, ..., d. We allow actions in
a program to depend on names, so the meaning of an action may depend on which
agent is running it. For example, in our program for global function computation, if ¢
uses name n to refer to his neighbor j, we write i’s action of sending message msg
to j as sendy(msg). Similarly, if A is a set of names, then we take send 4 (msg) to
be the action of sending msg to each of the agents in A (and not sending anything to
any other agents). For convenience, let Nbr denote the neighbors of an agent, so that
sendnbr(msg) is the action of sending msg to all of an agent’s neighbors.

We assume that message delivery is handled by the channel (and is not under the
control of the agents). In the program, we use a primitive proposition some new info
that we interpret as true for agent ¢ iff ¢ has received some new information; in our set-
ting, that means that ¢ has learned about another agent in the network and his input, has
learned the weight labeling some edges, or has learned that there are no further agents
in the network. (Note that in the latter case, i can also compute the function value. For
example, in doing leader election on a unidirectional ring, if 7 gets its id back after send-
ing it around the network, then ¢ knows that it has heard from all agents in the network,
and can then compute which agent has the highest id.) Note that some new info is a
proposition whose truth is relative to an agent. As already pointed out by GH, once we
work in a setting with relative names, then both propositions and names need to be
interpreted relative to an agent. In the program, the action sendy,(new info) has the
effect of ¢ sending n whatever new information ¢ learned.

With this background, we can describe the program for global function computation,
which we call Pg©“; each agent runs the program

if some new info then sendnwy(new info); receive,
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where the receive action updates the agent’s state by receiving any messages that are
waiting to be delivered. Next we prove that PgYC is correct.

Theorem 3. PgGC solves the global function computation problem whenever possible.
That is, if N and [ satisfy the condition in Theorem I, then with PgGC eventually all
agents know the function value; otherwise, no agent ever knows the function value.

As written, PgGC does not terminate; however, we can easily modify it so that it ter-
minates if agents learn the function value. (They will send at most one message after
learning the function value.)

3.2 Improving Message Overhead

While sending only the new information that an agent learns at each step reduces the
size of messages, it does not preclude sending unnecessary messages. One way of re-
ducing communication is to have agent ¢ not send information to the agent he names n
if he knows that n already knows the information.

To capture this, assume first that there is a modal operator K, in the language for
each name n € N. When interpreted relative to agent ¢, K, is read as “the agent ¢
named n knows fact ©”. Let cont(new info) be a primitive proposition that charac-
terizes the content of the message new info. For example, suppose that N is a uni-
directional ring, and new info says that ¢’s left neighbor has input value v;. Then
cont(new info) is true at all points where 7’s left neighbor has input value v;. (Note
that cont(new info) is a proposition whose truth is relative to an agent.) Thus, it seems
that the following kb program should solve the global function computation problem,
while decreasing the number of messages:

if some new info then
for each nonempty subset A of agents do
if A={n:-K;Ky(cont(new info))} then send s(new info); receive.

While this essentially works, there are some subtleties in interpreting this kb program.
As observed by GH, once we allow relative names, we must be careful about scop-
ing. For example, suppose that, in an oriented ring, ¢’s left neighbor is 5 and j’s left
neighbor is k. What does a formula such as K; Ky, (left input = 3) mean when it is
interpreted relative to agent ¢? Does it mean that ¢ knows that j knows that k’s input is
3, or does it mean that ¢ knows that j knows that j’s input is 3? That is, do we interpret
the “left” in left input relative to 4 or relative to i’s left neighbor j? Similarly, to which
agent does the second L in K; K Ky refer? That, of course, depends on the appli-
cation. Using a first-order logic of naming, as in [12], allows us to distinguish the two
interpretations readily. In a propositional logic, we cannot do this. In the propositional
logic, Grove and Halpern [13] assumed innermost scoping, so that the left in left input
and the second L in K; K K are interpreted relative to the “current” agent consid-
ered when they are evaluated (which is j). As we will see, in our interpretation, we
want to interpret it relative to I (in this case, ¢). As we will see, in a formula such
as KKy, cont(new info), we want to interpret cont(new info) relative to “I”, the
agent ¢ that sends the message, not with respect to the agent j that is the interpreta-
tion of n. To capture this, we add limited quantification over names to the language. In
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particular, we allow formulas of the form In’(Calls(n, I,n’") A K,(n"’s¢)), which is
interpreted as “there exists a name n’ such that the agent I names n gives name n’ to
the agent that currently has name I and n knows that ¢ interpreted relative to n’ holds”.
Then, instead of writing KKy, cont(new info), we write K(3n'(Calls(n,I,n’) A
Kn(n"’scont(new info)))).

We can further reduce message complexity by not sending information not only if the
recipient of the message already knows the information, but also if he will eventually
know the information. It seems relatively straightforward to capture this: we simply add
a { operator and replace the test K;(In’(Calls(n, I, n') A Ky (n"’scont(new info))))
by K;O(In'(Calls(n, I, n’') A Kn(n'’scont(new info)))). Unfortunately, as already
observed by HM, this modification will not work. To see why, we need to give some
background on the semantics of kb programs.

A protocol for agent ¢ is a function from the states of agent 7 to actions. We can
associate with every joint protocol P (that is, a tuple consisting of a protocol for each
agent) the system R(P) that represents P, which consists of the runs of P. We can
determine whether a knowledge test is true at each point in the system. Thus, given a kb
program Pg,, and a system Z, we can “run” Pg,,, using 7 to determine the truth of the
knowledge tests. The set of runs of the resulting protocol determine another system. Z
represents a kb program Pg,, if 7 is a fixed point of this process; that is, running Pg,;
with respect to Z gives back Z. A protocol P de facto implements a kb program Pg,,, if
P and Pg;,;, act the same at all points in the system that represents P; see [15].

As observed by HM, once we add the ¢ operator, the resulting kb program has no
representation. For suppose it is represented by a system Z. Does ¢ (the agent repre-
sented by I) send new info to n in Z? If it does, then Z can’t represent the program
because, in Z, i knows that n will eventually know new info, should send new info to
n. Similarly it follows that no agent should send new info to n in Z. On the other hand,
if no one sends new info to n, then n will not know it, and 7 should send it. Roughly
speaking, ¢ should send the information iff ¢ does not send the information.

HM suggest the use of counterfactuals to deal with this problem. As we said in the
introduction, a counterfactual has the form ¢ > 1, which is read as “if  were the case
then ¢”. As is standard in the philosophy literature (see, for example, [20, 26]) such a
statement is taken to be true if, in the closest worlds to the current world where ¢ is
true, 1) is also true. In particular, we discuss their concrete interpretation of “closest
worlds”. Once we have counterfactuals, we must consider systems with runs that are
not runs of the program. These are runs where, for example, counter to fact, the agent
does not send a message (although the program says it should). We make these runs
unlikely relative to the actual runs in the system. But the presence of these runs makes
it more convenient to consider belief, rather than knowledge. Roughly speaking, this is
because there will always be runs that the agent considers possible that are not runs of
the program; using belief allows us to exclude these runs. We write By, to denote that
the agent named n believes ¢, although this is perhaps better read as “the agent named
n knows that ¢ is (almost certainly) true”.

Using counterfactuals, we can modify the program to say that agent ¢ should send the
information only if ¢ does not believe “if I do not send the information, then n will even-
tually learn it anyway”. To capture this, we use the proposition do(sendy, (new info)),
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which is true if ¢ has sent new info to n. If there are only finitely many possible values
of f, say v1,..., v, then the formula By (f = v1) V...V By(f = vi) captures the
fact that the agent with name n knows the value of f. However, in general, we want to
allow an unbounded number of function values. For example, if agents have distinct nu-
merical ids, we are trying to elect as leader the agent with the highest id, and there is no
bound on the size of the network, then the set of possible values of f is unbounded. We
deal with this problem by allowing limited quantification over values. In particular, we
also use formulas of the form Jv B, (f = v), which intuitively say that the agent with

name n knows the value of f. Let ngbc denote the following modification of PgGC:

if some new info then
for each nonempty subset A of agents do
if A= {n:-Bi(—do(sendn(new info)) > O(3In’(Calls(n, I,n’)
ABn(n’scont(new info))) V IvBn(f =v))}
then send 4 (new info); receive

In this program, the agent ¢ representing I sends n the new information if ¢ does not
believe that n will eventually learn the new information or the function value in any
case. This improved program still solves the global function computation problem
whenever possible.

Theorem 4. ngbc solves the global function computation problem whenever possible:
for all N and [ such that the condition in Theorem 1 is satisfied and all protocols P
that de facto implement ngbc, in every run r of the system that represents P, eventually
all agents know f(N,).

4 Case Study: Leader Election

In this section we focus on leader election. If we take the function f to describe a
method for computing a leader, and require that all agents eventually know who is cho-
sen as leader, this problem becomes an instance of global function computation. We
assume that agents have distinct identifiers (which is the context in which leader elec-
tion has been studied in the literature). It follows from Corollary 2 that leader election
is solvable in this context; the only question is what the complexity is. Although leader
election is only one instance of the global function computation problem, it is of par-
ticular interest, since it has been studied so intensively in the literature. We show that
a number of well-known protocols for leader election in the literature essentially im-
plement the program ngbc. In particular, we consider a protocol combining ideas of
Lann [19] and Chang and Roberts [6] (LCR from now on) presented by Lynch [21],
which works in unidirectional rings, and Peterson’s [25] protocol P1 for unidirectional
rings and P2 for bidirectional rings. We briefly sketch the LCR protocol and Peterson’s
protocol P2, closely following Lynch’s [21] treatment; we omit the description of P1
for space reasons.

The LCR protocol works in unidirectional rings, and does not assume a bound on
their size. Each agent starts by sending its id along the ring; whenever it receives a
value, if the value is larger than the maximum value seen so far, then the agent forwards
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it; if not, it does nothing, except when it receives its own id. If this id is M, the agent
then sends the message “the agent with id M is the leader” to its neighbor. Each agent
who receives such a message forwards it until it reaches the agent with id M again. The
LCR protocol is correct because it ensures that the maximum id travels along the ring
and is forwarded by each agent until some agent receives its own id back. That agent
then knows that its id is larger than that of any other agent, and thus becomes the leader.

Peterson’s protocol P2 for bidirectional rings operates in phases. In each phase,
agents are designated as either active or passive. Intuitively, the active agents are those
still competing in the election. Once an agent becomes passive, it remains passive, but
continues to forward messages. Initially all agents are active. In each phase, an active
agent compares its id with the ids of the closest active agent to its right and the closest
active agent to its left. If its id is the largest of the three, it continues to be active; oth-
erwise, it becomes passive. Just as with the LCR protocol, when an agent receives back
its own id, it declares itself leader. Then if its id is M, it sends the message “the agent
with id M is the leader”, which is forwarded around the ring until everyone knows who
the leader is.

Peterson shows that, at each phase, the number of active agents is at most half that
of the previous phase, and always includes the agent with the largest id. It follows
that, eventually, the only active agent is the one with the largest id. Peterson’s protocol
terminates when the agent that has the maximum id discovers that it has the maximum
id by receiving its own id back. The message complexity of Peterson’s protocol is thus
O(nlogn), where n is the number of agents.

We remark that although they all work for rings, the LCR protocol is quite different
from P1 and P2. In the LCR protocol, agents forward their values along their unique
outgoing link. Eventually, the agent with the maximum input receives its own value
and realizes that it has the maximum value. In P1 and P2, agents are either active or
passive; in each round, the number of active agents is reduced, and eventually only the
agent with the maximum value remains active.

Despite their differences, LCR, P1, and P2 all essentially implement ngbc. There
are two reasons we write “essentially” here. The first, rather trivial reason is that, when
agents send information, they do not send all the information they learn (even if the
agent they are sending it to will never learn this information). For example, in the LCR
protocol, if agent ¢ learns that its left neighbor has value IV and this is the largest value
that it has seen, it passes along N without passing along the fact that its left neighbor has
this value. We can easily deal with this by modifying the protocols so that all the agents
send new info rather than whatever message they were supposed to send. However,
this modification does not suffice. The reason is that the modified protocols send some
“unnecessary” messages. This is easiest to see in the case of LCR. Suppose that j is
the processor with highest id. When j receives the message with its id back and sends
it around the ring again (this is essentially the message saying that j is the leader), in
a full-information protocol, j’s second message will include the id j' of the processor
just before j. Thus, when j’ receives j’s second message, it will not need to forward
it to 7. If LCR’ is the modification of LCR where each process sends new info rather
than mawid, and the last message in LCR is not sent, then we can show that LCR’

indeed de facto implements Pg&C. The modifications to P2 that are needed to get a
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protocol P2’ that de facto implements ngbc are similar in spirit, although somewhat
more complicated. We leave details to the full paper. x

Theorem 5. The following all hold:

(a) Given parameter d, the optimal flooding protocol de facto implements ngbc in
contexts where (i) all networks have diameter at most d and (ii) all agents have
distinct identifiers.

(b) LCR’' de facto implements ngbc in all contexts where (i) all networks are unidirec-
tional rings and (ii) agents have distinct identifiers.

(c) There exists a protocol P1’ that agrees with PI up to the last phase (except that it
sends new info) and implements ng:bc in all contexts where (i) all networks are
unidirectional rings and (ii) agents have distinct identifiers.

(d) There exists a protocol P2’ that agrees with P2 up to the last phase (except that
it sends new info) and de facto implements ngbc in all contexts where (i) all
networks are bidirectional rings and (ii) agents have distinct identifiers.

Theorem 5 brings out the underlying commonality of all these protocols. Moreover,
it emphasizes the connection between counterfactual reasoning and message optimal-
ity. Finally, it shows that reasoning at the kb level can be a useful tool for improving
the message complexity of protocols. For example, although P2’ has the same order
of magnitude message complexity as P2 (O(nlogn)), it typically sends O(n) fewer
messages. While this improvement comes at the price of possibly longer messages, it
does suggest that this approach can result in nontrivial improvements. Moreover, it sug-
gests that starting with a high-level kb program and then trying to implement it using a
standard program can be a useful design methodology. Indeed, our hope is that we will
be able to synthesize standard programs by starting with high-level kb specifications,
synthesizing a kb program that satisfies the specification, and then instantiating the kb
program as a standard program. We have some preliminary results along these lines
that give us confidence in the general approach [5]; we hope that further work will lend
further credence to this approach.
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Checking a Multithreaded Algorithm with
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Abstract. A colleague told me about a multithreaded algorithm that
was later reported to have a bug. I rewrote the algorithm in the TCAL al-
gorithm language, ran the TLC model checker on it, and found the error.
Programs are not released without being tested; why should algorithms
be published without being model checked?

1 Introduction

On a Wednesday afternoon in March of this year, my colleague Yuan Yu told
me that Detlefs et al. [1] had described a multithreaded algorithm to implement
a shared two-sided queue using a double-compare-and-swap (DCAS) operation,
and that Doherty et al. [2] later reported a bug in it. I decided to rewrite the
algorithm in TCAL [3] and check it with the TLC model checker, largely as a test
of the TCAL language. After working on it that afternoon, part of Sunday, and
a couple of hours on Monday, I found the bug. This is the story of what I did.
A tcAL specification of the algorithm and an error trace that it produced are
available on the Web [4]. T hope my experience will inspire computer scientists
to model check their own algorithms before publishing them.

+0AL is an algorithm language, not a programming language. It is expressive
enough to provide a practical alternative to informal pseudo-code for writing
high-level descriptions of algorithms. It cannot be compiled into efficient exe-
cutable code, but an algorithm written in TCAL can be translated into a TLAY
specification that can be model checked or reasoned about with any desired
degree of formality. Space does not permit me to describe the language and
its enormous expressive power here. The two-sided queue algorithm is a low-
level one, so its TCAL version looks much like its description in an ordinary
programming language. The features of TCAL relevant to this example are ex-
plained here. A detailed description of the language along with the translator
and model-checker software are on the Web [3].

1.1 The Story

I began by converting the algorithm from the C code of the paper into TCAL as
a collection of procedures, the way Detlefs et al. described it. (They actually
extended C with an atomically statement to represent the DCAS operation,
and they explained in the text what operations were considered atomic.) Other
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than minor syntax errors, the only bug in my first try was an incorrect modeling
of the DCAS operation caused by my confusion about C’s “&” and “*” operators.
I found my errors by running TLC on small instances of the algorithm, and 1
quickly fixed them.

I next wrote a small test harness consisting of a collection of processes that
nondeterministically called the procedures. It kept an upper-bound approxi-
mation to the multi-set of queued elements and checked to make sure that the
element returned by a pop was in that multi-set. It also kept a lower bound on
the number of queued elements and checked for a pop returning “empty” when
it shouldn’t have. However, my test for an incorrect “empty” was wrong, and
there was no simple way to fix it. So, I eliminated that test.

Running TLC on an instance of the algorithm with 2 enqueable values, 2
processes, and a heap of size 3 completed in 17 minutes, finding no bug. (Except
where noted, execution times are for a 2.4 or 3 GHz personal computer.) The
algorithm uses a fixed “dummy” node, so the maximum queue length is one less
than the heap size. My next step was to check it on a larger model. I figured
that checking with only a single enqueable value should suffice, because a pop
that correctly removed an element was unlikely to return anything other than
that element’s correct value. I started running TLC on a model with 3 processes
and 4 heap locations just before leaving for a three-day vacation. I returned to
find that my computer had crashed after running TLC for two or three hours.
I rebooted and restarted TLC from a checkpoint. A day later I saw that TLC
had not yet found an error and its queue of unexamined states was still growing,
so I stopped it.

I next decided to write a higher-level specification and let TLC check that
the algorithm implemented this specification under a suitable refinement map-
ping [5] (often called an abstraction function). I also wrote a new version of the
algorithm, without procedure calls, to reduce the size of the state space. This
turned out to be unnecessary; TLC would easily have found the bug without
that optimization.

I made a first guess at the refinement mapping based on the pictures in the
Detlefs et al. paper showing how the implementation worked, but it was wrong.
Correcting it would have required understanding the algorithm, and I didn’t
want to take the time to do that. Instead, I decided that an atomic change to
the queue in the abstract specification was probably implemented by a successful
DCAS operation. So, I added a dummy variable queue to the algorithm that is
modified in the obvious way when the DCAS operation succeeds, and I wrote a
simple refinement mapping in which the abstract specification’s queue equaled
queue. However, this refinement mapping didn’t work right, producing spurious
error reports on pop operations that return “empty”.

A pop should be allowed to return “empty” if the abstract queue was empty at
any time between the call to and return from the operation. I had to add another
dummy variable to the algorithm to record if the queue had been empty between
the call and return, and to modify the specification. Having added these dummy
variables, I realized that I could check correctness by simply adding assertions
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to the algorithm; there was no need for a high-level specification and refinement
mapping. I added the assertions, and TLC found the bug in about 20 seconds
for an instance with 2 processes and 4 heap locations. (TLC would have found
the bug with only 3 heap locations.) The bug was manifest by a pop returning
“empty” with a non-empty queue—a type of error my first attempt couldn’t
detect.

After finding the error, I looked at the paper by Doherty et al. to check that
I had found the same error they did. I discovered that I had found one of two
errors they reported. I then removed the test that caught the first error and
tried to find the second one. TLC quickly discovered the error on a model with
3 processes and 4 heap locations. As explained below, getting it to do this in a
short time required a bit of cleverness. Using a naive, straightforward approach,
it took TLC lg days to find the error. Explicit-state model checking is well suited
for parallel execution, and TLC can make use of shared-memory multiprocessing
and networked computing. Run on a 384 processor Azul Systems computer [6],
TLC found the error in less than an hour.

1.2 The Moral

I started knowing only that there was a bug in the algorithm. I knew nothing
about the algorithm, and I had no idea what the bug was—except that Yuan Yu
told me that he thought a safety property rather than a liveness property was
violated. (I would have begun by looking for a safety violation anyway, since
that is the most common form of error.) I still know essentially nothing about
how the algorithm was supposed to work. I did not keep a record of exactly how
much time I spent finding the error, but it probably totaled less than 10 hours.
Had Detlefs et al. used tCAL as they were developing their algorithm, model
checking it would have taken very little extra time. They would certainly have
found the first error and would probably have found the second.

There are two reasons I was able to find the first bug as quickly as I did, de-
spite not understanding the algorithm. The obvious reason is that I was familiar
with TcAL and TLC. However, because this is a very low-level algorithm, orig-
inally written in simple C code, very little experience using TCAL was needed.
The most difficult part of TCAL for most people is its very expressive mathe-
matical expression language, which is needed only for describing more abstract,
higher-level algorithms. The second reason is that the algorithm was expressed
in precise code. Published concurrent algorithms are usually written in very in-
formal pseudo-code, and it is often necessary to understand the algorithm from
its description in the text in order to know what the pseudo-code is supposed to
mean. In this case, the authors clearly stated what the algorithm did.

Section 2 describes the algorithm’s translation from C to TCAL, and Section 3
describes how I checked it. The translation is quite straightforward. Had tcAL
been available at the time, I expect Detlefs et al. would have had no trouble
doing it themselves. However, they would have gotten more benefit by using
*cAL from the start instead of C (or, more precisely, pseudo-C). Before devising
the published algorithm, they most likely came up with other versions that they
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later found to be wrong. They probably would have discovered those errors
much more quickly by running TLC on the tCAL code. Algorithms are often
developed by trial and error, devising a plausible algorithm and checking if it
works in various scenarios. TLC can do the checking for small instances much
faster and more thoroughly than a person.

2 Translating from the C Version

A major criterion for the TCAL language was simplicity. The measure of a lan-
guage’s simplicity is how simple its formal semantics are. A TCAL algorithm is
translated to a TLA™ specification [7], which can then be checked by TLC. The
TLAY translation defines the meaning of a tcAL algorithm. (Because TLAT
is based on ordinary mathematics, its formal semantics are quite simple.) The
simplicity of TCAL was achieved by making it easy to understand the correspon-
dence between a TCAL algorithm and its translation. The translator itself, which
is implemented in Java, is specified in TLA™.

Simplicity dictated that TCAL eschew many common programming language
concepts, like pointers, objects, and types. (Despite its lack of such constructs,
and in part because it is untyped, tCAL is much more expressive than any
programming language.) C’s pointer operations are represented in the tTCAL
version using an explicit array (function) variable Heap indexed by (with domain)
a set of addresses. A pointer-valued variable like [ in the C version becomes an
address-valued variable, and the C expression 1h->L is represented by the TCAL
expression Heap[lh].L.

The only tricky part of translating from pointers to heap addresses came in
the DCAS operation. Figure 1 contains the pseudo-C version. Such an operation

boolean DCAS(val *addrl, val *addr2,
val oldl, val old2,
val newl, val new2) {
atomically {
if ((*addr1l == oldl) &&
(*addr2 == 0l1d2)) {
*addrl = newl;
*xaddr2 = new2;
return true;
} else return false; } }

Fig. 1. The DCAS operation in pseudo-C

is naturally defined in TCAL as a macro. A TCAL macro consists of a sequence
of statements, not an expression. I therefore defined a DCAS macro with an
additional first argument, so the TCAL statement
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DCAS(result, al, ... )
represents the C statement
result = DCAS(al, ... )

The difficulty in writing the DCAS macro came from the pointer arguments
addrl and addr2. A direct translation of the original DCAS operation would
have required an extra layer of complexity. A pointer-valued variable like Ih
would have had to be represented by a variable whose value was not a heap
address, but rather the address of a memory location containing a heap address.
However, this complication was unnecessary because, in all the algorithm’s uses
of the DCAS operation, the first two arguments are &-expressions. In the trans-
lation, I essentially defined the DCAS macro as if the “*”s were removed from
the *addr1 and *addr2 parameters in Figure 1, and the “&”s were removed from
the uses of the macro. This led me to the macro definition of Figure 2. (The
“]'I” multiple-assignment construct is explained in Section 2.3 below; for now,

macro DCAS(result, addri, addr2, oldl, old2, newl, new2) {
if ( (addrl = oldl) A
(addr2 = 01d2)) {
addrl := newl ||
addr2 new2 ;
result := TRUE;
} else result := FALSE; }

Fig. 2. The DCAS operation in TcAL

consider it to be a semicolon.) The statement
if (DCAS(&LeftHat, &RightHat, 1h, rh, Dummy, Dummy))
is then represented in TCAL as

DCAS(temp, LeftHat, RightHat, lh, rh, Dummy, Dummy) ;
if (temp)

The tcAL translator replaces the DCAS statement by the syntactic expansion of
the DCAS macro. (As explained below, the atomically is implicit in the TCAL
version.)

Most of my colleagues cannot immediately see that the result of the substitu-
tion is a correct translation of the C version. Since the expanded TCAL macro is
quite simple, any difficulty must lie in understanding C’s “*” and “&” operators.
A language for describing algorithms should be simple, and its operators should
be easy to understand.

As an illustration of the translation, Figure 3 shows the original C version
of the popLeft procedure, exactly as presented by Detlefs et al., and my TCAL
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C Version

1 val popLeft() {

2 while (true) {

3 1h = LeftHat;

4 rh = RightHat;

5 if (1h->L == 1lh) return "empty";

6 if (1h == rh) {

7 if (DCAS(&LeftHat, &RightHat, 1lh, rh, Dummy, Dummy))
8 return 1lh->V;

9

} else {
10 1hR = 1h>R;
11 if (DCAS(&LeftHat, &lh>R, 1lh, 1hR, 1hR, 1h)) {
12 result = 1h->V;
13 1h->L = Dummy;
14 1h->V = null;
15 return result;
16+ 11}

+cAL Version

procedure popLeft()
variables rh, lh, 1hR, temp, result; {
02: while (TRUE) {

1h := LeftHat;

04: rh := RightHat;
05: if (Heap[lh].L = 1h) {rVal[self] := "empty"; return};
06: if (1h = rh) {
DCAS(temp, LeftHat, RightHat, 1h, rh, Dummy, Dummy);
if (temp) {
08: rVal[self] := Heap[lh].V; return}
} else {
010: 1hR := Heap[lh].R;
011: DCAS(temp, LeftHat, Heap[lh].R, 1h, 1hR, 1hR, 1h);
if (temp) {
012: result := Heap[lh].V;
013: Heap[1lh].L := Dummy ||
Heap[1lh].V := null;
rVal[self] := result; 015: return ;
}r1rz

Fig. 3. The C and TCAL versions of the popLeft procedure

version. This was my original translation, before I added dummy variables for
checking. (While it is essentially the same as my first version, I have made a
number of cosmetic changes—mainly reformatting the code and changing label
names to correspond to the line numbers of the corresponding control points in
the C version.) The non-obvious aspects of the TCAL language that appear in
this example are explained in Sections 2.1-2.3 below.
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A cursory examination shows how similar the two versions are. 1 of course
formatted the TCAL version to look as much as possible like the C version. (To
this end, I used TCAL’s more compact c-syntax rather the alternative p-syntax
that is a bit easier to understand.) The TCAL version is three lines longer because
of the extra line added in translating each DCAS operation and because of the
local variable declarations that are missing from the pseudo-C code.

2.1 Labels and the Grain of Atomicity

Labels are used to specify the grain of atomicity in a TCAL algorithm. Execution
of a single atomic step begins at a label and continues until the next label that
is encountered. For example, execution of a step starting with control at label
06:

— ends at 08 if [h = rh evaluates to TRUE and the DCAS operation sets temp
to TRUE.

— ends at 02 if [h = rh evaluates to TRUE and the DCAS operation sets temp
to FALSE.

— ends at 010 if [h = rh evaluates to FALSE.

Because the DCAS macro contains no labels, its execution is atomic. (TCAL
does not permit labels in a macro definition.)

To simplify model checking and reasoning about an algorithm, one wants to
write it with the coarsest possible grain of atomicity that permits all relevant
interleavings of actions from different processes. Detlefs et al. assume that a
read or write of a single memory value is atomic. (Presumably, a heap address
and an enqueued value each constitute a single memory value.)

I have adopted the standard method of using the coarsest grain of atomic-
ity in which each atomic action contains only a single access to a shared data
item. The shared variables relevant for this procedure are Heap, LeftHat, and
RightHat. However, the labeling rules of TCAL required some additional labels.
In particular, the label 02 is required, even though the call of the procedure
affects only the process’s local state and could be made part of the same action
as the evaluation of LeftHat.

2.2 Procedures

To maintain the simplicity of its translation to TLAY, a TCAL procedure cannot
return a value. Values are passed through global variables. In this algorithm, T
have used the variable rVal to pass the value returned by a procedure. When
executed by a process p, a procedure returns the value v by setting rVal[p] to
v. In TCAL code, self equals the name of the current process.

2.3 Multiple Assignment

One of TCAL’s restrictions on labeling/atomicity, made to simplify the TLAT
translation, is that a variable can be assigned a value by at most one statement
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during the execution of a single atomic step. A single multiple assignment state-
ment can be used to set the values of several components of a single variable. A
multiple assignment like

Heap[lh].L := Dummy || Heap[lh].V := null

is executed by first evaluating all the right-hand expressions, and then perform-
ing all the indicated assignments.

3 Checking the Algorithm

To check the correctness of the algorithm, I added two global history variables:

— queue, whose value is the state of the abstract queue.

— sVal, where sVal[p] is set by process p to remember certain information
about the state for later use.

Adding dummy variables means rewriting the algorithm by adding statements
that set the new variables but do not change the behavior if the values of those
variables are ignored [5]. The TCAL code for the popLeft procedure with the
dummy variables appears in Figure 4. (The original code is in gray.)

The queue variable is modified in the obvious way by an atomic step that
contains a successful DCAS operation (one that sets temp to TRUE). The assert
statements in steps 08 and 012 check that the value the procedure is about to
return is the correct one.

The assert statement in step 05 attempts to check that, when the procedure
is about to return the value "empty", it is permitted to do so. An "empty"
return value is legal if the abstract queue was empty at some point between
when the procedure was called and when it returns. The assertion actually
checks that the queue was empty when operation 02 was executed or is empty
when the procedure is about to execute the return in operation 05. This test
is pessimistic. The assertion would fail if operations of other processes made
the queue empty and then non-empty again some time between the execution
of those two operations, causing TLC incorrectly to report an error. For a
correct test, each process would have to maintain a variable that is set by other
processes when they remove the last item from the queue. However, the shared
variables whose values determine if the procedure returns "empty" are read only
by these two operations. Such a false alarm therefore seemed unlikely to me,
and I decided to try this simpler test. (Knowing for sure would have required
understanding the algorithm.) TLC returns a shortest-length path that contains
an error. | therefore knew that, if the assertion could reveal an error, then TLC
would produce a trace that showed the error rather than a longer trace in which
another process happened to empty the queue at just the right time to make the
execution correct. This assertion did find the bug—mnamely, a possible execution
containing the following sequence of relevant events:
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procedure popLeft()
variables rh, lh, 1hR, temp, result; {
02: while (TRUE) {

1h := LeftHat;

sVal[self] := (queue = << >>);
04: rh := RightHat;
05: if (Heap[lh].L = 1h) {
assert sVal[self] V (queue = ()) ;
rVal[self] := "empty"; return ;} ;
06: if (1h = rh) {
DCAS(temp, LeftHat, RightHat, 1h, rh, Dummy, Dummy);
if (temp) {
sVal[self] := Head(queue);
queue := Tail(queue);
08: rVal[self] := Heap[lh].V;
assert rVal[self] = sVal[self];
return}
} else {
010: 1hR := Heap[lh].R;
011: DCAS(temp, LeftHat, Heap[lh].R, 1lh, 1hR, 1hR, 1lh);
if (temp) {
sVal[self] := Head(queue) ;
queue := Tail(queue) ;
012: result := Heap[lh].V;
assert result = sVal[self] ;
013: Heap[1lh].L := Dummy ||
Heap[1lh] .V := null;
rVal[self] := result; 015: return ;

}rr}

Fig. 4. The popLeft procedure with checking

— Process 1 begins a pushRight operation.

— Process 1’s pushRight operation completes successfully.
— Process 1 begins a pushLeft operation.

— Process 2 begins a popLeft operation

— Process 1’s pushLeft operation completes successfully.

— Process 1 begins a popRight operation.

— Process 2’s popLeft operation returns the value "empty".

The actual execution trace, and the complete TCAL algorithm that produced it,
are available on the Web [4].

After finding the bug, I read the Doherty et al. paper and found that there
was another error in the algorithm that caused it to pop the same element twice
from the queue. I decided to see if TLC could find it, using the version without
procedures. The paper’s description of the bug indicated that it could occur in a
much coarser-grained version of the algorithm than I had been checking. (Since
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an execution of a coarse-grained algorithm represents a possible execution of a
finer-grained version, an error in the coarse-grained version is an error in the
original algorithm. Of course, the converse is not true.) To save model-checking
time, I removed as many labels as I could without significantly changing the
code, which was about 1/3 of them. I then ran TLC on an increasing sequence
of models, and in a few hours it found the error on a model with 3 processes and
4 heap locations, reporting an execution that described the following sequence
of events:

— Process 1 begins a pushRight operation.

— Process 2 begins a popRight operation.

— Process 1’s pushRight operation completes successfully.

— Process 1 begins a popRight operation.

— Process 3 begins and then successfully completes a pushLeft operation.
— Process 3 begins a popLeft operation.

— Process 1’s popRight operation completes successfully.

— Process 1 begins and then successfully completes a pushLeft operation.
— Process 1 begins and then successfully completes a popLeft operation.
— Process 2’s popRight operation completes successfully.

— Process 3’s popLeft operation tries to remove an item from an empty queue.

I found the second bug quickly because I knew how to look for it. However,
checking models on a coarser-grained version when the fine-grained version takes
a long time is an obvious way of speeding up the search for bugs. It is not
often done because, when written in most model-checking languages, changing
an algorithm’s grain of atomicity is not as easy as commenting out some labels.
Someone who understands the algorithm will have a sense of how coarse a version
is likely to reveal errors.

I decided to see how long it would take TLC to find the bug by checking the
fine-grained version. I started it running shortly before leaving on a long trip.
When I returned, I found that it had indeed found the error—after running for
a little more than a month. Examining the tCAL code, I realized that it had
two unnecessary labels. They caused some operations local to a process to be
separate steps, increasing the number of reachable states. I removed those labels.
I estimate that TLC would have found the error in the new version in about two
weeks. However, by observing processor utilization, it was easy to see that TLC
was spending most of its time doing disk I/O and was therefore memory-bound.
I had been running it on a 2.4 GHz personal computer with 1 GByte of memory.
I switched to a 3 GHz machine with 4 GBytes of memory, and TLC found the
error in 40 hours. Running the model checker in the background for a couple of
days is not a problem.

TLC can be instructed to use multiple processors. We have found that it
can obtain a factor of n speedup by using n processors, for n up to at least 8.
TLC can therefore take full advantage of the coming generation of multicore
computers. (Inefficiencies of the Java runtimes currently available for personal



Checking a Multithreaded Algorithm with tcaAL 161

computers significantly reduce the speedup obtained with those machines.) Us-
ing a version of TLC modified for execution with a large number of proces-
sors, the 40-hour uniprocessor execution was reduced to less than an hour on
a first-generation 384-processor Azul Systems computer [6]. Since each of that
computer’s processors is much slower than 3 GHz, this probably represents a
speedup by close to a factor of 384. (Azul Systems does not reveal the actual
speed of their processors.) It is likely that, within a few years, computers will
be widely available on which TLC runs 10 times faster than it does today.

There is an amusing footnote to this story. After doing the checking, I noticed
that T had inadvertently omitted a label from the pushRight operation, letting
one atomic action 