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Preface

DISC, the International Symposium on DIStributed Computing, is an annual
forum for presentation of research on all facets of distributed computing, inclu-
ding the theory, design, analysis, implementation, and application of distributed
systems and networks. The 20th anniversary edition of DISC was held on Sep-
tember 18-20, 2006, in Stockholm, Sweden.

There were 145 extended abstracts submitted to DISC this year, and this vo-
lume contains the 35 contributions selected by the Program Committee and one
invited paper among these 145 submissions. All submitted papers were read and
evaluated by at least three Program Committee members, assisted by external
reviewers. The final decision regarding every paper was taken during the Pro-
gram Committee meeting, which took place in Beer-Sheva, June 30 and July 1,
2006.

The Best Student Award was split and given to two papers: the paper “Ex-
act Distance Labelings Yield Additive-Stretch Compact Routing Schemes,” by
Arthur Bradly, and Lenore Cowen, and the paper “A Fast Distributed Appro-
ximation Algorithm for Minimum Spanning Trees” co-authored by Maleq Khan
and Gopal Pandurangan.

The proceedings also include 13 three-page-long brief announcements (BA).
These BAs are presentations of ongoing works for which full papers are not ready
yet, or of recent results whose full description will soon be or has been recently
presented in other conferences. Researchers use the BA track to quickly draw
the attention of the community to their experiences, insights and results from
ongoing distributed computing research and projects. The BAs included in this
proceedings volume were selected among 26 BA submissions.

DISC 2006 was organized in cooperation with the European Association for
Theoretical Computer Science (EATCS), the European Research Consortium
for Informatics and Mathematics (ERCIM), and Swedish Institute of Compu-
ter Science (SICS). The support of Ben-Gurion University, Microsoft Research,
Intel, Sun microsystems, Deutsche Telekom Laboratories is also gratefully ack-
nowledged.

July 2006 Shlomi Dolev



Organization

DISC, the International Symposium on DIStributed Computing, is an annual
forum for research presentations on all facets of distributed computing. The
symposium was called the International Workshop on Distributed Algorithms
(WDAG) from 1985 to 1997. DISC 2006 was organized in cooperation with the
European Association for Theoretical Computer Science (EATCS).
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Distributed Approximation Algorithms in Unit-Disk Graphs . . . . . . . . . . . . 385
A. Czygrinow, M. Hańćkowiak
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Exploring Gafni’s Reduction Land: From Ωk

to Wait-Free Adaptive (2p − �p
k
�)-Renaming

Via k-Set Agreement

Achour Mostefaoui, Michel Raynal, and Corentin Travers

IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
{achour, raynal, ctravers}@irisa.fr

Abstract. The adaptive renaming problem consists in designing an al-
gorithm that allows p processes (in a set of n processes) to obtain new
names despite asynchrony and process crashes, in such a way that the
size of the new renaming space M be as small as possible. It has been
shown that M = 2p−1 is a lower bound for that problem in asynchronous
atomic read/write register systems.

This paper is an attempt to circumvent that lower bound. To that
end, considering first that the system is provided with a k-set object,
the paper presents a surprisingly simple adaptive M -renaming wait-free
algorithm where M = 2p−� p

k
�. To attain this goal, the paper visits what

we call Gafni’s reduction land, namely, a set of reductions from one object
to another object as advocated and investigated by Gafni. Then, the
paper shows how a k-set object can be implemented from a leader oracle
(failure detector) of a class denoted Ωk. To our knowledge, this is the first
time that the failure detector approach is investigated to circumvent the
M = 2p−1 lower bound associated with the adaptive renaming problem.
In that sense, the paper establishes a connection between renaming and
failure detectors.

1 Introduction

The renaming problem The renaming problem is a coordination problem initially
introduced in the context of asynchronous message-passing systems prone to
process crashes [3]. Informally, it consists in the following. Each of the n processes
that define the system has an initial name taken from a very large domain [1..N ]
(usually, n << N). Initially, a process knows only its name, the value n, and
the fact that no two processes have the same initial name. The processes have to
cooperate to choose new names from a name space [1..M ] such that M << N
and no two processes obtain the same new name. The problem is then called
M -renaming.

Let t denote the upper bound on the number of processes that can crash.
It has been shown that t < n/2 is a necessary and sufficient requirement for
solving the renaming problem in an asynchronous message-passing system [3].
That paper presents also a message-passing algorithm whose size of the renaming
space is M = n + t.

S. Dolev (Ed.): DISC 2006, LNCS 4167, pp. 1–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 A. Mostefaoui, M. Raynal, and C. Travers

The problem has then received a lot of attention in the context of asynchro-
nous shared memory systems made up of atomic read/write registers. Numer-
ous wait-free renaming algorithms have been designed (e.g., [2,4,5,6]). Wait-free
means here that a process that does not crash has to obtain a new name in a
finite number of its own computation steps, regardless of the behavior of the
other processes (they can be arbitrarily slow or even crash) [12]. Consequently,
wait-free implies t = n− 1. An important result in such a context, concerns the
lower bound on the new name space. It has been shown in [13] that there is no
wait-free renaming algorithm when M < 2n− 1. As wait-free (2n− 1)-renaming
algorithms have been designed, it follows that that M = 2n− 1 is a tight lower
bound.

The previous discussion implicitly assumes the “worst case” scenario: all the
processes participate in the renaming, and some of them crash during the algo-
rithm execution. The net effect of crashes and asynchrony create “noise” that
prevents the renaming space to be smaller than 2n− 1. But it is not always the
case that all the processes want to obtain a new name. (A simple example is
when some processes crash before requiring a new name.) So, let p, 1 ≤ p ≤ n,
be the number of processes that actually participate in the renaming. A renam-
ing algorithm guarantees adaptive name space if the size of the new name space
is a function of p and not of n. Several adaptive wait-free algorithms have been
proposed that are optimal as they provide M = 2p− 1 (e.g., [2,4,6]).

The question addressed in the paper. Let us assume that we have a solution
to the consensus problem. In that case, it easy to design an adaptive renaming
algorithm where M = p (the number of participating processes). The solution is
as follows. From consensus objects, the processes build a concurrent queue that
provides them with two operations: a classical enqueue operation and a read
operation that provides its caller with the current content of the queue (without
modifying the queue). Such a queue object has a sequential specification and
each operation can always be executed (they are total operations according to
the terminology of [12]), from which it follows that this queue object can be
wait-free implemented from atomic registers and consensus objects [12]. Now, a
process that wants to obtain a new name does the following: (1) it deposits its
initial name in the queue, (2) then reads the content of the queue, and finally
(3) takes as its new name its position in the sequence of initial names read from
queue. It is easy to see that if p processes participate, they obtain the new names
from 1 to p, which means that consensus objects are powerful enough to obtain
the smallest possible new name space.

The aim of the paper is to try circumventing the lower bound M = 2p − 1
associated with the adaptive wait-free renaming problem, by enriching the un-
derlying read/write register system with appropriate objects. More precisely,
given M with p ≤ M ≤ 2p − 1, which objects (when added to a read/write
register system) allow designing an M -renaming wait-free algorithm (without
allowing designing an (M − 1)-renaming algorithm). The previous discussion on
consensus objects suggests to investigate k-set agreement objects to attain this
goal, and to study the tradeoff relating the value of k with the new renaming
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space. The k-set agreement problem is a distributed coordination problem (k
defines the coordination degree it provides the processes with) that generalizes
the consensus problem: each process proposes a value, and any process that does
not crash must decide a value in such a way that at most k distinct values are
decided and any decided value is a proposed value. The smaller the coordination
degree k, the more coordination imposed on the participating processes: k = 1
is the more constrained version of the problem (it is consensus), while k = n
means no coordination at all.

From k-set to (2p − � p
k�)-renaming. Assuming k-set agreement base objects,

and p ≤ n participating processes, the paper presents an adaptive wait-free
renaming algorithm providing a renaming space whose size is M = (2p − � p

k �).
Interestingly, when considering the two extreme cases we have the following:
k = 1 (consensus) gives M = p (the best that can be attained), while k = n (no
additional coordination power) gives M = 2p− 1, meeting the lower bound for
adaptive renaming in read/write register systems.

The proposed algorithm follows Gafni’s reduction style [9]. It is inspired by the
adaptive renaming algorithm proposed by Borowsky and Gafni [6]. In addition
to k-set objects, it also uses simple variants of base objects introduced in [6,7,10],
namely, strong k-set agreement [7], k-participating set [6,10]. These objects can
be incrementally built as follows: (1) base k-set objects are used to build k-
participating set objects, and then (2) k-participating set objects, are used to
solve (2p− � p

k �)-renaming.
The renaming algorithm that we obtain is surprisingly simple. It is based

on a very well-known basic strategy: decompose a problem into independent
subproblems, solve each subproblem separately, and finally piece together the
subproblem results to produce the final result. More precisely, the algorithm
proceeds as follows:
- (1) Using a k-participating set object, the processes are partitioned into inde-
pendent subsets of size at most k.
- (2) In each partition, the processes compete in order to acquire new names
from a small name space. Let h be the number of processes that belong to a
given partition.They obtain new names in the space [1..2h− 1].
- (3) Finally, the name spaces of all the partitions are concatenated in order to
obtain a single name space [1..M ].

The key of the algorithm is the way it uses a k-participating set object to
partition the p participating processes in such a way that, when the new names
allocated in each partition are pieced together, the new name space is upper
bounded by M = (2p−� p

k�) Interestingly, the processes that belong to the same
partition can use any wait-free adaptive renaming algorithm to obtain new names
within their partition (distinct partitions can even use different algorithms).
This noteworthy modularity property adds a generic dimension to the proposed
algorithm.

From the oracle Ωk to k-set objects. Unfortunately, k-set agreement objects
cannot be wait-free implemented from atomic registers [7,13,17]. So, the paper
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investigates additional equipment the asynchronous read/write register system
has to be enriched with in order k-set agreement objects can be implemented.
To that aim, the paper investigates a family of leader oracles (denoted here
(Ωz)1≤z≤n), and presents a k-set algorithm based on read/write registers and
any oracle of such a class Ωk.

So, the paper provides reductions showing that adaptive wait-free (2p−� p
k �)-

renaming can be reduced to the Ωk leader oracle class. To our knowledge, this is
the first time that oracles (failure detectors) are proposed and used to circumvent
the 2p−1 adaptive renaming space lower bound. Several problems remain open.
The most crucial is the statement of the minimal information on process crashes
that are necessary and sufficient for bypassing the lower bound 2p− 1.

Roadmap. The paper is made up of 5 sections. Section 2 presents the asyn-
chronous computation model. Then, Section 3 describes the adaptive renaming
algorithm. This algorithm is based on a k-participating set object. Section 4
visits Gafni’s reduction land by showing how the k-participating set object can
be built from a k-set object. Then, Section 5 describes an algorithm that con-
structs a k-set object in an asynchronous read/write system equipped with a
leader oracle of the class Ωk.

2 Asynchronous System Model

Process model. The system consists of n processes that we denote p1, . . . , pn.
The integer i is the index of pi. Each process pi has an initial name idi such
that idi ∈ [1..N ]. Moreover, a process does not know the initial names of the
other processes; it only knows that no two processes have the same initial name.
A process can crash. Given an execution, a process that crashes is said to be
faulty, otherwise it is correct in that execution. Each process progresses at its
own speed, which means that the system is asynchronous.

In the following, given a run of an algorithm, p denotes the number of processes
that participate in that run, 1 ≤ p ≤ n. (To participate, a process has to execute
at least one operation on a shared object.)

Coordination model. The processes cooperate and communicate through two
types of reliable objects: atomic multi-reader/single-write registers, and k-set ob-
jects. A k-set object KS provides the processes with a single operation denoted
kset proposek(). It is a one-shot object in the sense that each process can invoke
KS .kset proposek() at most once. When a process pi invokes KS .kset proposek(v),
we say that it “proposes v” to the k-set object KS . If pi does not crash during
that invocation, it obtains a value v′ (we then say “pi decides v′”). A k-set object
guarantees the following two properties: a decided value is a proposed value, and
no more than k distinct values are decided.

Notation. Identifiers with upper case letters are used to denote shared registers
or shared objects. Lower case letters are used to denote local variables; in that
case the process index appears as a subscript. As an example, leveli[j] is a local
variable of the process pi, while LEVEL[j] is an atomic register.
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3 An Adaptive (2p − �p
k
�)-Renaming Algorithm

3.1 Non-triviality

Let us observe that the trivial renaming algorithm where pi takes i as its new
name is not adaptive, as the renaming space would always be [1..m], where m
is the greatest index of a participating process (as an example consider the case
where only p1 and pn are participating). To rule out this type of ineffective
solution, we consider the following requirement for a renaming algorithm [5]:

– The code executed by process pi with initial name id is exactly the same as
the code executed by process pj with initial name id.

This constraint imposes a form of anonymity with respect to the process
initial names. It also means that there is a strong distinction between the index
i associated with pi and its original name idi. The initial name idi can be seen
as a particular value defined in pi’s initial context. Differently, the index i can
be seen as a pointer to the atomic registers that can be written only by pi. This
means that the indexes define the underlying “communication infrastructure”.

3.2 k-Participating Set Object

The renaming algorithm is based on a k-participating set object. Such an object
generalizes the participating set object defined in [6].

Definition. A k-participating set object PS is a one-shot object that provides
the processes with a single operation denoted participating setk(). A process
pi invokes that operation with its name idi as a parameter. The invocation
PS .participating setk(idi) returns a set Si to pi (if pi does not crash while exe-
cuting that operation). The semantics of the object is defined by the following
properties [6,10]:

– Self-membership: ∀i: idi ∈ Si.
– Comparability: ∀i, j: Si ⊆ Sj ∨ Sj ⊆ Si.
– Immediacy: ∀i, j: (idi ∈ Sj)⇒ (Si ⊆ Sj).
– Bounded simultaneity: ∀� : 1 ≤ � ≤ n: |{j : |Sj | = �}| ≤ k.

The set Si obtained by a process pi can be seen as the set of processes that,
from its point of view, have accessed or are accessing the k-participating set
object. A process always sees itself (self-membership). Moreover, such an object
guarantees that the Si sets returned to the process invocations can be totally
ordered by inclusion (comparability). Additionally, this total order is not at all
arbitrary: it ensures that, if pj sees pi (i.e., idi ∈ Sj) it also sees all the processes
seen by pi (Immediacy). As a consequence if idi ∈ Sj and idj ∈ Si, we have
Si = Sj . Finally, the object guarantees that no more than k processes see the
same set of processes (Bounded simultaneity). As we will see later (Section 3.2),
such an object can be constructed from k-set objects.
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Table 1. An example of k-participating object (p = 10 ≤ n, k = 3)

level stopped processes Si sets
10 p5,p9 S5 = S9 = {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10}
9 empty level
8 p1, p3, p10 S1 = S3 = S10 = {p1, p2, p3, p4, p6, p7, p8, p10}
7 empty level
6 empty level
5 p2, p8 S2 = S8 = {p2, p4, p6, p7, p8}
4 empty level
3 p7 S7 = {p4, p6, p7}
2 p4, p6 S4 = S6 = {p4, p6}
1 empty level

Notation and properties. Let Sj be the set returned to pj after it has invoked
participating setk(idj), and � = |Sj | (notice that 1 ≤ � ≤ n). The integer � is
called the level of pj , and we say “pj is -or stopped- at level �”. If there is a
process pj such that |Sj | = �, we say “the level � is not empty”, otherwise we
say “the level � is empty”. Let L be the set of non-empty levels �, |L| = m ≤ n.
Let us order the m levels of L according to their values, i.e., �1 < �2 < · · · < �m
(this means that the levels in {1, . . . , n} \ {�1, . . . , �m} are empty).
|Sj | = � (pj stopped at level �) means that, from pj point of view, there are

exactly � processes that (if they do not crash) stop at the levels �′ such that
1 ≤ �′ ≤ �. Moreover, these processes are the processes that define Sj . (It is
possible that some of them have crashed before stopping at a level, but this fact
cannot be known by pj .) We have the following properties:

– If p processes invoke participating setk(), no process stops at a level higher
than p.

– (|Si| = |Sj | = �) ⇒ (Si = Sj) (from the comparability property).
– Let Si and Sj such that |Si| = �x and |Sj | = �y with �x < �y.

• Si ⊂ Sj (from �x < �y, and the comparability property).
• |Sj \Si| = |Sj |−|Si| = �y−�x (consequence of the set inclusion Si ⊂ Sj).

A k-participating set object can be seen as “spreading” the p ≤ n participating
processes on at most p levels �. This spreading is such that (1) there are at
most k processes per level, and (2) each process has a consistent view of the
spreading (where “consistent” is defined by the self-membership, comparability
and immediacy properties). As an example, let us consider Table 1 that depicts
the sets Si returned to p = 10 processes participating in a k-participating set
object (with k = 3), in a failure-free run. As we can see some levels are empty.
Two processes, p2 and p8, stopped at level 5; their sets are equal and contain
exactly five processes, namely the processes that stopped at a level ≤ 5.

The next lemma captures an important property provided by a k-participating
set object. Let ST [�x] = {j such that |Sj | = �x} (the processes that have
stopped at the level �x). For consistency purpose, let �0 = 0.
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Lemma 1. |ST [�x]| ≤ min(k, �x − �x−1).

Proof. |ST [�x]| ≤ k follows immediately from the bounded simultaneity prop-
erty. To show |ST [�x]| ≤ �x − �x−1, let us consider two processes pj and pi such
that pj stops at the level �x while pi stops at the level �x−1. We have:

1. |Sj | = �x and |Si| = �x−1 (definition of “a process stops at a level”).
2. ST [�x] ⊆ Sj (from the self-membership and comparability properties),
3. ST [�x] ∩ Si = ∅ (from Sj 
= Si and the immediacy and self-membership

properties),
4. ST [�x] ⊆ Sj \ Si (from the items 2 and 3),
5. |Sj \ Si| = �x − �x−1 (previous discussion),
6. |ST [�x]| ≤ �x − �x−1 (from the items 4 and 5). �Lemma 1

Considering again Table 1, let us assume that the processes p1, p3 and p10

have crashed while they are at level � = 8, and before determining their sets S1,
S3 and S10. The level � = 8 is now empty (as no process stops at that level),
and the levels 10 and 5 are now consecutive non-empty levels. We have then
ST [10] = {p5, p9}, ST [5] = {p2, p8}, and |ST [10]| = 2 ≤ min(k, 10− 5).

3.3 An Adaptive Renaming Protocol

The adaptive renaming algorithm is described in Figure 1. When a process pi

wants to acquire a new name, it invokes new name(idi). It then obtains a new
name when it executes line 05. Remind that p denotes the number of processes
that participate in the algorithm.

Base objects. The algorithm uses a k-participating set object denoted PS , and
a size n array of adaptive renaming objects, denoted RN [1..n].

Each base renaming object RN [y] can be accessed by at most k processes.
It provides them with an operation denoted rename(). When accessed by h ≤
k processes, it allows them to acquire new names within the renaming space
[1..2h− 1]. Interestingly, such adaptive wait-free renaming objects can be built
from atomic registers (e.g., [2,4,6]). As noticed in the introduction, this feature
provides the proposed algorithm with a modularity dimension as RN [y] and
RN [y′] can be implemented differently.

The algorithm: principles and description. The algorithm is based on the fol-
lowing (well-known) principle.

– Part 1. Divide for conquer.
A process pi first invokes PS .participating setk(idi) to obtain a set Si sat-
isfying the self-membership, comparability, immediacy and bounded simul-
taneity properties (line 01). It follows from these properties that (1) at most
k processes obtain the same set S (and consequently belong to the same
partition), and (2) there are at most p distinct partitions.

An easy and unambiguous way to identify the partition pi belongs to is
to consider the level at which pi stopped in the k-participating set object,
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namely, the level � = |Si|. The h ≤ k processes in the partition � = |Si|
compete then among themselves to acquire a new name. This is done by
pi invoking the appropriate renaming object, i.e., RN

[
|Si|

]
.rename(idi) (line

03). As indicated before, these processes obtain new names in renaming space
[1..2h− 1].

operation new name(idi):
(1) Si ← PS .participating setk(idi);
(2) basei ← (2 × |Si| − � |Si|

k
�);

(3) offseti ← RN |Si| .rename(idi);
(4) mynamei ← basei − offseti + 1;
(5) return(mynamei)

Fig. 1. Generic adaptive renaming algorithm (code for pi)

– Part 2. Piece together the results of the subproblems.
The final name assignment is done according to very classical (base,offset)
rule. A base is attributed to each partition as follows. The partition � = |Si|
is attributed the base 2 × |Si| − � |Si|

k � (line 02). Let us notice that no two
partitions are attributed the same base. Then, a process pi in partition �
considers the new name obtained from RN [�] as an offset (notice that an
offset in never equal to 0). It determines its final new name from the base
and offset values it has been provided with, considering the name space
starting from the base and going down (line 04).

3.4 Proof of the Algorithm

Lemma 2. The algorithm described in Figure 1 ensures that no two processes
obtain the same new name.

Proof. Let pi be a process such that |Si| = �x. That process is one of the |ST [�x]|
processes that stop at the level �x and consequently use the underlying renaming
object RN [�x]. Due to the property of that renaming object, pi computes a
value offseti such that 1 ≤ offseti ≤ 2 × |ST [�x]| − 1. Moreover, as |ST [�x]| ≤
min(k, �x − �x−1) (Lemma 1), the previous relation becomes 1 ≤ offseti ≤ 2 ×
min(k, �x − �x−1).

On another side, the renaming space attributed to the processes pi of ST [�x]
starts at the base 2�x − � �x

k � (included) and goes down until 2�x−1 − � �x−1
k �

(excluded). Hence the size of this renaming space is

2(�x − �x−1)−
(
��x

k
� − ��x−1

k
�
)
.

It follows from these observations that a sufficient condition for preventing
conflict in name assignment is to have

2×min(k, �x − �x−1)− 1 ≤ 2(�x − �x−1)−
(
��x

k
� − ��x−1

k
�
)
.
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We prove that the algorithm satisfies the previous relation by considering two
cases according to the minimum between k and �x − �x−1. Let

�x = qx k + rx with 0 ≤ rx < k (i.e., �rx

k
� ∈ {0, 1})), and

�x−1 = qx−1 k + rx−1 with 0 ≤ rx−1 < k (i.e., �rx−1

k
� ∈ {0, 1}),

from which we have �x − �x−1 = (qx − qx−1) k + (rx − rx−1).

– Case �x − �x−1 ≤ k.
In that case, the relation to prove simplifies and becomes � �x

k �− �
�x−1

k � ≤ 1,
i.e., (qx + � rx

k �)− (qx−1 + � rx−1
k �) ≤ 1, that can be rewritten as (qx− qx−1)+

(� rx

k � − �
rx−1

k �) ≤ 1.
Moreover, from �x − �x−1 = (qx − qx−1) k + (rx − rx−1) and �x − �x−1 ≤ k,
we have (qx − qx−1) k + (rx − rx−1) ≤ k from which we can extract two
subcases:

• Case qx − qx−1 = 1 and rx = rx−1.
In that case, it trivially follows from the previous formulas that (qx −
qx−1) + (� rx

k � − �
rx−1

k �) ≤ 1, which proves the lemma for that case.
• Case qx = qx−1 and 0 ≤ rx − rx−1 ≤ k.

In that case we have to prove � rx

k �−�
rx−1

k � ≤ 1. As � rx

k �, �
rx−1

k � ∈ {0, 1},
we have � rx

k � − �
rx−1

k � ≤ 1, which proves the lemma for that case.

– Case k < �x − �x−1.
After simple algebraic manipulations, the formula to prove becomes:

(2k − 1)(qx − qx−1 − 1) + 2(rx − rx−1)−
(
�rx

k
� − �rx−1

k
�
)
≥ 0.

Moreover, we have now �x − �x−1 = (qx − qx−1) k + (rx − rx−1) > k, from
which, as 0 ≤ rx, rx−1 < k, we can conclude qx− qx−1 ≥ 1. We consider two
cases.

• qx − qx−1 = 1.
The formula to prove becomes 2(rx − rx−1) ≥ � rx

k � − �
rx−1

k �.
From �x − �x−1 > k we have:

∗ rx > rx−1, from which (as rx and rx−1 are integers) we conclude
2(rx − rx−1) ≥ 2.

∗ 1 ≥ � rx

k � ≥ �
rx−1

k � ≥ 0, from which we conclude � rx

k � − �
rx−1

k � ≤ 1.

By combining the previous relations we obtain 2 ≥ 1 which proves the
lemma for that case.
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• qx − qx−1 > 1. Let qx − qx−1 = 1 + α (where α is an integer ≥ 1).
The formula to prove becomes

(2k − 1)α + 2(rx − rx−1)−
(
�rx

k
� − �rx−1

k
�
)
≥ 0.

As 0 ≤ rx, rx−1 < k, the smallest value of rx−rx−1 is −(k−1). Similarly,
the greatest value of � rx

k � − �
rx−1

k � is 1.
It follows that, the smallest value of the left side of the formula is (2k−
1)α − 2(k − 1) − 1 = 2kα − (2k + α) + 1 = (2k − 1)(α − 1). As k ≥ 1
and α ≥ 1, it follows that the left side is never negative, which proves
the lemma for that case.

�Lemma 2

Theorem 1. The algorithm described in Figure 1 is a wait-free adaptive (2p−
� p

k�)-renaming algorithm (where p ≤ n is the number of participating processes).

Proof. The fact that the algorithm is wait-free is an immediate consequence of
the fact that base k-set participating set object and the base renaming objects
are wait-free. The fact that no two processes obtain the same new name is
established in Lemma 2.

If p processes participate in the algorithm, the highest level at which a process
stops is p (this follows from the properties of the k-set participating set object).
Consequently, the largest base that is used (line 02) is 2p−� p

k �, which establishes
the upper bound on the renaming space. �Theorem 1

4 Visiting Gafni’s Land: From k-Set to k-Participating
Set

This section presents a wait-free transformation from a k-set agreement object to
a k-participating set object. It can be seen as a guided visit to Gafni’s reduction
land [6,7,10]. Let us recall that a k-set object provides the processes with an
operation kset proposek().

4.1 From Set Agreement to Strong Set Agreement

Let us observe that, given a k-set object, it is possible that no process decides
the value it has proposed. This feature is the “added value” provided by a strong
k-set agreement object: it is a k-set object (i.e., at most k different values are
decided) such that at least one process decides the value it has proposed [7]. The
corresponding operation is denoted strong kset proposek().

In addition to a k-set object KS , the processes cooperate by accessing an array
DEC [1..n] of one-writer/multi-reader atomic registers. That array is initialized
to [⊥, . . . ,⊥]. DEC [i] can be written only by pi. The array is provided with a
snapshot() operation. Such an operation returns a value of the whole array as if
that value has been obtained by atomically reading the whole array [1]. Let us
remind that such an operation can be wait-free implemented on top of atomic
read/write base registers.
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The construction (introduced in [7]) is described in Figure 2. A process pi first
proposes its original name to the underlying k-set object KS , and writes the value
it obtains (an original name) into DEC [i] (line 01). Then, pi atomically reads
the whole array (line 02). Finally, if it observes that some process has decided
its original name idi, pi also decides idi, otherwise pi decides the original name
it has been provided with by the k-set object (lines 03-04).

operation strong kset proposek(idi) :
(1) DEC [i] ← KS .kset proposek(idi);
(2) deci[1..n] ← snapshot(DEC [1..n]);
(3) if (∃h : deci[h] = idi) then decisioni ← idi else decisioni ← deci[i] endif ;
(4) return(decisioni)

Fig. 2. Strong k-set agreement algorithm (code for pi)

4.2 From Strong Set Agreement to k-Participating Set

The specification of a k-participating set object has been defined in Section 3.2.
The present section shows how such an object PS can be wait-free implemented
from an array of strong k-set agreement objects; this array is denoted SKS [1..n].
(This construction generalizes the construction proposed in [10] that considers
n = 3 and k = 2.) In addition to the array SKS [1..N ] of strong k-set agreement
objects, the construction uses an array of one-writer/multi-reader atomic regis-
ters denoted LEVEL[1..n]. As before only pi can write LEVEL[i]. The array is
initialized to [n + 1, . . . , n+ 1].

The algorithm is based on what we call Borowski-Gafni’s ladder, a wait-free
object introduced in [6]. It combines such a ladder object with a k-set agreement
object in order to guarantee that no more than k processes, that do not crash,
stop at the same step of the ladder.

Borowsky-Gafni’s Ladder. Let us consider the array LEVEL[1..n] as a ladder.
Initially, a process is at the top of the ladder, namely, at level n + 1. Then it
descends the ladder, one step after the other, according to predefined rules until
it stops at some level (or crashes). While descending the ladder, a process pi

registers its current position in the ladder in the atomic register LEVEL[i].
After it has stepped down from one ladder level to the next one, a process pi

computes a local view (denoted viewi) of the progress of the other processes in
their descent of the ladder. That view contains the processes pj seen by pi at
the same or a lower ladder level (i.e., such that leveli[j] ≤ LEVEL[i]). Then, if
the current level � of pi is such that pi sees at least � processes in its view (i.e.,
processes that are at its level or a lower level) it stops at the level � of the ladder.
This behavior is described by the following algorithm [6]:

repeat LEVEL[i] ← LEVEL[i] − 1;
for j ∈ {1, . . . , n} do leveli[j] ← LEVEL[j] end do;
viewi ← j : leveli[j] ≤ LEVEL[i]};

until (|viewi| ≥ LEVEL[i]) end repeat;
let Si = viewi; return(Si).
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This very elegant algorithm satisfies the following properties [6]. The sets Si

of the processes that terminate the algorithm, satisfy the self-membership, com-
parability and immediacy properties of the k-participating set object. Moreover,
if |Si| = �, then pi stopped at the level �, and there are � processes whose current
level is ≤ �.

From a ladder to a k-participating set object. The construction, described in
Figure 3, is nearly the same as the construction given in [10]. It uses the previous
ladder algorithm as a skeleton to implement a k-participating set object. When
it invokes participating setk(), a process pi provides its original name as input
parameter. This name will be used by the underlying strong k-participating set
object. The array INIT NAME [1..n] is initialized to [⊥, . . . ,⊥]. INIT NAME [i]
can be written only by pi.

operation participating setk(idi)
(1) INIT NAME [i] ← idi;
(2) repeat LEVEL[i] ← LEVEL[i] − 1;
(3) for j ∈ {1, . . . , n} do leveli[j] ← LEVEL[j] end do;
(4) viewi ← j : leveli[j] ≤ LEVEL[i]};
(5) if (LEVEL[i]> k) ∧ (|viewi| = LEVEL[i])
(6) then let � = LEVEL[i];
(7) ansi←SKS [�].strong kset proposek(idi);
(8) oki ←(ansi = idi)
(9) else oki ← true
(10) endif
(11) until (|viewi| ≥ LEVEL[i]) ∧ oki end repeat;
(12) let Si = {id | ∃j ∈ viewi such that INIT NAME [j] = id};
(13) return(Si)

Fig. 3. k-participating set algorithm (code for pi)

If, in the original Borowski-Gafni’s ladder, a process pi stops at a ladder level
� ≤ k, it can also stop at the same level in the k-set participating object. This
follows from the fact that, as |viewi| = � ≤ k when pi stops descending, we know
from the ladder properties that at most � ≤ k processes are at the level � (or at
a lower level). So, when LEVEL[i] ≤ k (line 05), pi sets oki to true (line 05). It
consequently exits the repeat loop (line 11) and we can affirm that no more than
k processes do the same, thereby satisfying the bounded simultaneity property.

So, the main issue of the algorithm is to satisfy the bounded simultaneity
property when the level � at which pi should stop in the original Borowski-
Gafni’s ladder is higher than k. In that case, pi uses the underlying strong
k-set agreement object SKS [�] to know if it can stop at that level (lines 07-08).
This k-participating set object ensures that at least one (and at most k) among
the participating processes that should stop at level � in the original Borowski-
Gafni’s ladder, do actually stop. If a process pi is not allowed to stop (we have
then oki = false at line 08), it is required to descend to the next step of the
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ladder (lines 11 and 01). When a process stops at a level �, there are exactly �
processes at the levels �′ ≤ �. This property is maintained when a process steps
down from � to �− 1 (this follows from the fact that when a process is required
to step down from � > k to �− 1 because � > k, at least one process remains at
the level � due to the k-set agreement object SKS [�]).

5 From Ωk to k-Set Objects

This section shows that a k-set object can be built from single-writer/multi-
reader atomic registers and an oracle (failure detector) of the class Ωk.

5.1 The Oracle Class Ωk

The family of oracle classes (Ωz)1≤z≤n has been introduced in [16]. That defini-
tion implicitly assumes that all the processes are participating. We extend here
this definition by making explicit the notion of participating processes. More pre-
cisely, an oracle of the class Ωz provides the processes with an operation denoted
leader() that satisfies the following properties:

– Output size: each time it is invoked, leader() provides the invoking process
with a set of at most z participating process identities (e.g., {idx1 , . . . , idxz}).

– Eventual multiple leadership: There is a time after which all the leader()
invocations return forever the same set. Moreover, this set includes at least
one correct participating process (if any).

It is important to notice that each instance of Ωk is defined with respect to
the context where it is used. This context is the set of participating processes.
This means that if Ωk is used to construct a given object, say a k-set object KS ,
the participating processes for that failure detector instance are the processes
that invoke KS .kset proposek(). Let us remark that, during an arbitrary long
period, the participating processes that invoke leader() can see different sets of
leaders, and no process knows when this “anarchy” period is over. Moreover,
nothing prevent faulty processes to be elected as permanent leaders.

When all the processes are assumed to participate, Ω1 is nothing else than the
leader failure detector denoted Ω introduced in [8], where it is shown that it is
the weakest failure detector for solving the consensus problem in asynchronous
systems. (Let us notice that the lower bound proved in [8], on the power of
failure detectors, assumes implicitly that all the correct processes participate in
the consensus algorithm.)

5.2 From Ωk to k-Set Agreement

In addition to an oracle of the class Ωk, the proposed k-set agreement algorithm
is based on a variant, denoted KA, of a round-based object introduced in [11] to
capture the safety properties of Paxos-like consensus algorithms [14]. The leader
oracle is used to ensure the liveness of the algorithm. KA is used to abstract
away the safety properties of the k-set problem, namely, at most k values are
decided, and the decided values are have been proposed.



14 A. Mostefaoui, M. Raynal, and C. Travers

The KA object This object provides the processes with an operation denoted
alpha proposek(ri, vi). That operation has two input parameters: the value vi

proposed by the invoking process pi (here its name idi), and a round number
ri (that allows identifying the invocations). The KA object assumes that no
two processes use the same round numbers, and successive invocations by the
same process use increasing round numbers. Given a KA object, the invocations
alpha proposek() satisfy the following properties:

– Validity: the value returned by any invocation alpha proposek() is a proposed
value or ⊥.

– Agreement: At most k different non-⊥ values can be returned by the whole
set of alpha proposek() invocations.

– Convergence: If there is a time after which the operation alpha proposek()
is invoked infinitely often, and these invocations are issued by an (unknown
but fixed) set of at most k processes, then there is a time after which none
of these invocations returns ⊥.

An algorithm constructing a KA object from single-writer/multi-reader atomic
registers is described in [15].

The k-set algorithm. The algorithm constructing a k-set object KS (accessed
by at most n processes1), is described in Figure 4. As in previous algorithms,
it uses an array DEC [1..n] of one-writer/multi-reader atomic registers. Only pi

can write DEC [i]. The array is initialized to [⊥, . . . ,⊥]. The algorithm is very
simple. If a value has already been decided (∃j : DEC [j] 
= ⊥), pi decides it.
Otherwise, pi looks if it is a leader. If it is not, it loops. If it is a leader, pi invokes
alpha proposek(ri, vi) and writes in DEC [i] the value it obtains (it follows from
the specification of KA that that value it writes is ⊥ or a proposed value).

operation kset proposek(vi):
(1) ri ← (i − n);
(2) while (∀j : DEC [j] = ⊥) do
(3) if idi ∈ leader() then ri ← ri + n; DEC [i] ← KA.alpha proposek(ri, vi) endif
(4) end while;
(5) let decidedi = any DEC [j] �= ⊥;
(6) return(decidedi)

Fig. 4. An Ωk-based k-set algorithm (code for pi)

It is easy to see that no two processes use the same round numbers, and each
process uses increasing round numbers. It follows directly from the agreement
property of the KA object, that at any time, the array DEC [1..n] contains at
most k values different from ⊥. Moreover, due the validity property of KA, these
values have been proposed.

1 Let us remind that the construction of each SKS [�] object used in Figure 3 is based
on an underlying k-set object KS object.
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It is easy to see that, as soon as a process has written a non-⊥ value in DEC [1..n],
any kset propose(vi) invocation issued by a correct process terminates. So, in order
to show that the algorithm is wait-free, we have to show that at least one process
writes a non-⊥ value in DEC [1..n]. Let us assume that no process deposits a value
in this array. Due to the eventual multiple leadership property of Ωk, there is a
time τ after which the same set of k′ ≤ k participating processes are elected as
permanent leaders, and this set includes at least one correctprocess. It follows from
the algorithm that, after τ , at most k processes invoke KA.alpha proposek(), and
one of them is correct. It follows from the convergence property of the KA object,
that there is a time τ ′ ≥ τ afterwhichno invocation returns⊥.Moreover, as at least
one correct process belongs to the set of elected processes, that process eventually
obtains a non-⊥ value from an invocation, and consequently deposits that non-⊥
value in DEC [1..n]. The algorithm is consequently wait-free.
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Abstract. We study the renaming problem in a fully connected syn-
chronous network with Byzantine failures. We show that when faulty
processors are able to cheat about their original identities, this prob-
lem cannot be solved in an a priori bounded number of rounds for
t ≥ (n + n mod 3)/3, where n is the size of the network and t is the
number of failures. This result also implies a t ≥ (n+n mod 4)/2 bound
for the case of faulty processors that are not able to falsify their original
identities. In addition, we present several Byzantine renaming algorithms
based on distinct approaches, each providing a different tradeoff between
its running time and the solution quality.

1 Introduction

In the renaming problem, n processors have to cooperatively select for them-
selves new names from a namespace whose size depends only on n, in a way that
guarantees that each correct processor has a distinct new name. In the crash fail-
ure case, this problem was extensively investigated in both the message passing
and the shared memory models. So far the renaming problem was not studied
in the Byzantine failure case.

Consider for example a group of (client) processes that wish to access a data
set or a service which is replicated on a large number of servers. For best perfor-
mance, each process should access a different server. When some of the processes
experience Byzantine failures [13], e.g., they are controlled by a malicious adver-
sary, this might not be possible since the faulty processes may access any number
of servers (in the worst case each faulty process accesses every server). However,
even in such cases, the correct processes benefit from reducing the contention
among themselves. This paper deals with the general problem demonstrated by
the above example, in which the the processes are required to solve an instance
of the renaming problem in the presence of Byzantine failures.

From the theoretical point of view, renaming belongs to the class of symmetry
breaking problems, which can be regarded as the simplest nontrivial distributed
computing task [9]. As we shall see, in the Byzantine failure case, similarly to
crash failures, renaming raises a number of questions that are not addressed
by other well known problems (such as consensus). In order to understand the
implications of Byzantine failures for renaming, it is convenient (at least at the

S. Dolev (Ed.): DISC 2006, LNCS 4167, pp. 16–30, 2006.
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beginning) to consider the problem in the context of standard well known models,
despite the fact that some aspects of the scenario described in the above example
will not be accurately represented.

Specifically, in this paper we consider a synchronous network of an a priori
known size n, in which every pair of processors is connected by a communication
channel (link). Each processor has a unique identifier (processorID), which is
originally known only to its owner (if the identifiers of the processors are globally
known, the renaming task has a trivial solution). The communication between
processors is performed by message passing, which satisfies one of the following
conditions (see also [16]):

(ML) A faulty processor may send messages with arbitrary identifiers. Mes-
sages from different processors can be distinguished according to the link through
which they are received.

(MI) The true unique identifier of each processor is included in any message
it sends. 1

The renaming problem can be formally defined by the following conditions
[3,6,20]:

(Termination) Each correct processor eventually decides on a new name.
(Uniqueness) All the new names belong to the target namespace, and no two

correct processors decide on the same name.
The above conditions also have stronger versions:

(Strong termination [10]) Each correct processor decides on a new name during
r = r(n) rounds, where r depends only on the size of the system.

(Order preserving) The new names of the correct processors preserve the order
imposed by their original identifiers.

The paper has two main parts. Section 2 deals with impossibility results for
Byzantine renaming. We show that in the ML model, strong termination is not
possible if n + (n mod 3) ≤ 3t, where t is the number of faulty processors. The
same proof also implies impossibility of strongly terminating Byzantine renaming
in the MI model, when n+ (n mod 4) ≤ 2t.

Section 3 focuses on efficient algorithms for the Byzantine renaming problem.
We show three algorithms, each representing a different approach. In the first
algorithm renaming is achieved by using Byzantine agreement (solving an in-
stance of group membership problem). This approach allows to solve the order-
preserving renaming problem using a small target namespace, in O(n) time.
The second algorithm uses splitting to solve the non-order preserving problem
directly, in O(log n) rounds. Its target namespace, however, is Θ(poly(n)). The
third approach is to adapt the original algorithm of Attiya et al. [3] to the
Byzantine failure case, to get an algorithm that works in the asynchronous case.

1 This model is closer to the typical practical case, in which there are no dedicated
communication links for each pair of processors. Such an assumption is necessary in
order to prevent a single Byzantine processor from attacking a system by counter-
feiting multiple identities (the Sybil attack [11]).
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1.1 Related Previous Work

The renaming problem was originally introduced in [3] for asynchronous message
passing system with crash failures. This landmark paper presented a simple
renaming algorithm with a target namespace of size (n − t/2)(t + 1), followed
by a more intricate algorithm with a target namespace of size (n + t), and an
order preserving algorithm with a target namespace of size 2t(n − t + 1) − 1.
The last result was also shown to be tight. The wait-free renaming problem in
the synchronous message passing model with crash failures was studied in [9],
which presents an O(log n)-round algorithm and a proof that for comparison
based algorithms this result is optimal.

The renaming problem was also studied in the shared memory model, first
in the original one-shot setting [7,8], and then in the long-lived version, where
processors request and release the new names dynamically [15]. In [15], the split-
ter object was used to solve the problem, an approach which was subsequently
adopted in several follow up papers. More recently, both the one-shot and the
long-lived versions of the problem were studied in the adaptive setting, where
the number of participating processors k, is not known in advance [1,2,4,5]. In
this setting the goal is to develop efficient wait-free algorithms whose target
namespace and complexity depend only on k.

The question of the minimum possible target namespace was settled by the
groundbreaking work of Herlihy and Shavit, as a special variant of their Asyn-
chronous Computability Theorem [12]. They have shown that (n + t) is indeed
the smallest possible namespace for tolerating t failures in an asynchronous en-
vironment, for both the shared memory and the message passing models.

A review of the Byzantine agreement problem [19,13] is beyond the scope of
this paper. A presentation of this topic can be found in [14,6].

2 Impossibility Results for Byzantine Renaming

This section deals with impossibility results for Byzantine renaming. First, ob-
serve that the Byzantine renaming problem (in a synchronous system) can be
solved for any n > t, if strong termination is not required. A possible solution
(assuming w.l.o.g. that processor ids are natural numbers), that is also order
preserving, is presented in Fig. 1. The running time of this algorithm depends
on the values of the ids, and thus can be arbitrarily long. We show that in model
ML, for n + (n mod 3) ≤ 3t this is the best possible solution, i.e., there exists
no deterministic strongly terminating renaming algorithm.

We start by proving that strongly terminating renaming is impossible in a
system with three processors one of which can be faulty, when the identifiers of
the processors belong to some infinite set I. For the proof, assume that the port
numbering is as shown in Fig. 2.

Suppose by contradiction that there exists a deterministic algorithm A that
solves the renaming problem in r rounds when one processor can arbitrarily fail.
Further, assume that A is a full-information algorithm in which each correct
processor distributes all its current information in every round.
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Initial setup:

1: M := {1, . . ., n}
In rounds 1, . . ., processorID − 1:
2: for every link i do
3: if m is the first ever value received via link i then
4: M := M \ {m}
In round processorID:
5: decide on min(M)
6: send min(M) to all

Fig. 1. A Byzantine renaming algorithm with eventual (weak) termination only

Fig. 2. A symmetric 3-processor system

To begin with, due to the symmetry of the port numbers in Fig. 2, each
processor knows the port numbers through which the other two processors com-
municate with it. Therefore, the only new information available to a correct
processor by the end of the first round is the identifiers sent by the other two
processors. Generally, by the end of r rounds, the processor receives r identifiers
from each port.

LetA (α, β1, ..., βr, γ1, ..., γr) be the output ofA executed on a processor whose
processorID is α, when it gets in round 1 ≤ s ≤ r identifier βs via port 1 and
identifier γs via port 2. Then algorithm A must satisfy:

α 
= β1 ⇒
∀βr+1, γr A (α, β1, ..., βr, γ1, ..., γr) 
= A (β1, β2, ..., βr+1, α, γ1, ..., γr−1) ,

(1)

otherwise in an execution shown in Fig. 3 the correct processors α and β1 decide
on the same new id.

Fig. 3. A scenario for r-round renaming

To complete the proof we show that such a function cannot exist (since I is
assumed to be infinite, it is sufficient to prove this claim for I = Z). In order
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to state the combinatorial theorem which implies this result, we introduce the
following definitions.

Let Z̃n = {(a1, ..., an) ∈ Zn|∀1 ≤ i, j ≤ n i 
= j ⇒ ai 
= aj}, i.e., Z̃n contains
only the points of Zn that have n distinct coordinate values.

Let Lk(a1, ..., ak−1, ak+1, ..., an) denote a line in Z̃n parallel to the k-th axis:

Lk(a1, ..., ak−1, ak+1, ..., an) =
{(a1, ..., ak−1, z, ak+1, ..., an) |z ∈ Z \ {a1, ..., ak−1, ak+1, ..., an}} ,

where a1, ..., ak−1, ak+1, ..., an are any distinct integers2 and 1 ≤ k ≤ n.
For any σ ∈ Sn (a permutation on n elements) and a point α = (a1, ..., an)

in Z̃n, the point σ(α) ∈ Z̃n is defined by σ(α) = (aσ−1(1), aσ−1(2), ..., aσ−1(n)). A
function C : Z̃n → C, where C is a finite set, is called a (finite) coloring of Z̃n.

For any S ⊆ Z̃n, let σ(S) and C(S) denote the sets {σ(α) |α ∈ S } ⊆ Z̃n and
{C(α) |α ∈ S } ⊆ C, respectively. These definitions imply:

σ (Lk(a1, ..., ak−1, ak+1, ..., an)) =
Lσ(k)(aσ−1(1), aσ−1(2), ..., aσ−1(σ(k)−1), aσ−1(σ(k)+1), ..., aσ−1(n)).

(2)

Theorem 1. For any n ≥ 2, n ≥ k ≥ 1 and any cyclic permutation σ ∈ Sn,
there exists no finite coloring C of Z̃n such that for every line L parallel to the
k-th axis of Z̃n

C(L) ∩ C(σ(L)) = ∅. (3)

Before proving the theorem, we show that it implies the non-existence of a re-
naming algorithm. The key observation is that A can be considered as a coloring
A : Z̃2r+1 → C, where C is the finite target namespace of A. For the permuta-
tion σ = (1(r + 2)(r + 3)...(2r)(2r + 1)(r + 1)r...2), condition (1) implies that
for any line L parallel to the (2r + 1)-th axis, A(L) ∩ A(σ(L)) = ∅. However,
according to Theorem 1 no such finite coloring exists.

The theorem is proved by showing that a finite coloring of Z̃n (which satisfies
the required condition), if it existed, could have been used to define a coloring
of Z̃n−1 with a larger (but finite) set of colors. In the context of renaming this
means that an algorithm that runs in r rounds could have been used to construct
an algorithm with larger target namespace that runs in r − 1 rounds.

Proof of Theorem 1. Assume that the theorem is false for n = 2 and let C :
Z̃2 → C be a coloring that satisfies (3) for σ = (12). W.l.o.g. assume that k = 2.
Let L2(a) and L2(b) be two different lines, such that C(L2(a)) = C(L2(b)). Ob-
serve that L2(a) ∩ σ(L2(b)) = (a, b). Therefore, C(a, b) ∈ C(L2(a)) = C(L2(b))
and C(a, b) ∈ C(σ(L2(b))), which is a contradiction.

Suppose that the theorem is false and let n > 2 be the minimal dimension for
which the theorem is incorrect. W.l.o.g., assume that k = n. Let C : Z̃n → C be a
coloring that satisfies (3) for σ = (σ1...σn). W.l.o.g. suppose that n = σn−1. Let

2 In the sequel this coordinate numbering will be more convenient than the more
obvious a1, ..., an−1.
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π = (σ1...σn−2σn) be a cyclic permutation on n− 1 elements. Define a coloring
D1 : Z̃n−1 → 2C by D1(a1, ..., an−1) = C (Ln(a1, ..., an−1)) . In addition, let D2

be a finite coloring that satisfies D2(α) 
= D2(π(α)) for any α ∈ Z̃n−1. Next, we
show that the finite coloring D defined by D(α) = (D1(α), D2(α)) satisfies (3)
for every line in Z̃n−1 which is parallel to the σ−1(n)-th axis, with respect to
the cyclic permutation π. Since this contradicts the choice of n, this completes
the proof.

Let L = Lσ−1(n)(a1, ..., aσ−1(n)−1, aσ−1(n)+1, ..., an−1). Since ∀i 
= σ(n) π−1(i)
= σ−1(i), π−1(σ(n)) = σ−1(n) and π(σ−1(n)) = σ(n), by applying (2) we get:

π(L) = Lσ(n)(aσ−1(1), aσ−1(2), ..., aσ−1(σ(n)−1), aσ−1(σ(n)+1), ..., aσ−1(n−1)).

If D(L) ∩D(π(L)) 
= ∅, there must exist two integers aσ−1(n) and an such that
D assigns the same value to the points

α = (a1, ..., aσ−1(n)−1, aσ−1(n), aσ−1(n)+1, ..., an−1) ∈ L

and

β = (aσ−1(1), ..., aσ−1(σ(n)−1), aσ−1(σ(n)), aσ−1(σ(n)+1), ..., aσ−1(n−1)) ∈ π(L).

Moreover aσ−1(n) 
= an, since otherwise it holds that π(α) = β, which implies
D2(α) 
= D2(β) and thus D(α) 
= D(β) as well.

From D1(α) = C(Ln(a1, ..., an−1)) = C(Ln(aσ−1(1), ..., aσ−1(n−1))) = D1(β),
it follows that there must exist a point γ ∈ Ln(a1, ..., an−1) such that

C(γ) = C(aσ−1(1), ..., aσ−1(n)).

However the point (aσ−1(1), ..., aσ−1(n)) belongs also to the line σ(Ln(a1, ...,
an−1)), and thus we found a line for which C does not satisfy (3), contrary
to the assumption. �
This completes the proof of the impossibility of strongly terminating renaming
in model ML in a 3-processor system with 1 failure. The same proof holds for
a 4-processor system with 2 faults in model MI , since in the particular case in
which each correct processor sees a different faulty processor, the views of the
correct processors are exactly as above.

Next we would like to extend the impossibility result to a system with n
processors, to show that strongly terminating renaming in presence of �n/3�
faulty processors is impossible. Usually this can be done by the following sim-
ple simulation argument (e.g., see [13]). If there were an algorithm for a system
with n processors that tolerates �n/3� faults, it would be possible to divide the
n processors to three nearly equal sets, and let each processor in a 3-processor
system simulate one of the sets. This would give an algorithm for the case n = 3,
t = 1, which was already shown to be impossible. However, in the current case
such a simulation argument cannot be applied straightforwardly, since accord-
ing to the model definition, the algorithms executed by the processors must be
completely identical. Thus, a more careful simulation argument is required.
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For n ≡ 0 mod 3 there exist port labeling schemes of Kn (a complete graph
on n nodes) which divide its nodes to 3 isomorphic sets of n/3 nodes each, such
that these sets are interconnected in a symmetrical way. An algorithm A that
solves the Byzantine renaming problem in Kn with such a labeling scheme in
the presence of n/3 failures, can be simulated in a 3-processor system presented
in Fig. 2. This would give an algorithm for renaming in this 3-processor system,
which is a contradiction. Therefore, no such A exists.

Next, suppose n ≡ 1 mod 3. Consider a labeling of Kn in which there exists
one special node that is seen by all the other nodes via their (n−1) link, while all
the other nodes are divided to three isomorphic sets connected as in the previous
case. The special node is assumed to be crashed from the very beginning, and
in addition 1/3 of the remaining nodes can experience a Byzantine failure. Even
for this specific case, there exists no strongly terminating renaming algorithm,
since it can be turned into an algorithm for 3-processor system in Fig. 2, as in
the n ≡ 0 mod 3 case.

The case n ≡ 2 mod 3 is similar, except that now two special nodes are
required. Therefore, we can only prove that there exists no renaming algorithm
that tolerates (n−2)/3+2 failures. Together the three cases imply the following:

Theorem 2. In model ML, in a system of n processors of which t may fail,
where n + (n mod 3) ≤ 3t, there exists no algorithm that solves the strongly
terminating Byzantine renaming problem.

Since a similar difficulty arises when trying to extend the impossibility result in
the 4-processor case to a system with n processors in model MI , we can only
prove that there exists no strongly terminating algorithm for n+(n mod 4) ≤ 2t.

3 Algorithms

In this section we study the algorithmic aspect of the Byzantine renaming prob-
lem, by considering several different approaches for constructing such algorithms.
Section 3.1 describes a simple renaming algorithm based on Byzantine agree-
ment. Section 3.2 presents an algorithm that solves the problem by first iter-
atively splitting the processors into smaller groups until at least one correct
processor gets a unique new name, and then using it to assign all the processors
unique new names. In Section 3.3 we briefly discuss solutions based on the orig-
inal algorithms of Attiya et al. [3]. All the presented algorithms assume n > 3t
and work for model ML.

3.1 Renaming Using Byzantine Agreement

Using Byzantine agreement it is possible to solve the renaming problem in a sim-
ple and natural way. Moreover, it provides a “high quality” solution: the target
namespace can be made small and the original order of the ids is automatically
preserved. We note that Byzantine agreement was studied mainly under the
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assumption of a priori acquainted processors, which does not hold here. Yet,
such an assumption is not necessary [16,17,18].

The idea of our renaming algorithm is rather simple: first each correct proces-
sor p computes two sets of ids, where the first set (Jp) contains all the processor
ids known to p, and the second set (Ip) contains only the ids of the “well behaved”
processors. In addition, these sets satisfy Ip ⊆ Jq for any two correct processors
p and q. Next, an instance of Byzantine agreement protocol is executed for every
id, to decide if it should be taken into account. A correct processor p participates
only in instances of ids that appear in Jp. The decisions are consistent because
whenever an id belongs to the I-set of some correct processor, all the correct
processors participate in its instance, and if an id does not belong to the I-set
of any correct processor, the decision is guaranteed to be 0 (i.e., to drop the id),
even if some correct processors do not participate. All the correct processors end
up with the same set of ids (that contains the ids of all the correct processors),
then each processor decides on the rank of its own id in this set.

The algorithm and the formal proof of its correctness can be found in [18].

3.2 Fast Byzantine Renaming

The renaming algorithm presented in the previous section relies on an under-
lying Byzantine agreement protocol. However, it is well known that renaming
is “easier” than consensus. For example, in the crash failure case, synchronous
wait-free renaming can be performed in O(log n) rounds [9] (consensus requires
Ω(n) rounds), and it can also be solved asynchronously in the presence of up to
�(n− 1)/2� failures [3] (consensus is not solvable asynchronously even if a single
crash failure is possible). These observations suggest that it would be interesting
to find a Byzantine renaming algorithm that does not use Byzantine agreement.

Fig. 4 presents an O(log n) round renaming algorithm that does not rely on
Byzantine agreement. As in [9] and several shared memory algorithms [15,5], the
idea is to split the processors into smaller and smaller groups. Every processor
starts with an empty string and iteratively extends this string according to the
position of its identifier in the set of identifiers of all the processors whose string
is equal to its own. This approach works for the crash failure case (see [9]), since
eventually each group contains at most one processor. However, it is insufficient
for Byzantine failures, because in some groups the faulty processors may become
(an arbitrarily large) majority, in which case they can prevent the group from
further splitting.

Nevertheless, there always exists at least one group which does not have this
problem, so that eventually at least one correct processor p0 chooses a unique
new name. Moreover, by using the technique of echo messages [21], it is pos-
sible to ensure that no faulty processor is able to claim multiple new names,
which in particular implies that the new name of p0 is not shared by any faulty
processor. The method used for Byzantine failures is to treat the new names as
namespaces in which a name is assigned to every processor by the namespace
owner. Renaming can be solved this way because at least one namespace is
completely controlled by a correct processor.
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Initial setup (1st round): /* initialization phase, round 1 */

1: send (processorID, λ) to all
Initial setup (2nd round): /* initialization phase, round 2 */
2: for 1 ≤ i ≤ n do
3: if (α, λ) message was received from link i in round 1 then
4: lnk[i].ID := α
5: send echo(α) to all
6: receive messages
7: for 1 ≤ i ≤ n do
8: if echo(lnk[i].ID) messages were received from n − t distinct processors then
9: lnk[i].str := λ
10: else
11: lnk[i].str :=⊥
In rounds 2k + 1, where 1 ≤ k ≤ K: /* splitting phase k, round 1 */
12: let I :=

{lnk[i].ID |1 ≤ i ≤ n ∧ lnk[i].str = lnk[n].str }
13: let d :=

1 if |I|/4 ≥ rankI(processorID) ≥ 1
2 if |I|/2 ≥ rankI(processorID) > |I|/4
3 if 3|I|/4 ≥ rankI(processorID) > |I|/2
4 if rankI(processorID) > 3|I|/4

14: append to lnk[n].str: (i) d; (ii) the 7 most significant digits in the decimal representation of |I|
15: send (processorID, lnk[n].str) to all
16: receive messages
17: for 1 ≤ i ≤ n do
18: if (lnk[i].ID, σ) was received from link i and σ is a legal string for phase k and lnk[i].str is

a prefix of σ then
19: lnk[i].str := σ
20: else
21: lnk[i].str :=⊥
In rounds 2k + 2, where 1 ≤ k ≤ K: /* splitting phase k, round 2 */
22: for 1 ≤ i ≤ n do
23: send echo(lnk[i].ID, lnk[i].str) to all
24: receive messages
25: for 1 ≤ i ≤ n do
26: if echo(lnk[i].ID, lnk[i].str) were received from < n − t distinct processors then
27: lnk[i].str :=⊥
In round 2K + 3: /* decision phase, round 1 */
28: for 1 ≤ i ≤ n do
29: send (processorID, lnk[i].ID, lnk[n].str, i) to all
In round 2K + 4: /* decision phase, round 2 */
30: for 1 ≤ i ≤ n do
31: if (lnk[i].ID, γ, lnk[i].str, j) was received via link i and there is no 1 ≤ i′ ≤ n s.t. lnk[i′].ID �=

lnk[i].ID ∧ lnk[i′ ].str = lnk[i].str then
32: send echo(lnk[i].ID, γ, lnk[i].str, j) to all
In round 2K + 5: /* decision phase, round 3 */
33: for 1 ≤ i ≤ n do
34: if echo(lnk[i].ID, γ, lnk[i].str, j) were received from n−t distinct processors and there are no

γ′ �= γ and 1 ≤ i′ ≤ n s.t. echo(lnk[i′ ].ID, γ′, lnk[i].str, j) were received from n − t distinct
processors then

35: send ACK(lnk[i].ID, γ, lnk[i].str, j) to all
36: receive messages
37: let 1 ≤ i0 ≤ n be a minimal number s.t. ACK(lnk[i0].ID, processorID, lnk[i0 ].str, j) were

received from n − t distinct processors
38: decide on (lnk[i0 ].str, j)

Fig. 4. A fast Byzantine renaming algorithm

The renaming algorithm in Fig. 4 consists of an initialization phase (the first
two rounds), O(log n) splitting phases (each taking two rounds), and a final
phase (the last three rounds) in which a processor allocates new names in its
namespace (computed during the splitting phases) for all the processors in the
system (round 2K + 3), and then picks some “legal” namespace together with
the name that it was assigned inside that namespace (round 2K + 5).
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In Fig. 4 we denote an empty string by λ, and the NULL string, which
by definition cannot be a prefix of any other string, by ⊥. For convenience, it
is assumed that the links are labeled 1, ..., n, where link n is a self-loop. The
number of splitting phases is denoted by K = O(log n) (the exact value follows
from the proof). rankI(α) denotes the rank of an id α in the set I, i.e., the place
of α in a list of elements in I sorted in ascending order.

For a string σ, let Ck(σ) denote the set of (identifiers of) the correct processors
whose lnk[n].str variable at the end of phase k ≥ 0 (i.e., at the end of round
2k+2), is σ. Note that the variable lnk[n].str holds the string that the processor
has chosen for itself (so far), which follows from the convention that the nth link
is a self loop.

In addition to Ck(σ), we define the set Fk(σ) of the faulty identifiers that
correspond to the string σ. Formally, an identifier β belongs to Fk(σ) iff one of
the following two conditions is satisfied:

(i) β /∈ Ck(σ) and there exists a correct processor p and 1 ≤ i ≤ n − 1 s.t.
(lnk[i].ID)p = β and (lnk[i].str)p = σ at the end of phase k.

(ii) β ∈ Ck(σ) and there exist n− 2t correct processors p1, ..., pn−2t s.t. ∀ 1 ≤
j ≤ n−2t, ∃i1, i2 with (lnk[i1].ID)pj = (lnk[i2].ID)pj = β and (lnk[i1].str)pj =
(lnk[i2].str)pj = σ.

Intuitively, Fk(σ) contains all the ids that are associated with the string σ which
do not belong to any correct processor in Ck(σ), together with ids of the correct
processors associated with σ that have a faulty duplicate that is also associated
with σ.

Below we sketch the proof of the correctness of the renaming algorithm in
Fig. 4. A formal proof appears in Appendix A.

The first step is to show that |F0(λ)| < 2t, which implies that from the
beginning the number of faulty ids that satisfy (i) or (ii) is smaller than the
number of the correct processors. Since in the following stages of the algorithm
both the correct and the faulty ids are only splitted and no new ids can be
introduced, the above inequality implies that for any 1 ≤ k ≤ K there exists a
string σ such that |Ck(σ)| > |Fk(σ)|.

Next we show that a group Ck(σ) of correct processors that satisfies |Ck(σ)| >
|Fk(σ)| is splitted in the (k+1) phase into at least two groups (unless it is already
of size 1). Moreover, when |Ck(σ)| is higher than some (constant) threshold, each
of the groups into which Ck(σ) splits is smaller than Ck(σ) by some constant
fraction. This result implies that after K = O(log n) splitting phases, there exists
a string σ0, such that CK(σ0) = {α0} and FK(σ0) = ∅.

Based on the above, the correctness of the algorithm can be proved as follows:
First we show that two correct processors cannot decide on the same new name.
Then we show that since there exists at least one legal namespace from which
new names can be chosen (the namespace σ0, controlled by correct processor with
id α0), every correct processor is able to decide on a new name. Finally, since
in each of the O(log n) splitting phases the strings are extended by a constant
number of symbols, the target namespace is of size O(poly(n)).
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3.3 Asynchronous Byzantine Renaming

In [3], which introduced the renaming problem for the asynchronous message
passing environment with crash failures, the basic algorithm operates by con-
tinuously exchanging all the ids that each processor has discovered so far. It
is shown that eventually the exchanged vectors of ids must converge to stable
vectors, i.e., vectors shared by the majority of the processors. Since the stable
vectors are totally ordered by the inclusion relation, they can be used for renam-
ing: a new name which consists of the size of a stable vector and of the rank of
processor’s original id in a stable vector is guaranteed to be unique.

In the Byzantine failure case it is a common practice to use echo messages to
verify every message received [21]. In our case, if an id is added to the vector only
after it was acknowledged by at least n− t echo messages from distinct proces-
sors, the basic renaming algorithm of [3] is transformed into an asynchronous
algorithm that tolerates �(n− 1)/3� Byzantine failures.

In [3], two more complex renaming algorithms are presented: a renaming al-
gorithm with a target namespace of size n+ t, and an order preserving renaming
algorithm. Both algorithms rely on the fact that processors do not cheat in a
more subtle ways than the basic algorithm. Thus, these algorithms cannot be
made Byzantine fault tolerant in a similarly straightforward manner.

4 Conclusions

This paper considered the renaming problem in a totally connected synchronous
network. It was shown that when faulty processors are able to falsify their names
(the ML model), the problem cannot be solved in an a priori bounded number
of rounds, for n+ (n mod 3) ≤ 3t. For the case of faulty processors that cannot
cheat about their names (the MI model), this bound implies that renaming
cannot be solved when n+ (n mod 4) ≤ 2t. We also presented three algorithms
for solving the Byzantine renaming problems for n > 3t, each using a different
well known paradigm. One of the algorithms works in the asynchronous model
as well.

The Byzantine renaming problem offers a number of interesting open ques-
tions. The most important one is to find the maximal number of failures that
can be tolerated by a renaming algorithm. This mainly concerns the MI model,
since the bound that was obtained in Section 2 for ML is almost tight (a gap
of one fault remains in case n ≡ 2 mod 3). Another direction is to find fast
algorithms with a small (possibly even linear) size of the target namespace.

The above questions are also interesting in the asynchronous case of the
Byzantine renaming problem. An additional open question in this case is the
size of the minimum possible target namespace. We note that in the synchro-
nous system the last question can be settled for n > 3t by exploiting the possi-
bility of consensus, in which case for both the MI and the ML models the new
namespace can be of size n (the best possible).
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A Algorithm for Fast Byzantine Renaming

Below we prove the correctness of the renaming algorithm in Fig. 4. The proof
proceeds as described in Section 3.2. For convenience we often refer to a correct
processor directly by its id. To denote the id of the correct processor to which a
variable belongs subscripts are used.

Lemma 1. |F0(λ)| < 2t.

Proof. Recall that from the definitions in Section 3.2 it follows that C0(λ) is the
set of ids of all the correct processors. Consider some β ∈ F0(λ). If β 
∈ C0(λ)
then there exists a correct processor α such that at the end of the second round
(lnk[i].ID)α = β and (lnk[i].str)α = λ. This is possible iff α received n − t
echo(β) messages, i.e., at least n− 2t correct processors received (β, λ) message
in the first round. If β ∈ C0(λ), then in the first round at least n − 2t correct
processors received (β, λ) message from at least two different links.

In both cases β accounts for n−2t links between correct and faulty processors
(in the 1st round). The total number of such links is (n − t)t. Thus |F0(λ)| ≤
(n− t)t/(n− 2t) < 2t, where the last inequality follows from n > 3t. �
Since |C0(λ)| = n− t, the above lemma in particular implies |C0(λ)| > |F0(λ)|.

Lemma 2. For every K ≥ k ≥ 0, a string σ which is valid for phase k and
a string στ (στ denotes the concatenation of strings σ and τ) valid for phase
k + 1, it holds that ∪τCk+1(στ) = Ck(σ) and ∪τFk+1(στ) ⊆ Fk(σ).

Proof. For most cases the property follows directly from the definitions of the
sets together with the fact that all the string variables in the algorithm are
modified only by appending of new suffixes. The only non trivial case is when
some β ∈ Fk+1(στ) s.t. β 
∈ Ck+1(στ) belongs to Ck(σ). In this case there
exists a correct processor α s.t. at the end of phase k + 1 (lnk[i].str = στ)α and
(lnk[i].ID = β)α (for some i). This is possible iff α received in round 2(k+1)+2
n−t echo(στ, β) messages, which implies that during phase k+1 there are n−2t
correct processors that have two channels associated with the id β, one of which
is also associated with the string στ . Thus β ∈ Fk(σ). �
Together, Lemma 1 and Lemma 2 imply that for every k there exists a string σ
such that |Ck(σ)| > |Fk(σ)|.

The following property follows directly from the definitions and the algorithm:

Property 1. If α ∈ Ck(σ), then the set Iα computed by the correct processor α
in the beginning of phase k + 1 satisfies Ck(σ) ⊆ Iα ⊆ Ck(σ) ∪ Fk(σ).

Lemma 3. If 106 ≥ |Ck(σ)| > max {|Fk(σ)| , 1}, then |Ck(σ)| > |Ck+1(στ)|
for any non-empty string τ .

Proof. Property 1 implies that when the sizes of the sets Ck(σ) and Fk(σ) are
bounded by 106, the size of the set I computed in the beginning of phase k + 1
(see line 12 in Fig. 4) is entirely expressed by the digits appended to the string
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(line 14). If the size of the set I is not the same among all the processors in
Ck(σ), then the lemma follows immediately.

Otherwise, let α1 = minCk(σ) and α2 = maxCk(σ). Let S = |Ck(σ)| and let
S + s = |Iα1 | = |Iα2 |, where Iα1 and Iα2 are the I sets computed by α1 and α2

in phase k + 1. Property 1 implies S > s.
To prove the lemma, consider first the case S−1 > s. In this case, in Iα1 there

are S−1 elements higher than α1 (namely Ck(σ)\{α1}), and at most s elements
lower than α1. It follows that in phase (k +1) dα1 ≤ 2. At the same time, in Iα2

there are S − 1 elements lower than α2 (namely Ck(σ) \ {α2}), and at most s
elements higher than α2. Therefore dα2 ≥ 3, which completes the proof for this
case.

In the second case S − 1 = s. It follows that Iα1 = Ck(σ) ∪ Fk(σ), since
otherwise |Ck(σ)| > |Fk(σ)| does not hold. Similarly Iα2 = Ck(σ)∪Fk(σ). Since
the distance between α1 and α2 is s, while |Ck(σ) ∪ Fk(σ)| = 2s+ 1, α1 and α2

cannot belong to the same quarter of Ck(σ) ∪ Fk(σ), i.e., dα1 < dα2 . �

Lemma 4. If |Ck(σ)| > |Fk(σ)| and |Ck(σ)| ≥ 32, then for any non-empty
string τ it holds that 31 |Ck(σ)| /32 ≥ |Ck+1(στ)|.

Proof. As before, let S denote the size of the set Ck(σ). Suppose the lemma
is incorrect, i.e., there exists τ0 such that |Ck+1(στ0)| > 31S/32. Observe that
Property 1 implies that for any α ∈ Ck(σ) the I-set computed in phase k + 1
satisfies 2S > |Iα| ≥ S. It follows that for any α ∈ Ck+1(στ0) S + s + εS >
|Iα| ≥ S + s, where s = minα∈Ck+1(στ0) |Iα| − S, and ε depends on the number
of the most significant digits of the size of the I-set that the algorithm appends
to the string. When 7 digits in decimal representation are appended (line 14),
ε < 10−6.

Consider two possible cases:
(i) s ≤ 7S/8. In this case, for any α ∈ Ck+1(στ0) |Iα|/2 < (15/16 + ε/2)S <

31S/32. It follows that the processor with the highest id in Ck+1(στ0) assigns
in phase k + 1 its d variable the value 3 or 4. The processor with the lowest id
in Ck+1(στ0) assigns in phase k + 1 its d variable the value 1 or 2, which is a
contradiction.

(ii) s > 7S/8. In this case, for any α, α1, α2 ∈ Ck+1(στ0) it holds that∣∣rankIα1
(α)− rankIα2

(α)
∣∣ < S/8 + εS. (4)

W.l.o.g. suppose that in phase k + 1 all the processors in Ck+1(στ0) choose
to assign their d variable the value 2, i.e., for any α ∈ Ck+1(στ0) |Iα|/2 ≥
rankIα(α) > |Iα|/4, which implies (S + s+ εS)/2 ≥ rankIα (α) > (S + s)/4. By
applying (4) we get that for any α, α0 ∈ Ck+1(στ0) it holds that (S+s+εS)/2+
S/8 + εS ≥ rankIα0

(α) > (S + s)/4 − S/8 − εS. This implies ∀α ∈ Ck+1(στ0)
34S/32+ 3εS/2 ≥ rankIα0

(α) > 11S/32− εS, which is an obvious contradiction
(a set of size 31S/32 cannot have its ranks in an interval of length smaller than
31S/32). �

Lemma 5. No two correct processors end up with the same new name.
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Proof. Assume by contradiction that two correct processors, α1 and α2 decide
on the same name (σ, j). It follows that there exist β, β′ such that in round
2K + 5 processor α1 received the message ACK(β, α1, σ, j) from n − t distinct
processors, and processor α2 received the message ACK(β′, α2, σ, j) from n− t
distinct processors. Therefore there must exist a correct processor that in round
2K + 5 sends both these messages. This is a contradiction, since the rule for
sending ACK messages (lines 34, 35) forbids it. �

Lemma 6. If by the end of the K splitting phases FK(σ) = ∅ and CK(σ) =
{α0}, then every correct processor decides on a new name.

Proof. Consider the correct processor α0. In round 2K + 3 α0 sends (to all) a
message (α0, α, σ, j), for any id α that belongs to a correct processor (typically j
is the label of the link which connects α0 to α, but it can also be a label of a link
between α0 and a faulty processors that presents itself as α). Since FK(σ) = ∅,
the condition on line 31 implies that all the correct processors send in round
2K + 4 an echo(α0, α, σ, j) message to all. Next consider the last round. If all
the correct processors send an ACK(α0, α, σ, j) message, the proof is complete.
Otherwise, there exists a correct processor that does not send ACK(α0, α, σ, j),
despite receiving echo(α0, α, σ, j) messages from n− t distinct processors. From
the condition on line 34 it follows that there exist n− 2t correct processors that
in round 2K + 4 sent an echo(β, γ′, σ, j) message, where γ′ 
= α, in addition to
the echo(α0, α, σ, j) message. This is impossible if β 
= α0 (see the condition on
line 31). However, if β = α0 each one of these n−2t correct processors must have
two different links associated with the id α0 and the string σ, i.e., α0 ∈ FK(σ).
This contradicts the assumption. �

Theorem 3. The algorithm in Fig. 4 solves the Byzantine renaming problem in
model ML for n > 3t in O(log n) rounds, with target namespace of O(poly(n))
size.

Proof. By Lemmas 1, 2, 3 and 4 it follows that after appropriately chosen
K = O(log n) splitting phases, there exists some σ such that CK(σ) = {α0},
and FK(σ) = ∅. For such a K Lemma 5 and Lemma 6 imply that renaming is
achieved.

In every splitting phase the string of each processor grows by a constant
number of bits. Thus, the strings are O(log n) bits long. Since the final name
consists of one such string and a number between 1 and n, the new namespace
is of size O(poly(n)). (To get the best possible size, one needs to optimize the
parameters in Lemmas 3 and 4.) �
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Abstract. This paper presents a novel approach for lock-free implementations
of concurrent data structures, based on dynamically maintaining a coloring of
the data structure’s items. Roughly speaking, the data structure’s operations are
implemented by acquiring virtual locks on several items of the data structure and
then making the changes atomically; this simplifies the design and provides clean
functionality. The virtual locks are managed with CAS or DCAS primitives, and
helping is used to guarantee progress; virtual locks are acquired according to a
coloring order that decreases the length of waiting chains and increases concur-
rency. Coming back full circle, the legality of the coloring is preserved by having
operations correctly update the colors of the items they modify.

The benefits of the scheme are demonstrated with new nonblocking implemen-
tations of doubly-linked list data structures: A DCAS-based implementation of a
doubly-linked list allowing insertions and removals anywhere, and CAS-based
implementations in which removals are allowed only at the ends of the list (inser-
tions can occur anywhere).

The implementations possess several attractive features: they do not bound
the list size, they do not leave accessible chains of garbage nodes, and they allow
operations to proceed concurrently, without interfering with each other, if they
are applied to non-adjacent nodes in the list.

1 Introduction

Many core problems in asynchronous multiprocessing systems revolve around the
coordination of access to shared resources and can be captured as concurrent data
structures—abstract data structures that are concurrently accessed by asynchronous
processes. A prominent example is provided by list-based data structures: A double-
ended queue (deque) supports operations that insert and remove items at the two ends
of the queue; it can be used as a producer-consumer job queue [3]. A priority queue can
be implemented as a doubly-linked list where removals are allowed only at the ends,
while items can be inserted anywhere at the queue; it can be used to queue process
identifiers for scheduling purposes. Finally, a generic doubly-linked list (hereafter, often
called simply a linked list) allows insertions and removals anywhere in the linked list.

Concurrent data structures are implemented by applying primitives—provided by the
hardware or the operating system—to memory locations. Lock-free implementations do
not rely on mutual exclusion, thereby avoiding the inherent problems associated with
locking—deadlock, convoying, and priority-inversion. Lock-free implementations must

S. Dolev (Ed.): DISC 2006, LNCS 4167, pp. 31–45, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



32 H. Attiya and E. Hillel

rely on strong primitives [15], e.g., CAS (compare and swap) and its multi-location
variant, kCAS.

Lock-free implementations are often complex and hard to get right; even for rela-
tively simple, key data structures, like deques, they suffer from significant drawbacks:
Some implementations may contain garbage nodes [14], others statically limit the
data structure’s size [16] or do not allow concurrent operations on both ends of the
queue [21]. Even when DCAS (i.e., 2CAS) is used, existing implementations either are
inherently sequential [11, 12] or allow to access chains of garbage nodes [9].

Implementing concurrent data structures is fairly simple if an arbitrary number of
locations can be accessed atomically. For example, removing an item from a doubly-
linked list is easy if one can atomically access three items—the item to be removed and
the two items before and after it (cf. [9]).

Since no multiprocessor supports primitives that access more than two locations
atomically, it is necessary to simulate them in software using CAS or DCAS. This can be
done using methods such as software transactional memory [22] or the so-called lock-
ing without blocking techniques [25,7]. The basic idea of these methods is to use CAS in
order to acquire virtual locks on the items—one item at a time, and help processes that
hold virtual locks on desired items until they are released. This guarantees that the sim-
ulation is nonblocking [15], namely, in any infinite execution, some pending operation
completes within a finite number of steps. Unfortunately, the resulting implementations
may have long waiting chains, creating interference among operations and reducing the
implementation’s throughput.

Attiya and Dagan [4] suggest an alternative implementation of binary operations that
reduces interference by using colors (from a small set). This color-based virtual locking
scheme starts by legally coloring the items it is going to access, so that neighboring
items have distinct colors. Then, the algorithm acquires the virtual locks in increasing
order of colors, thereby avoiding long waiting chains. Afek et al. [1] extended this
implementation to arbitrary k-ary operations.

To evaluate whether operations that access disjoint parts of the data structure, or
are widely separated in time, do not interfere with each other, Afek et al. [1] define
two measures. These definitions rely on the familiar notion of a conflict graph, whose
nodes are the data items and there is an edge between two items if they are accessed by
the same operation. Roughly speaking, the distance between operations in the conflict
graph is the length of the shortest path between their data items. An implementation
has d-local step complexity if only operations in distance less than or equal to d in
the conflict graph can delay each other; it has d-local contention if only operations
in distance less than or equal to d in the conflict graph can access the same locations
simultaneously.1 In particular, when there is no path in the conflict graph between the
data items accessed by two operations, they do not delay each other or access the same
memory locations; thus, d-local step complexity and contention extend and generalize
disjoint-access parallelism [19].

The implementations [1,4] haveO(log∗ n)-local step complexity and contention, and
they are rather complicated, making them infeasible for fundamental linked list-based

1 Attiya and Dagan [4] used a more complicated measure called sensitivity, which is not dis-
cussed in this extended abstract.
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data structures. The major reason for the cost and complication of these implementa-
tions is the need to color memory locations at the beginning of each operation, since
operations access arbitrary and unpredictable sets of memory locations.

When operations are applied on a specific data structure, however, they access its
constituent items in a predictable, well-organized manner; e.g., linked list operations
access two or three consecutive items. In this case, why color the accessed items from
scratch, each time an operation is invoked? After all, the implementation initializes the
data structure and provides operations that are the only means for manipulating it. If the
colors are built into the items, then an operation can rely on them to guide its locking
order, without coloring them first. In return, the operation needs to guarantee that the
modifications it applies to the data structure preserve the legality of the items’ coloring.

We demonstrate this approach with two new doubly-linked list algorithms: A CAS-
based implementation in which removals are allowed only at the ends of the list (and
insertions can occur anywhere), and a DCAS-based implementation of a doubly-linked
list allowing insertions and removals anywhere.

The CAS-based implementation, allowing insertions anywhere and removals at the
ends, is based on a 3-coloring of the linked list items. It has 4-local contention and
4-local step complexity.; namely, an operation only contends with operations on items
close to its own items on the linked list, and it is delayed only due to such operations.
When insertions are also limited to occur at the ends, the analysis can be further refined
to show 2-local contention and 2-local step complexity; this means that operations at
the two ends of a deque containing three data items (or more) never interfere with each
other.

Handling removals from the middle of the linked list is more difficult: removing an
item might entail recoloring one of its neighbors, requiring to make sure its neighbor’s
color is not changed concurrently. Thus, a remove operation has to lock three consec-
utive items; under a legal coloring it is possible that two of these items (necessarily
non-consecutive) have the same color. We employ a DCAS operation to lock these two
nodes atomically, thereby avoiding hold-and-wait chains. This algorithm has 6-local
contention and 2-local step complexity. To the best of our knowledge, this is the first
nonblocking implementation of a doubly-linked list from realistic primitives, which al-
lows insertions and removals anywhere in the list, and has low interference.

In our algorithms, an operation has constant obstruction-free step complexity [10];
namely, an operation completes within O(1) steps in an execution suffix in which it is
running solo. Another attractive feature of our implementations is that it does not leave
accessible chains of stale “garbage” nodes.

In recent years, a flurry of papers proposed implementations of dynamic linked list
data structures, yet none of them provided all the features of our algorithms.

Harris [14] used CAS to implement a singly-linked list, with insertions and
removals anywhere; however, in this algorithm, a process can access a node pre-
viously removed from the linked list, possibly yielding an unbounded chain of un-
collected garbage nodes. Michael [20] handled these memory management issues.
Elsewhere [21], Michael proposed an implementation of a deque; in his algorithm, a
single word (called anchor) holds the head and tail pointers, causing all operations
to interfere with each other, thereby making the implementation inherently sequential.
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Sundell and Tsigas [24] avoid the use of a single anchor, allowing operations on the
two ends to proceed concurrently. They extend the algorithm to allow insertions and re-
movals in the middle of the list [23]; in the latter algorithm, a long path of overlapping
removals may cause interference among distant operations; moreover, during interme-
diate states, there can be a consecutive sequence of inconsistent backward links, causing
part of the list to behave as singly-linked. An obstruction-free deque, providing a live-
ness property weaker than nonblocking, was proposed by Herlihy et al. [16]; besides
blocking when there is even a little contention, this array-based implementation bounds
the deque’s size.

Greenwald [11, 12] suggests to use DCAS to simplify the design of implementa-
tions of many data structures. His implementations of deques, singly-linked and doubly-
linked lists synchronize via a single designated memory location, resulting in a strictly
sequential execution of operations. Agesen et al. [2] present the first DCAS-based non-
blocking, dynamically-sized deque implementation that supports concurrent access to
both ends of the deque, and has 1-local step complexity; this algorithm does not allow
insertions or removals in the middle of the linked list. The SNARK algorithm [8] is an
attempt for further improvement that uses only a single DCAS primitive per operation
in the best case, instead of two. Unfortunately, SNARK is incorrect [9]; the corrected
version allows removed nodes to be accessed from within the deque, thus preventing
the garbage collector from reclaiming long chains of unused nodes. Doherty et al. [9]
even argue that primitives more powerful than DCAS, e.g., 3CAS, are needed in order to
obtain simple and efficient nonblocking implementations of concurrent data structures.

The rest of this paper is organized as follows. Section 2 presents the model of a
asynchronous shared-memory system, while Section 3 defines local contention and lo-
cal step complexity in a dynamic setting. Most of the paper describes the DCAS-based
implementation of a doubly-linked list allowing insertions and removals anywhere (Sec-
tion 4). Section 6 outlines the modifications needed to obtain the CAS-based implemen-
tation that does not allow removals from the middle. The complete code and proof of
correctness for both algorithms appear in the full version of this paper [5].

2 Preliminaries

We consider a standard model for a shared memory system [6] in which a finite set of
asynchronous processes p1, . . . , pn communicate by applying primitive operations to
m shared memory locations, l1, . . . , lm.

A configuration is a vector C = (q1, . . . , qn, v1, . . . , vm), where qi is the local state
of pi and vj is the value of memory location lj .

An event is a computation step by a process, pi, consisting of some local computation
and the application of a primitive to the memory. We allow the following primitives:
READ(lj) returns the value vj in location lj ; WRITE(lj , v) sets the value of location
lj to v; CAS(lj , exp, new) writes the value new to location lj if its value is equal to
exp, and returns a success or failure flag; DCAS is similar to CAS, but operates on two
independent memory locations.

An execution interval α is a (finite or infinite) alternating sequence
C0, φ0, C1, φ1, C2, . . ., where Ck is a configuration, φk is an event and the
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application of φk to Ck results in Ck+1, for every k = 0, 1, . . .. An execution is
an execution interval in which C0 is the unique initial configuration.

A data structure of type T supports a set of operations that provide the only means
to manipulate it. Each data structure has a sequential specification, which indicates how
it is modified when operations are applied in a serial manner (in isolation).

An implementation of a data structure T provides a specific data-representation for
T ’s instances as a set of memory locations, and protocols that processes must follow to
carry out T ’s operations, defined in terms of primitives applied to memory locations.
We require the implementation to be linearizable [17].

This paper considers a doubly-linked list data structure, composed of nodes, each
with link pointers to its left and right neighboring nodes. Two special anchor nodes
serve as the first (leftmost) and last (rightmost) nodes in the doubly-linked list; they
cannot be removed from it, and hold no left link or no right link, respectively. A node
is valid in configuration C if it is either an anchor, or both its left link and right link
pointers are not null.

We concentrate on the InsertRight, InsertLeft and Remove operations applied to some
source node in the linked list. Our description of their effects follows the description
of the deque operations in [2]:

insertRight(nd). If source is a valid node other than the right anchor, then insert nd to
the right of source and return SUCCESS; otherwise, return INVALID and the linked
list is unchanged.

insertLeft(nd). If source is a valid node other than the left anchor, then insert nd to
the left of source and return SUCCESS; otherwise, return INVALID and the linked
list is unchanged.

remove(). If source is a valid node other than an anchor, then remove source from
the linked list and return SUCCESS; otherwise, return INVALID and the linked list is
unchanged.

In order to apply an operation opi to the data structure, process pi executes the asso-
ciated protocol. The interval of an operation op, denoted Iop, is the execution interval
between the first and last events of the process executing op’s protocol; if the opera-
tion does not terminate, its interval is infinite. Two operations overlap if their intervals
overlap. The interval of a set of operations OP , denoted IOP , is the minimal execution
interval that contains all intervals, {Iop}op∈OP .

3 Locality Properties

The reference lock-based implementation of a data structure T atomically locks all the
memory locations that it accesses; these are called the lock set of the operation. The
lock set of an operation opi applied in state s is denoted LSs(opi). Different lock-
based implementations may have different lock sets. Since we aim for highly concurrent
implementations, we choose a reference implementation that locks as few data items as
possible; for a linked list data structure this number is a constant.

When operations are concurrent, the state of the data structure at a configuration C
is not necessarily unique. A state s of the data structure is possible in configuration C,
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(b) The corresponding conflict graph G(C).

Fig. 1. A simple conflict graph

if it is the result of some linearization that includes all operations that complete before
C and a subset of the operations that are pending in C. The set of all possible states in
C is denoted state(C).

Intuitively, the data set of an operation includes all the data items the operation ac-
cesses. When the data structure is dynamic, however, the data set changes over time and
it is unknown when the operation is invoked. For this reason, we need to consult the ref-
erence implementation regarding the data items it locks with respect to all the states of
the data structure during the operation’s interval. Formally, the data set of an operation
opi in configurationC is defined as DSC(opi) =

⋃
s∈state(C) LSs(opi), i.e., the union

of all the sets of data items the operation locks (under the reference implementation)
when the state of the data structure is in state(C). DS(opi) =

⋃
C∈Iopi

DSC(opi);

namely, the union of DSC(opi) over all configurations during opi’s execution interval.
The conflict graph of a configurationC, denotedG(C), occurring in some execution,

is an undirected graph that captures the distance between overlapping operations. If C
is in the execution interval of an operation opi, and v and u are data items inDSC(opi),
then the conflict graph includes an edge between the respective vertices mv and mu,
labeled opi. The conflict graph of an execution interval α is the graph

⋃
C∈α G(C).

For example, Figure 1(a) depicts the data set of several overlapping operations; op1,
op3, and op5 insert a new node to the right of m2, m4, and m8, respectively, while op2

and op4 removem3 and m6 respectively. Figure 1(b) depicts the corresponding conflict
graph; the new node, omitted from the figure, is also in the operation’s data set.

The conflict distance (in short distance) between two operations, opi, opj , in a con-
flict graph is the length (in edges) of the shortest path between some vertex mi in
DS(opi) and some (possibly the same) vertexmj inDS(opj). In particular, ifDS(opi)
intersect DS(opj), then the distance between opi and opj is zero. The distance is∞, if
there is no such path. In the conflict graph of Figure 1(b), the distance between op1 and
op2 is zero, the distance between op1 and op3 is one, the distance between op1 and op4

is two, and the distance between op1 and op5 is∞.
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We use this dynamic version of a conflict graph in the definitions of locality measures
suggested by Afek et al. [1]:

Definition 1. An algorithm has d-local step complexity if the number of steps per-
formed by process p during the operation interval Iop is bounded by a function of the
number of operations at distance smaller than or equal to d from op in the conflict
graph of its operation interval Iop.

Definition 2. An algorithm has d-local contention if in every execution interval for any
two operations, I{op1,op2}, op1 and op2 access the same memory location only if their
distance in the conflict graph of I{op1,op2} is smaller than or equal to d.

4 DCAS-Based Doubly-Linked List Algorithm

We demonstrate our approach with a nonblocking implementation, DCAS-CHROMO, of
a doubly-linked list with insertions and removals anywhere. At the heart of our method-
ology is an enhancement of the colored-based virtual locking scheme. We first review
this scheme, and then describe our algorithm.

The Color-Based Virtual Locking Scheme: Data structures can be implemented by the
nonblocking virtual locking scheme [7,22,25]. A concurrent implementation is system-
atically derived from any lock-based algorithm: an operation starts by acquiring virtual
locks on the data items in its data set (LOCK phase); then, the appropriate changes are
applied on these data items (APPLY phase); finally, the operation releases the virtual
locks (UNLOCK phase). Similar to a lock-based solution, while a data item is locked by
an operation, other operations can neither lock nor modify it. This means the algorithm
is relieved of handling inconsistent states due to contention.

An operation is blocked if a data item in its data set is locked by another, blocking
operation. In order to make the scheme nonblocking, the process executing the blocked
operation op helps the blocking operation op′ to complete and release its data set. Sev-
eral processes may execute an operation; the process that invokes the operation is its
initiator, while the executing processes are processes helping the initiator to complete
or the initiator itself. CAS primitives are used to guarantee that only one of the executing
processes performs each step of the operation, and others have no effect.

This scheme induces recursive helping, in which one process helps another process
to help a third process and so on, possibly causing long helping chains. For example,
assume the nodes in Figure 1(a) are locked in ascending order. Consider an execution α
in which op2, op3 and op4 concurrently lock their left-most data items successfully, and
then op1 tries to lock its data items while the other operations are delayed. Since m2 is
locked by op2, op1 has to help op2; since m4 is locked by op3, op1 has to help op3; and
since m5 is locked by op4, op1 has to help op4. Thus op1 is delayed by operations on a
path in α’s conflict graph, from some vertex inDS(op1). In general, op1 can be delayed
by any operation within finite distance from it, implying that the locality is high.

Shavit and Touitou [22] overcome this problem by helping only an immediate neigh-
bor in the conflict graph. Nevertheless, the number of steps a process performs depends
on the length of the longest path from its data set in the conflict graph. Consider again
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Fig. 2. 3-Coloring of the linked list in Figure 1(a)

an execution that starts with op2, op3 and op4 locking their low-address data items suc-
cessfully, then op1 fails to lock m2, op2 fails to lock m4, and op3 fails to lock m5; each
operation then helps its (immediate) neighbor. Prior to helping, op2 and op3, relinquish
their locks and fail, thus op1 and op2 discover their help is unnecessary. Assume that
op4 completes, and again op1, op2 and op3 try to lock their data sets. It is possible that
op2 and op3 lock their low-address data items, and op1 tries, in vain, to help op2, which
releases its locks due to op3, etc. As the length of the path of overlapping operations
increases, the number of times op1 futilely helps op2 increases as well.

A color-based virtual locking scheme [4] bounds the length of helping chains by M-
coloring the data items with an ordered set of colors, c1 < c2 < . . . < cM . An operation
acquires locks on data items in an increasing order of colors; after it locks all ci-colored
data items, we say the operation locked color ci. In this scheme, op helps op′ only if op′

already locked a higher color.
Figure 2 presents a 3-coloring of the linked list in Figure 1(a) using the colors

r(red) < g(green) < b(blue). Assume op3 locks m4 and then tries to lock m5, with
color b. If the lock on m5 is already held by op4, then op3 has to help op4. Note how-
ever, that b is the largest color, which means that op4 already locked all the nodes in data
set. This means that op3 will only have to apply op4’s changes, and op3 is not required
to recursively help additional operations. Along these lines, it is possible to prove that
the length of helping chains is bounded by the number of colors, M , and the number
of times an operation helps other operations is bounded by a function of the number of
operations within distance M [4].

Originally [1, 4], colors were assigned to nodes from scratch each time an opera-
tion starts. This is done in a DECISION phase, which obtains information about op-
erations (and their data sets) at non-constant distance; thus, the DECISION phase has
non-constant locality properties.

Our Approach: We achieve constant locality properties by employing two complemen-
tary algorithmic ideas: The first is to maintain the data structure legally colored at all
times, and the second is to atomically lock all data items with the same color.

The key idea of our approach is to keep the coloring legal while the operation is in
its APPLY phase, rendering the DECISION phase obsolete. That is, the colors are built
into the nodes, and the operation updates the colors so that nodes remain legally colored.
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These changes are limited to the nodes in the operation’s data set, and bypass the need
to re-compute a legal coloring from scratch each time an operation is invoked.

The second idea avoids long helping chains due to symmetric color assignments.
For example, consider a long legally colored linked list of nodes with alternating col-
ors: b, r, b, r, b, r, . . .. Assume a set of concurrent operations, each of which is trying
to remove a different r-colored node, by first locking the node and its two b-colored
neighbors. An implementation that locks these two b-colored nodes one at a time, e.g.,
first the left neighbor, can lead to a configuration in which an operation holds its left
lock, and needs to help all operations to its right.

It is tempting to extend the notion of a legal coloring and require that any triple of
neighboring nodes is assigned distinct colors. This certainly will allow to follow the
color-based virtual locking scheme, but how can we preserve this extended coloring
property? In particular, when a node is removed, it is necessary to lock four nodes in
order to legally re-color the remaining three nodes; this requires to further extend the
coloring property to any four consecutive nodes, which in turn requires to lock five
consecutive nodes and so on.

Locking equally-colored nodes atomically provides an escape from this vicious cir-
cle, by avoiding this situation altogether. An operation accesses at most three consec-
utive nodes, which are legally colored, thus at most two of these nodes have the same
color, and a DCAS suffices for locking them. For example, in the scenario described
above, locking the two b-colored nodes atomically breaks the symmetry. This guaran-
tees that the LOCK phase has O(1)-local step complexity.

Another aspect of our algorithm is in handling the complications due to dynamically-
changing data structures. Previous implementations of the virtual locking scheme
handle static transactions [22] and multi-location operations [1, 4]; in both cases, an
operation accesses a pre-determined static data set.

Our algorithm addresses this problem, in a manner similar to [13], using a data
set memento, which holds a view of the data set when the operation starts. If, while
locking, a node and its memento are inconsistent, the operation skips the APPLY phase
to the UNLOCK phase where it releases all the locks it holds. If, on the other hand, the
operation completes its LOCK phase, then the locked data set memento is consistent
with the operation data set and the operation can continue with the APPLY phase as in a
static virtual locking scheme.

Detailed Description of Algorithm DCAS-CHROMO: First, we describe how operations
apply their changes to the data structure, and give some intuition of how the legal col-
oring is preserved; then we describe the helping mechanism that is responsible for the
nonblocking and locality properties.

The lock-based implementation we use as a reference has the following lock sets:
An InsertRight operation locks the new node to be inserted, the source node (to which
the operation is applied) and its right neighbor; an InsertLeft operation is symmetric;
a Remove operation locks the source node and both its left and right neighbors. After
locking, the operations apply changes to the respective set of left and right links as
described by the following code:
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Fig. 3. An example of an InsertRight operation - op1 in Figure 2

InsertRight::applyChanges() {
newNode.right ← source.right
newNode.left ← source
source.right.left ← newNode
source.right ← newNode

}

Remove::applyChanges() {
source.left.right ← source.right
source.right.left ← source.left
source.right ← ⊥
source.left ←⊥

}

Since our algorithm employs a virtual locking scheme, each operation proceeds in
exclusion in a manner similar to the lock-based one. Our implementation, however, also
needs to maintain the nodes legally colored. This requires adding one step to the Inser-
tRight operation (see Figure 3), and two steps to the Remove operation (see Figure 4).
To ensure that the coloring is legal at all times, we use a temporary color c0 < c1 during
the algorithm as described bellow. In the example figures, c0 is w(white).
InsertRight operation. Figure 3(a) presents the nodes m1,m2,m3,m4 from Figure 2,
and the new node, m, that op1 inserts to the right of m2. Before m is inserted to the
linked list, it is colored with the temporary color, w. op1 locks the nodes in its data set,
m2 and m3 (and effectively, also m), and then applies its changes as follows: update
right neighbor ofm (Figure 3(b)); update left neighbor ofm—now,m is legally colored,
since its neighborsm2 and m3 have colors different than w (Figure 3(c)); m is assigned
with a non-temporary color different than its neighborsm2 andm3 (Figure 3(d)); update
left neighbor of m3 (Figure 3(e)); update right neighbor of m2 (Figure 3(f)).

Remove operation. Figure 4(a) presents the nodes m1,m2,m3,m4,m5 from Figure 2,
op2 removes the node m3. op2 locks the nodes in its data set, m2,m3 and m4, before
it applies its changes as follows: m4 is assigned with the temporary color, w—now,
m4 is legally colored, since its neighbors m3 and m5 have colors different than w
(Figure 4(b)); update right neighbor of m2 (Figure 4(c)); update left neighbor of m4

(Figure 4(d)); set right and left neighbors of m3 to null (Figure 4(e)); m4 is assigned
with a non-temporary color different than its neighbors m2 and m5 so it is legally
colored (Figure 4(f)).

Both an InsertRight operation and a Remove operation access three consecutive
nodes in the data set, however each operation only changes the color of a single node.
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Fig. 4. An example of a remove operation - op2 in Figure 2

An InsertRight operation changes the color of the middle node, and a Remove opera-
tion changes the color of the right node. The color of the left node in the data set of an
operation is not modified. This ensures that no two adjacent nodes change their color
concurrently even if they belong to the data sets of two adjacent concurrent operations.

We now detail the color-based locking and helping mechanisms. An operation is
partitioned into invocations. To initiate an invocation, the initiator process generates
the operation’s data set memento, which traces inconsistencies in the data set due to
changes applied by concurrent operations. If the operation locks its data set and applies
its changes then the invocation completes successfully and the operation will not be
re-invoked. Otherwise, the invocation fails and the operation restarts a new invocation.

The state of an operation is a tuple 〈seq,phase,result〉: seq is an integer, initially 0,
incremented every time the operation fails and the initiator process reinvokes it; phase
indicates the locking scheme phase within the invocation, set to INIT at the beginning
of every invocation; result holds the result of the current invocation execution, set to
NULL at the beginning of every invocation.

Figure 5 shows the state transition diagram of an operation’s invocation. The dashed
line indicates re-invocation, increasing the sequence number of the operation. The state
transitions of an invocation in a best-case execution, encountering no contention, ap-
pear at the top. If an operation discovers, while initiating an invocation, that another
operation removed the source node then it need not apply its changes, and it skips to the
FINAL phase with an INVALID result; this operation will not be re-invoked. If an oper-
ation discovers that a node in its data set other than the source node is invalid, then the
operation needs to re-evaluate its data set. In such a case, the invocation fails and a new
invocation is restarted. Another scenario in which an invocation fails is if the operation
detects inconsistency with the data set memento while locking the data set. In this case,
the operation releases the locks it already acquired and restarts a new invocation.

When an operation op fails to lock color c it may discover that a node in its data set is
locked by another, blocking operation op′. In such a case, we follow the standard recur-
sive helping mechanism, i.e., op helps op′. Before helping op′, the executing process of
op verifies (again) that the nodes are consistent with their mementos. This is crucial for
maintaining the locality properties of the algorithm. If after an operation fails to lock the
nodes it discovers that none of them is locked by another operation, it simply retries to
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Fig. 5. Diagram of an operation state transitions model; the lower part of the state is the value of
result

acquire their locks. Finally, when an operation discovers that its source node is invalid
(as described above), it helps the operation that removes this node before skipping to its
FINAL phase, to preserve the correct order in which the operations complete.

Since an operation may be invoked more than once, its execution is composed of an
alternating sequence of acquiring and releasing locks. Having more than one process
executes the operation requires special care. Specifically, a process may acquire locks
of previous invocations or release locks acquired in a later invocation. Together with
the CAS primitives, the state is used to synchronize between the executing processes of
an operation. Before acquiring a lock the process verifies that the operation’s sequence
number is equal to the invocation it is executing. Furthermore, to prevent a process from
releasing locks acquired in a later invocation, the operation stamps any lock it acquires
with its sequence number. Before a process releases a lock, it verifies that the sequence
number stamped on the lock is equal to the invocation it is executing.

Some Implementation Details: We use object-oriented terminology and define opera-
tions as objects, whose structure and behavior are defined in the Operation hierarchy.

A process initializes an operation object with all the data required for its execution,
specifically the source node from the linked list on which the operation is applied. Al-
gorithm 1. outlines the generic protocol for an operation execution. The execution starts
with the execute method (line ex1) and as long as it suffers from contention and is un-
able to complete, the process repeatedly tries to re-invoke the operation (lines ex3-ex4):
First it generates the new data set memento (line t5); then it “helps” itself to follow the
locking scheme (line t7); lock nodes in its data set (line h2), apply its changes (line h4),
and releas the data set (line h6). Concrete operations, such as InsertRight and Remove,
extend the Operation structure and refine its protocols for cloning and manipulating the
data set with respect to their specifications. (The full pseudocode appears in [5].)

It is well-known that CAS primitives suffer from the ABA problem [18]: a process
p may read a value A from some memory location l, then other processes change l to
B and then back to A, later p applies CAS on l and the comparison succeeds whereas it
should have failed. The simplest way to avoid this problem is to associate each attribute
with a monotonically increasing counter. The attribute and the counter are manipulated
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Algorithm 1. Algorithm DCAS-CHROMO: Execution outline
ex1: Result Operation::execute() {
ex2: do
ex3: initiate new invocation
ex4: try()
ex5: while state.result = CONTENTION

ex6: return state.result
ex7: }

t1: Operation::try() {
t2: if source is invalid then
t3: helpBlocking(source.lock)
t4: transition to FINAL-INVALID state
t5: clone data set
t6: transition to LOCK state
t7: help(state.seq)
t8: transition to FINAL state
t9: }

h1: Operation::help(int seq) {
h2: lock data set // by ascending colors
h3: if state.phase = APPLY then
h4: apply changes
h5: transition to UNLOCK state
h6: unlock data set
h7: }

hb1: Operation::helpBlocking(Lock lock) {
hb2: if lock != ⊥ then
hb3: op, opseq ← get blocking info
hb4: op.help(opseq)
hb5: }

atomically; the counter is incremented whenever the attribute is updated. Assuming that
the counter has enough bits, the CAS succeeds only if the counter has not changed since
the process read the attribute. Other methods prevent the ABA problem without the use
of a per-attribute counters, and may be applied also to our algorithm.

It is assumed that an automatic garbage collection reclaims unreferenced objects
such as nodes and operation objects. Long chains of garbage and garbage cycles do not
form since the links of removed nodes are nullified. The ABA prevention counter allows
a removed node to be inserted into a linked list immediately (after setting its color to
c0) without harming the correctness of the algorithm. However, this would violate the
local contention property of the algorithm, so it is assumed that once a node is removed
from one linked list it is not reused until reclaimed by the garbage collector.

5 Correctness Proof (Outline)

The safety properties of the implementation, and in particular, its linearizability, hinge
on showing that the executing processes preserve the correct transition of the operation
between phases—locking, changing and releasing nodes in accordance with the opera-
tions’ phases. Most importantly, items in the data set are changed only while all of them
are locked. As mentioned before, this is somewhat more complicated than in previous
work [1, 4, 7, 22, 25], since the data set is dynamic.

Proving the progress and locality properties is more involved. One key is to show that
the color of an item causing a blocked operation to help, increases with every recursive
call. This implies that the depth of the recursion is bounded by the number of colors,
M . Moreover, we argue that in every locking attempt of an executing process, may it
be a successful or a futile one, some “nearby” operation makes progress, ensuring that
the algorithm is nonblocking and that the step complexity of an operation depends only
on the number of operations in its close neighborhood.
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The detailed correctness proof appears in the full version of the paper [5], showing:

Theorem 1. Algorithm DCAS-CHROMO is a nonblocking implementation of a doubly-
linked list, allowing insertions and removals anywhere, with 2-local step complexity
and 6-local contention complexity.

6 CAS-Based Doubly-Linked List Algorithm

In this section we discuss Algorithm CAS-CHROMO, a CAS-based variation of Algo-
rithm DCAS-CHROMO, allowing insertions everywhere and removals only at the ends.

We reuse the core implementation of insert and remove operations from Algorithm
DCAS-CHROMO and add the operations InsertFirst, RemoveFirst, InsertLast and Re-
moveLast for manipulating the ends of the linked list, with the obvious functionality.

We discuss the operations applied on the first (left) end of the linked list; the two
operation on the last (right) end are symmetric. InsertFirst and RemoveFirst operations
are closely related to the InsertRight and Remove operations, except that they implicitly
take the left anchor as their source node. The most crucial modification is in the locking
protocol, which no longer uses a DCAS primitive when locking its data set. However,
nodes with the same color are locked according to their order in the list, from left to
right; this allows to prove that the algorithm is nonblocking. In fact, this can also show
that operations help only along paths with O(1) length, which can be used to prove that
the algorithm has good locality properties. The details of the algorithm, as well as its
correctness proof, appear in the full version of the paper [5].

Theorem 2. Algorithm CAS-CHROMO is a nonblocking implementation of a doubly-
linked list, allowing insertions anywhere and removals at the ends, with 4-local step
complexity and 4-local contention complexity.

An implementation of deque data structure requires operations only at the ends. In this
case, the analysis can be further improved to show that the algorithm has 2-local step
complexity and 2-local contention complexity.

7 Discussion

This paper presents a new approach for designing nonblocking and high-throughput
implementations of linked list data structures; our scheme may have other applications,
e.g., for tree-based data structures.

We show a DCAS-based implementation of insertions and removals in a doubly-
linked list; when nodes are removed only from the ends, the implementation is modified
to use only CAS. These implementations are intended only as a proof-of-concept and
leave open further optimizations. It is also necessary to implement a search mechanism
in order to support the full functionality of priority queues and lists.

Acknowledgments. We thank David Hay, Danny Hendler, Gadi Taubenfeld and the
referees for helpful comments.
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Stéphane Messika3, and Philippe Raipin-Parvédy2,4
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Abstract. Gathering is a fundamental coordination problem in cooper-
ative mobile robotics. In short, given a set of robots with arbitrary initial
location and no initial agreement on a global coordinate system, gath-
ering requires that all robots, following their algorithm, reach the exact
same but not predetermined location. Gathering is particularly challeng-
ing in networks where robots are oblivious (i.e., stateless) and the direct
communication is replaced by observations on their respective locations.
Interestingly any algorithm that solves gathering with oblivious robots
is inherently self-stabilizing.

In this paper, we significantly extend the studies of deterministic gath-
ering feasibility under different assumptions related to synchrony and
faults (crash and Byzantine). Unlike prior work, we consider a larger set
of scheduling strategies, such as bounded schedulers, and derive interest-
ing lower bounds on these schedulers. In addition, we extend our study
to the feasibility of probabilistic gathering in both fault-free and fault-
prone environments. To the best of our knowledge our work is the first
to address the gathering from a probabilistic point of view.

1 Introduction

Many applications of mobile robotics envision groups of mobile robots self-
organizing and cooperating toward the resolution of common objectives. In many
cases, the group of robots is aimed at being deployed in adverse environments,
such as space, deep sea, or after some natural (or unnatural) disaster. It re-
sults that the group must self-organize in the absence of any prior infrastructure
(e.g., no global positioning), and ensure coordination in spite of faulty robots
and unanticipated changes in the environment.
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The gathering problem, also known as the Rendez-Vous problem, is a funda-
mental coordination problem in cooperative mobile robotics. In short, given a
set of robots with arbitrary initial location and no initial agreement on a global
coordinate system, gathering requires that all robots, following their algorithm,
reach the exact same location—one not agreed upon initially—within a finite
number of steps, and remain there.

Similar to the Consensus problem in conventional distributed systems, gather-
ing has a simple definition but the existence of a solution greatly depends on the
synchronyof the systems as well as the nature of the faults that may possibly occur.
In this paper, we investigate some of the fundamental limits of deterministic and
probabilistic gathering in the face of different synchrony and fault assumptions.

To study the gathering problem, we consider a system model first defined
by Suzuki and Yamashita [1], and some variants with various degrees of syn-
chrony. In this model, robots are represented as points that evolve on a plane.
At any given time, a robot can be either idle or active. In the latter case, the
robot observes the locations of the other robots, computes a target position, and
moves toward it. The time when a robot becomes active is governed by an acti-
vation daemon (scheduler). In the original definition of Suzuki and Yamashita,
called the ATOM model, activations (i.e., look–compute–move) are atomic, and
the scheduler is assumed to be fair and distributed, meaning that each robot
is activated infinitely often and that any subset of the robots can be active si-
multaneously. In the CORDA model of Prencipe [2], activations are completely
asynchronous, for instance allowing robots to be seen while moving.

Suzuki and Yamashita [1] proposed a gathering algorithm for non-oblivious
robots in ATOM model. They also proved that gathering can be solved with
three or more oblivious robots, but not with only two.1 Prencipe [3] studied
the problem of gathering in both ATOM and CORDA models. He showed that
the problem is impossible without additional assumptions such as being able to
detect the multiplicity of a location (i.e., knowing the number of robots that may
simultaneously occupy that location). Flocchini et al. [4] proposed a gathering
solution for oblivious robots with limited visibility in CORDA model, where
robots share the knowledge of a common direction as given by some compass.
Based on that work, Souissi et al. [5] consider a system in which compasses are
not necessarily consistent initially. Ando et al. [6] propose a gathering algorithm
for ATOM model with limited visibility. Cohen and Peleg [7] study the problem
when robots’ observations and movements are subject to some errors.

None of the previously mentioned works addressed the gathering feasibility
in fault-prone environments. One of the first steps in this direction was done
by Agmon and Peleg [8]. They prove that gathering of correct robots (referred
in this paper weak gathering) can be achieved in the ATOM model even in the

1 With two robots, all configurations are symmetrical and may lead to robots endlessly
swapping their positions. In contrast, with three or more robots, an algorithm can
be made such that, at each step, either the robots remain symmetrical and they
eventually reach the same location, or symmetry is broken and this is used to move
one robot at a time.
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face of the crash of a single robot. Furthermore, they prove that no deterministic
gathering algorithm exists in ATOM model that can tolerate a Byzantine2 robot.
Finally, they consider a stronger daemon, called fully synchronous, in which all
robots are always activated simultaneously, and show that weak gathering can
be solved in that model when the number of Byzantine robots is less than one
third of the system.

Contribution. In this paper, we further study the limits of gathering feasibility in
both fault-free and fault prone environments, by considering centralized sched-
ulers3 (i.e., activations in mutual exclusion) and k-bounded schedulers, that is,
schedulers ensuring that between any two consecutive activations of a robot, no
other robot is activated more than k times.

The main results we obtain are as follows. Firstly, we strengthen the impossi-
bility results of Agmon and Peleg [8] since we show that, even in strictly stronger
models, their impossibility result holds. Secondly, we outline the essential limits
where Byzantine and crash-tolerant gathering become possible. In particular, we
propose interesting lower bounds on the value that k (the scheduler bound) must
take for the problem to become possible. Thirdly, we show in what situations
randomized algorithms can help solve the problem, and when they cannot. To
the best of our knowledge our work is the first to study the feasibility of prob-
abilistic gathering in both fault-free and fault-prone systems. Additionally we
evaluate the convergence time of our probabilistic gathering algorithms under
fair schedulers using the coupling technique developed in [9]. The convergence
time of our algorithms is polynomial in the size of the network in both fault-
free and crash-prone environments under fair bounded schedulers. We conjecture
that our bounds are optimal and hold for the case of Byzantine-prone systems.

Structure of the paper. The rest of the paper is structured as follows. Section 2
describes the robots network and system model. Section 3 formally defines the
gathering problem. Section 4 propose possibility and impossibility results for
deterministic and probabilistic gathering in fault-free environments. Section 5.1
and 5.2 extend the study in Section 4 to crash and Byzantine prone environments.
Due to space limitations, most of the proofs are omitted, but they are included
in the full version [10].

2 Model

2.1 Robots Networks

Most of the notions presented in this section are borrowed from [1,2,8]. We
consider a network of a finite set of robots arbitrarily deployed in a geographical
2 A Byzantine robot is a faulty robot that can behave arbitrarily, possibly in a way

to prevent the other robots from gathering in a stable way.
3 The rationale for considering a centralized daemon is that, with communication

facilities, the robots can synchronize by running a mutual exclusion algorithm, such
as token passing.
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area. The robots are devices with sensing, computational and motion capabilities.
They can observe (sense) the positions of other robots in the plane and based on
these observations they perform some local computations. Furthermore, based
on the local computations robots may move to other locations in the plane.

In the case robots are able to sense the whole set of robots they are referred
as robots with unlimited visibility; otherwise robots have limited visibility. In
this paper, we consider that robots have unlimited visibility.

In the case robots are able to distinguish if there are more than one robot at
a given position they are referred as robots with multiplicity knowledge.

2.2 System Model

A network of robots that exhibit a discrete behaviour can be modeled with an
I/O automaton [11]. A network of robots that exhibit a continous behaviour can
be modeled with a hybrid I/O automaton [12]. The actions performed by the
automaton modeling a robot are as follows:

– Observation (input type action).
An observation returns a snapshot of the positions of all the robots in the vis-
ibility range. In our case, this observation returns a snapshot of the positions
of all the robots;

– Local computation (internal action).
The aim of a local computation is the computation of a destination point;

– Motion (output type action).
This action commands the motion of robots towards the destination location
computed in the local computation action.

The local state of a robot at time t is the state of its input/output variables and
the state of its local variables and registers. A network of robots is modeled by
the parallel composition of the individual automata that model one per one the
robots in the network. A configuration of the system at time t is the union of the
local states of the robots in the system at time t. An execution e = (c0, . . . , ct, . . .)
of the system is an infinite sequence of configurations, where c0 is the initial
configuration4 of the system, and every transition ci → ci+1 is associated to the
execution of a subset of the previously defined actions.

Schedulers. A scheduler decides at each configuration the set of robots allowed
to perform their actions. A scheduler is fair if, in an infinite execution, a robot
is activated infinitely often. In this paper we consider the fair version of the
following schedulers:

– centralized : at each configuration a single robot is allowed to perform its
actions;

– k-bounded : between two consecutive activations of a robot, another robot
can be activated at most k times;

4 Unless stated otherwise, this paper makes no specific assumption regarding the re-
spective positions of robots in initial configurations.
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– bounded regular : between two consecutive activations of a robot, all the ro-
bots in the system perform their actions once and only once.

– arbitrary: at each configuration an arbitrary subset of robots is activated.

Faults. In this paper, we address the following failures:

– crash failures: In this class, we further distinguish two subclasses: (1) robots
physically disappear from the network, and (2) robots stop all their activities,
but remain physically present in the network;

– Byzantine failures: In this case, robots may have an arbitrary behavior.

2.3 Computational Models

The literature proposes two computational models: ATOM and CORDA. The
ATOM model was introduced by Suzuki and Yamashita [1]. In this model each
robot performs, once activated by the scheduler, a computation cycle composed
of the following three actions: observation, computation and motion. The atomic
action performed by a robot in this model is a computation cycle. The execution
of the system can be modeled as an infinite sequence of rounds. In a round
one or more robots are activated and perform a computation cycle. The ATOM
model was refined by Agmon and Peleg [8]. The authors distinguish the case
of hyperactive systems where all robots are activated simultaneously and non-
hyperactive systems where a strict subset of robots are simultaneously activated.

The CORDA model was introduced by Prencipe [2]. This model refines the
atomicity of the actions performed by each robot. Hence, robots may perform
in a decoupled fashion, the atomic actions of a computation cycle. They may be
interrupted by the scheduler in the middle of a computation cycle. Moreover,
while a robot performs an action A, where A can be one of the following atomic
actions: observation, local computation or motion, another robot may perform
a totally different action B.

In this paper, we consider both models, refined with the scheduling strategies
presented above. Moreover, we consider that robots are oblivious (i.e., stateless).
That is, robots do not conserve any information between two computational cy-
cles.5 We also assume that all the robots in the system have unlimited visibility.

3 The Gathering Problem

A network of robots is in a terminal (legitimate) configuration with respect to
the gathering requirement if all the robots share the same position in the plane.
Let denote by PGathering this predicate.

An algorithm solves the gathering problem in an oblivious system if the fol-
lowing two properties are verified:
5 One of the major motivation for considering oblivious robots is that, as observed

by Suzuki and Yamashita [1], any algorithm designed for that model is inherently
self-stabilizing.



Fault-Tolerant and Self-stabilizing Mobile Robots Gathering 51

– Convergence Any execution of the system starting in an arbitrary con-
figuration reaches in a finite number of steps a configuration that satisfies
PGathering.

– Termination Any execution starting in a terminal configuration with re-
spect to the PGathering predicate contains only legitimate configurations.

Gathering is difficult to achieve in most of the environments. Therefore, weaker
forms of gathering were studied so far. An interesting version of this problem
requires robots to converge toward a single location rather than reach that loca-
tion in a finite time. The convergence is however considerably easier to deal with.
For instance, with unlimited visibility, convergence can be achieved trivially by
having robots moving toward the barycenter of the network [1].

Note that an algorithm that solves the gathering problem with oblivious or
stateless robots is self-stabilizing [13].

4 Gathering in Fault-Free Environments

In this section, we refine results showing the impossibility of gathering [3,8]
by proving first that these results hold even under more restrictive schedulers
than the ones considered so far [3,8]. Interestingly, we also prove that some
of these impossibility results hold even in probabilistic settings. Additionally,
to circumvent these impossibility results, we propose a probabilistic algorithm
that solves the fault-free gathering in both ATOM and CORDA models, under
a special class of schedulers, known as k-bounded schedulers. In short, a k-
bounded scheduler is one ensuring that, during any two consecutive activations
of any robot, no other robot is activated more than k times.

4.1 Synchronous Robots – ATOM Model

Note 4.1. Prencipe [3] proved that there is no deterministic algorithm that solves
gathering in ATOM and CORDA models without additional assumptions, such
as the ability to detect multiplicity.

The following lemma shows that the impossibility result of Prencipe [3] holds
even under a weaker scheduler—the centralized fair bounded regular scheduler.
Intuitively, a schedule of this particular scheduler is characterized by two prop-
erties: each robot is activated infinitely often and between two executions of a
robot every robot in the network executes its actions exactly once. Moreover, in
each configuration a single robot is allowed to execute its actions.

Lemma 4.1. There is no deterministic algorithm that solves gathering in the
ATOM model for n ≥ 3 under a centralized fair bounded regular scheduler, with-
out additional assumptions (e.g., multiplicity knowledge).

Note that the deterministic gathering of two oblivious robots was proved impos-
sible by Suzuki and Yamashita [1]. The scenario is the following: the two robots
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Algorithm 4.1 Probabilistic gathering for robot p.
Functions:
observe neighbors :: returns the set of robots within visibility range of robot p (the set
of p’s neighbors). Note that, in a system with unlimited visibility, observe neighbors
returns all the robots in the network.

Actions:
A1 :: true −→

Np = observe neighbors();
with probability α = 1

|Np {p}| do
select a robot q ∈ Np {p};
move towards q;

Remark: with probability 1 − α, the position remains unchanged ;

are always activated simultaneously. Consequently, they continuously swap po-
sitions, and the system never converges. In the following, we prove that, for
the case of two robots, there exists a probabilistic solution for gathering in the
ATOM model, under any type of scheduler. Algorithm 4.1 describes the proba-
bilistic strategy of a robot. When chosen by the scheduler, a robot decides, with
probability α, whether it will actually compute a location and move whereas,
with probability 1 − α, the robot will remain stationary. The following lemma
shows that Algorithm 4.1 reaches a terminal configuration with probability 1.

Lemma 4.2. Algorithm 4.1 probabilistically solves the 2-gathering problem in
the ATOM model under an arbitrary scheduler. The algorithm converges in
2 steps in expectation.

The next lemma extends the impossibility result proved in Lemma 4.1 to prob-
abilistic algorithms under unfair schedulers.

Lemma 4.3. There is no probabilistic algorithm that solves the n-gathering
problem, for n ≥ 3, in ATOM model, under a fair centralized scheduler with-
out additional assumptions (e.g., multiplicity knowledge).

The key issue leading to the above impossibility is the freedom that the sched-
uler has in selecting a robot r until its probabilistic local computation allows
r to actually move. The scenario can however no longer hold with systems in
which the scheduler is k-bounded. That is, in systems where a robot cannot be
activated more than k times before the activation of another robot. In this type
of game robots win against the scheduler and the system converges to a terminal
configuration.

Lemma 4.4. Algorithm 4.1 probabilistically solves the n-gathering problem, n ≥
3, in the ATOM model under a fair k-bounded scheduler and without multiplicity
knowledge.



Fault-Tolerant and Self-stabilizing Mobile Robots Gathering 53

Lemma 4.5. The convergence time of Algorithm 4.1 under fair bounded sched-
ulers is n2 rounds6 in expectation.

Proof. In the following, we use the coupling technique developed in [9]. Algo-
rithm 4.1 can be seen as a Markov chain. Let’s call it A hereafter. A coupling
for Algorithm 4.1, is a Markov chain (Xt, Yt)∞t=1 with the following properties:
(1) each of the variables (Xt), (Yt) is a copy of the Markov chain A (given initial
configurations X0 = x and Y0 = y); and (2) if Xt = Yt then Xt+1 = Yt+1.
Intuitively, the coupling time is the expected time for the two processes Xt and
Yt to reach the agreement property (Xt = Yt). As shown in Theorem 1 [9] the
coupling time is also an upper bound for the hitting time or convergence time
of a self-stabilizing algorithm.

Assume (Xt) and (Yt) are two copies of the Markov chain modeling Algo-
rithm 4.1. Let us denote by δ(Xt, Yt) the distance between Xt and Yt (the
number of robots that do not share identical positions in Xt and Yt). In the
worst case, δ(Xt, Yt) = n (where n is the number of robots in the network).
In the following we show that, with positive probability, the distance between
Xt+1 and Yt+1 decreases. Assume that the scheduler chooses robot p at instant t,
and assume that p does not share the same position in Xt and Yt. With pos-
itive probability, Xt+1(p) = Yt+1(p). Assume that the scheduler chooses two
or more robots in t. Since the scheduler is bounded, within a round of size R,
δ(Xt+R, Yt+R) ≤ δ(Xt, Yt) − 1. Following the result proved in Theorem 2 [9],
the coupling time for this chain is bounded from above by B

1−β . Where B is the
maximal value of the distance metric (in our case this value is n) and β is the
constant such that for all (Xt, Yt) we have E[δ(Xt+1, Yt+1)] ≤ βδ(Xt, Yt). In our
case, β = n−1

n . So, the hitting (convergence) time for Algorithm 4.1 is n2 rounds
in expectation. ��

4.2 Asynchronous Robots – CORDA Model

In the following, we analyze the feasibility of gathering in a stronger model,
namely, CORDA. Obviously, all the impossibility results proved in the ATOM
model hold for CORDA [14].

The next lemma states that 2-gathering, while probabilistically feasible in
ATOM model, is impossible in the CORDA model under an arbitrary scheduler.7

We recall that, in the CORDA model, robots can be interrupted by the scheduler
during a computation cycle.

Lemma 4.6. 2-gathering is impossible in the CORDA model under an arbitrary
scheduler.

Now, instead of an arbitrary scheduler, we consider a k-bounded scheduler, and
obtain the following possibility result.
6 A round is the longest fragment of an execution between two successive actions of

the same process. Following the variant of the chosen k-bounded scheduler a round
can have k steps or kn steps.

7 Note that 2-gathering is trivially possible under a centralized scheduler.



54 X. Défago et al.

Lemma 4.7. Algorithm 4.1 probabilistically solves the n-gathering problem, n ≥
2, in the CORDA model under a k-bounded scheduler and without multiplicity
knowledge.

5 Fault Tolerant Gathering

5.1 Crash Tolerant Gathering

In the following we extend the study of the gathering feasibility to fault-prone
environments. In this section (n, f) denotes a system with n correct robots but
f and the considered faults are the crash failures. As mentioned in the model,
Section 2, in an (n, f) crash-prone system there are two types of crashes: (1) the
crashed robots completely disappear from the system, and (2) the crashed robots
are still physically present in the system, however they stop the execution of any
action. In the sequel we analyze both situations.

Lemma 5.1. In a crash-prone system, (3, 1)-gathering is deterministically pos-
sible under a fair centralized regular scheduler.

The following lemma proves that the previous result does not hold in systems
with more than three robots. More precisely, this lemma expands the impossi-
bility results proved in Lemma 4.1 and 4.3 to crash-prone environments.

Lemma 5.2. In a crash-prone system, there is no deterministic algorithm that
solves the (n, 1)-gathering problem, n ≥ 4, under a fair bounded regular central-
ized scheduler without additional assumptions (e.g, multiplicity knowledge).

Lemma 5.3. In a crash-prone system, there is no probabilistic algorithm that
solves the (n, 1)-gathering problem, n ≥ 3, under a fair centralized scheduler
without additional assumptions (e.g., multiplicity knowledge).

The key argument in the previous impossibility proof is that the scheduler has
the possibility to choose a robot until that robot is allowed to move (by its
probabilistic algorithm). In some sense, the scheduler managed to derandom-
ize the system. However, the process of derandomization is no longer possible
with a bounded scheduler. The following lemma proves that (n, 1)-gathering
is probabilistically possible under a bounded scheduler and without additional
assumptions.

Lemma 5.4. In a crash-prone system, Algorithm 4.1 is a probabilistic solution
for the gathering problem in systems with n correct robots but one and under a
bounded scheduler.

In the following, we extend our study to systems with more than one faulty
robot. Hereafter, (n, f)-gathering refers to the gathering problem in a system
with n correct robots but f . If the faulty robots disappear from the system,
then the problem trivially reduces to the study of a fault-free gathering with
n−f correct robots. In contrast, in systems where faulty robots remain physically
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present in the network after crashing, the problem is far from being trivial.
Obviously, gathering all the robots including the faulty ones, is impossible since
faulty robots may possibly have crashed at different locations.

From this point on, we study the feasibility of a weaker version of gathering,
referred to as weak gathering. The (n, f)-weak gathering problem requires that, in
a terminal configuration, only the correct robots must share the same position.
The following lemma proves the impossibility of deterministic and probabilis-
tic weak gathering under centralized bounded and fair schedulers and without
additional assumptions.

Lemma 5.5. In a crash-prone system, there is neither a probabilistic nor a
deterministic algorithm that solves the (n, f)-weak gathering problem, n ≥ 3 and
f ≥ 2, under a fair centralized regular scheduler without additional assumptions.

Algorithm 5.1 Deterministic fault-tolerant weak gathering for robot p

Functions:
observe neighbors :: returns the set of robots within the vision range of robot p (the
set of p’s neighbors);
maximal multiplicity :: returns a robot in the group with the maximal multiplicity;
or, if several such groups exists, makes an arbitrary choice among them;

Actions:
A1 :: true −→

Np = observe neighbors();
q = maximal multiplicity(Np);
move towards q;

An immediate consequence of the previous lemma is the necessity of an addi-
tional assumption (e.g., multiplicity knowledge), even for probabilistic solutions
under bounded schedulers.

In the sequel, we identify the conditions under which the weak gathering
accepts deterministic and probabilistic solutions. Algorithm 5.1 proposes a de-
terministic solution for the weak gathering that works under both centralized
and bounded schedulers. The idea of the algorithm is the following: a robot,
once chosen by the scheduler, moves to the group with the maximal multiplicity
– “attraction action”. In case that all groups have the same multiplicity, the
chosen robot will go to the location of another robot – “unbalanced action”.
The attraction action helps the convergence while the unbalanced action breaks
the symmetry.

Lemma 5.6. In a crash-prone system, Algorithm 5.1 deterministically solves
the (n, f)-weak gathering problem, f ≥ 2, under a centralized scheduler if robots
are aware of the system multiplicity.
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Algorithm 5.2 Probabilistic fault-tolerant gathering for robot p with multiplic-
ity knowledge
Functions:
observe neighbors :: returns the set of robots within the vision range of robot p (the
set of p’s neighbors);
maximal multiplicity :: returns the set of robots with the maximal multiplicity;

Actions:
A1 :: true −→

Np = observe neighbors();
if p ∈ maximal multiplicity(Np) ∧ |maximal multiplicity (Np)| > 1 then

with probability 1

|maximal multiplicity(Np)|do

select a robot q ∈ maximal multiplicity(Np);
move towards q;

else
select a robot q ∈ maximal multiplicity(Np);
move towards q;

In the following we show that (n, f)-weak gathering can be solved under arbi-
trary schedulers using a probabilistic algorithm, Algorithm 5.2, and multiplicity
knowledge. Algorithm 5.2 works as follows. When a robot is chosen by the sched-
uler it moves to the group with maximal multiplicity. When all groups have the
same size, then the robot tosses a coin to decide if it moves or holds the current
position.

Lemma 5.7. In a crash-prone system, Algorithm 5.2 probabilistically solves the
(n, f)-weak gathering problem, f ≥ 2, under an unfair scheduler if robots are
aware of the system multiplicity.

5.2 Byzantine Tolerant Gathering

In the following we study the gathering feasibility in systems prone to Byzantine
failures. In the sequel (n, f) denotes a system with n correct robots but f . Agmon
and Peleg [8] proved that gathering in Byzantine environments is impossible
in ATOM and CORDA models for the case (3, 1). The impossibility proof is
given for the case of the ATOM model and algorithms that are not hyperactive.
The following lemma proves the (3, 1)-gathering impossibility under the weakest
scheduler, in particular the centralized, fair and regular.

Lemma 5.8. In a Byzantine-prone system, there is no deterministic algorithm
that solves (3, 1)-weak gathering under a fair, centralized and bounded regular
scheduler without additional assumptions.

Note 5.1. Note that Algorithm 5.1 solves the Byzantine (3, 1)-weak gathering
under a centralized regular scheduler and multiplicity knowledge. The cycle cre-
ated in the impossibility proof is broken because the Byzantine robot cannot
play the attractor role.
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The following lemma shows that if the scheduler is relaxed, the (3, 1)-weak
gathering becomes impossible even if robots are aware of the system multiplicity.

Lemma 5.9. In a Byzantine-prone system, there is no deterministic algorithm
that solves the (3, 1)-weak gathering, even when robots are aware of the system
multiplicity, under a centralized fair k-bounded scheduler with k ≥ 2.

Note 5.2. Byzantine (n, 1)-weak gathering for any odd n > 4 is possible un-
der any fair centralized scheduler and multiplicity knowledge. The algorithm is
trivial: a robot moves to the group with maximal multiplicity.

The following lemma establishes a lower bound for the bounded centralized
scheduler that prevents the deterministic gathering.

Lemma 5.10. In a Byzantine-prone system, there is no deterministic algorithm
that solves (n, 1)-weak gathering, with n ≥ 2 even, under a centralized k-bounded
scheduler for k ≥ (n − 1). This result holds even when robots are aware of the
system multiplicity.

Corollary 5.1. Byzantine (n, 1)-weak gathering is possible under a centralized
scheduler:

– in systems where n ≥ 4 is odd, robots have multiplicity knowledge and the
scheduler is fair, or

– in systems where n ≥ 2 is even and the scheduler is k-bounded with k ≤
(n− 2).

The following lemma states the lower bound for a bounded scheduler that pre-
vents deterministic gathering.

Lemma 5.11. In Byzantine-prone systems, there is no deterministic algorithm
that solves (n, f)-weak gathering, f ≥ 2, under a centralized k-bounded scheduler
with k ≥

⌈
n−f

f

⌉
when n is even, and with k ≥

⌈
n−f
f−1

⌉
when n is odd, even when

the robots can detect multiplicity.

Proof. – Even case. Similar to the (n, 1) case above, assume that the system
starts in an initial configuration in which all robots are arranged in two
groups. Assume the same scheduler as in the (n, 1) case: for each move of a
correct robot the scheduler chooses a Byzantine robot. The Byzantine robot
will try to balance the system equilibrium hence it will move towards the old
location of the correct robot. In order to win the game the Byzantine robots
need to move each time a correct robot moves. Since there are n−f correct
robots in the system, the scheduler has to be bounded by no less than

⌈
n−f

f

⌉
for the Byzantine team to win.

– Odd case. For the odd case assume an initial configuration where robots
but one (a Byzantine one) are arranged in two groups. When chosen by the
scheduler the Byzantine robot not member of a group moves such that the
equilibrium between the two groups does not change. Let denote G1 and
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G2 the two groups. Consider the following schedule. Every time a correct
robot, member of Gi, moves, a Byzantine robot moves as well in the opposite
direction. Hence the system equilibrium does not change. The game is similar
to the even case. The only difference is that the number of Byzantine robots
that influence the faith of the game is f − 1. Therefore, in order to win
the game, the Byzantine team needs a k-bounded scheduler bounded by
k ≥

⌈
n−f
f−1

⌉
. ��

Lemma 5.12. In systems with Byzantine faults, Algorithm 5.2 probabilistically
solves the (n, f)-weak gathering, n ≥ 3, problem under a bounded scheduler and
multiplicity detection.

6 Conclusion

The results presented here extend that of prior work on the possibility and
impossibility of gathering in fault-free and both crash-prone and Byzantine-
prone systems. For instance, we strengthen several prior impossibility results by
showing that they still hold against weaker schedulers, and under various failure
models. We also mark out more accurately the limit between possibility and
impossibility by deriving appropriate upper and lower bounds.

To the best of our knowledge, this is actually the first study that considers
probabilistic solutions to solve the gathering problem. Here, we identify condi-
tions under which a probabilistic solution exists, as well as conditions for which
not even a probabilistic solution exists.

The main results of the paper are summed up in Table 1 for fault-free systems;
in Table 2 for crash-prone systems; and in Table 3 for the weak gathering problem
in Byzantine-prone systems.

As an open question, some of the impossibility proofs only consider the use
of randomization for determining whether a robot takes actions or not when it
is activated. One can argue that using randomization in a different way may

Table 1. Summary of the main results in fault-free environments
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Conditions Solution Source

• • • ◦ – Impossible Prencipe [3] (Note 4.1)

• ◦ • • • ◦ ◦ ◦ n ≥ 3 No deterministic Lemma 4.1
• • ◦ ◦ ◦ • n = 2 Probabilistic Lemma 4.2
• ◦ • • n ≥ 3 No probabilistic Lemma 4.3
• ◦ • ◦ • n ≥ 3 Probabilistic Lemma 4.4
• • • ◦ n = 2 Impossible Lemma 4.6

◦ • ◦ • ◦ • – Probabilistic Lemma 4.7

“•” means explicit; “◦” means implicit; negative results are in italic
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Table 2. Summary of the main results in crash-prone systems
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Conditions Solution Source

• • • • n = 3, f = 1 Deterministic Lemma 5.1
• ◦ • • • ◦ ◦ ◦ n ≥ 4, f ≥ 1 No deterministic Lemma 5.2
• ◦ • • ◦ ◦ n ≥ 3, f ≥ 1 No probabilistic Lemma 5.3
• • • • f = 1 Probabilistic Lemma 5.4
• ◦ • • • ◦ ◦ ◦ n ≥ 3, f ≥ 2, weak Impossible Lemma 5.5
• • • f ≥ 2, weak Deterministic Lemma 5.6
• • ◦ ◦ ◦ ◦ • f ≥ 2, weak Probabilistic Lemma 5.7

‘•” means explicit; “◦” means implicit; negative results are in italic

Table 3. Summary of the main results in Byzantine-prone systems

A
T

O
M

C
O

R
D

A

m
u
lt

.
n
o

m
u
lt

.

c
e
n
tr

a
li
z
e
d

re
g
u
la

r

k
-b

o
u
n
d
e
d

a
rb

it
ra

ry

u
n
fa

ir

Conditions Solution Source

• ◦ • • ◦ n = 3, f = 1 No deterministic Agmon–Peleg [8]

• ◦ • • • ◦ ◦ ◦ n = 3, f = 1 No deterministic Lemma 5.8
• • • • n = 3, f = 1 Deterministic Note 5.1
• ◦ • ◦ • • ◦ ◦ n = 3, f = 1, k ≥ 2 No deterministic Lemma 5.9
• • • n odd, n > 4, f = 1 Deterministic Note 5.2
• ◦ • ◦ • • ◦ ◦ n even n≥2, f =1, k≥n−1 No deterministic Lemma 5.10

• ◦ • ◦ • • ◦ ◦ f ≥2, k≥
n−f

f
if n even

n−f
f−1

if n odd
No deterministic Lemma 5.11

• • ◦ • n ≥ 3 Probabilistic Lemma 5.12

“•” means explicit; “◦” means implicit; negative results are in italic

possibly change some of the lower bounds presented here. We conjecture that
the bounds will hold even if randomization is used differently.
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Abstract. Fast algorithms are presented for performing computations in a prob-
abilistic population model. This is a variant of the standard population proto-
col model—in which finite-state agents interact in pairs under the control of an
adversary scheduler—where all pairs are equally likely to be chosen for each
interaction. It is shown that when a unique leader agent is provided in the ini-
tial population, the population can simulate a virtual register machine in which
standard arithmetic operations like comparison, addition, subtraction, and multi-
plication and division by constants can be simulated in O(n log4 n) interactions
with high probability. Applications include a reduction of the cost of computing a
semilinear predicate to O(n log4 n) interactions from the previously best-known
bound of O(n2 log n) interactions and simulation of a LOGSPACE Turing ma-
chine using the same O(n log4 n) interactions per step. These bounds on interac-
tions translate into O(log4 n) time per step in a natural parallel model in which
each agent participates in an expected Θ(1) interactions per time unit. The cen-
tral method is the extensive use of epidemics to propagate information from and
to the leader, combined with an epidemic-based phase clock used to detect when
these epidemics are likely to be complete.

1 Introduction

The population protocol model of Angluin et al. [3] consists of a population of finite-
state agents that interact in pairs, where each interaction updates the state of both par-
ticipants according to a transition function based on the participants’ previous states
and the goal is to have all agents eventually converge to a common output value that
represents the result of the computation, typically a predicate on the initial state of the
population. A population protocol that always converges to the correct output is said to
perform stable computation and a predicate that can be so computed is called stably
computable.

In the simplest version of the model, any pair of agents may interact, but which
interaction occurs at each step is under the control of an adversary, subject to a fairness
condition that essentially says that any continuously reachable global configuration is
eventually reached. The class of stably computable predicates in this model is now very
well understood: it consists precisely of the semilinear predicates (those predicates
on counts of input agents definable in first-order Presburger arithmetic [23]), where
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semilinearity was shown to be sufficient in [3] and necessary in [5]. However, the fact
that a protocol will eventually converge to the correct value of a semilinear predicate
says little about how long such convergence will take.

Our fundamental measure of convergence is the total number of pairwise interactions
until all agents have the correct output value, considered as a function of n, the number
of agents in the population. We may also consider models in which reactions occur
in parallel according to a Poisson process (as assumed in e.g. [18, 17]); this gives an
equivalent distribution over sequences of reactions but suggests a measure of time based
on assuming each each agent participates in an expected Θ(1) interactions per time
unit. It is not hard to see that this time measure is asymptotically equal to the number
of interactions divided by n.

To bound these measures, it is necessary to place further restrictions on the adver-
sary: a merely fair adversary may wait an arbitrary number of interactions before it
allows a particular important interaction to occur. In the present work, we consider the
natural probabilistic model, proposed in [3], in which each interaction occurs between
a pair of agents chosen uniformly at random. In this model, it was shown in [3] that
any semilinear predicate can be computed in Θ(n2 logn) expected interactions using
a protocol based on leader election in which the leader communicates the outcome by
interacting with every other agent. Protocols were also given to simulate randomized
LOGSPACE computations with polynomial slowdown, allowing an inverse polynomial
probability of failure.

We give a new method for the design of probabilistic population protocols, based
on controlled use of self-timed epidemics to disseminate control information rapidly
through the population. This method organizes a population as an array of registers
that can hold values linear in the size of the population. The simulated registers sup-
port the usual arithmetic operations, including addition, subtraction, multiplication and
division by constants, and comparison, with implementations that complete with high
probability in O(n log4 n) interactions and polylogarithmic time per operation. As a
consequence, any semilinear predicate can be computed without error by a probabilis-
tic population protocol that converges in O(n log4 n) interactions with high probability,
and randomized LOGSPACE computation can be simulated with inverse polynomial
error with only polylogarithmic slowdown. These bounds are optimal up to polyloga-
rithmic factors, because Ω(n logn) interactions are necessary to ensure that every agent
has participated in at least one interaction with high probability.

However, in order to achieve these low running times, it is necessary to assume
a leader in the form of some unique input agent. This is a reasonable assumption in
sensor network models as a typical sensor network will have some small number of
sensors that perform the specialized task of communicating with the user and we can
appoint one of these as leader. Assuming the existence of a leader does not trivialize the
problem; for example, any protocol that requires that the leader personally visit every
agent in the population runs in expected number of interactions at least Ω(n2 logn).

If a leader is not provided, it is in principle possible to elect one; however, the best
known expected bounds for leader election in a population protocol is still the Θ(n2)
interactions or Θ(n) time of a naive protocol in which candidate leaders drop out only
on encountering other leaders. It is an open problem whether a leader can be elected
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significantly faster. There must also be a way to reinitialize the simulation protocol once
all but one of the candidates drops out. We discuss these issues further in Section 7.

In building a register machine from agents in a population protocol, we must solve
many of the same problems as hardware designers building register machines from elec-
trons. Thus the structure of the paper roughly follows the design of increasing layers
of abstraction in a CPU. We present the underlying physics of the world—the popula-
tion protocol model—in Section 2. Section 3 gives concentration bounds on the number
of interactions to propagate the epidemics that take the place of electrical signals and
describes the phase clock used to coordinate the virtual machine’s instruction cycle.
Section 4 describes the microcode level of our machine, showing how to implement
operations that are convenient to implement but hard to program with. More traditional
register machine operations are then built on top of these microcode operations in Sec-
tion 5, culminating in a summary of our main construction in Theorem 2. Applications
to simulating LOGSPACE Turing machines and computing semilinear predicates are
described in Section 6. Some directions for future work are described in Section 7. Due
to space limitations, most proofs are omitted from this extended abstract.

Many of our results are probabilistic, and our algorithms include tuning parameters
that can be used to adjust the probability of success. For example, the algorithm that
implements a given register machine program is designed to run for nk instructions for
some k, and the probability of failure for each instruction must be bounded by a suitable
inverse polynomial in n. We say that a statement holds with high probability if for any
constant c there is a setting of the tuning parameters that cause the statement to hold
with probability at least 1− n−c. The cost of achieving a larger value of c is a constant
factor slowdown in the number of interactions (or time) used by the algorithms.

1.1 Related Work

The population protocol model has been the subject of several recent papers. Diamadi
and Fischer introduced a version of the probabilistic model to study the propagation of
trust in a social network [15], and a related model of urn automata was explored in [2].
One motivation for the basic model studied in [3] was to understand the computational
capabilities of populations of passively mobile sensors with very limited computational
power. In the simplest form of the model, any agent may interact with any other, but
variations of the model include limits on which pairs of agents may interact [3, 1, 4],
various forms of one-way and delayed communication [6], and failures of agents [14].
The properties computed by population protocols have also been extended from pred-
icates on the initial population to predicates on the underlying interaction graph [1],
self-stabilizing behaviors [7], and stabilizing consensus [8].

Similar systems of pairwise interaction have previously been used to model the inter-
action of small molecules in solution [18,19] and the propagation in a human population
of rumors [12] or epidemics of infectious disease [10]. Epidemic algorithms have also
been used previously to perform multicast operations, e.g. by Birman et al. [11].

The notion of a “phase clock” as used in our protocol is common in the self-stabilizing
literature, e.g. [20]. There is a substantial stream of research on building self-stabilizing
synchronized clocks dating back to to the work of Arora et al. [9]. Recent work such
as [16] shows that it is possible to perform self-stabilizing clock synchronization in



64 D. Angluin, J. Aspnes, and D. Eisenstat

traditional distributed systems even with a constant fraction of Byzantine faults; how-
ever, the resulting algorithms require more network structure and computational capacity
at each agent that is available in a population protocol. An intriguing protocol of Daliot et
al. [13] constructs a protocol for the closely-related problem of pulse synchronization
inspired directly by biological models. Though this protocol also exceeds the finite-state
limits of population protocols, it may be possible to construct a useful phase clock for
our model by adapting similar techniques.

2 Model

In this paper we consider only the complete all-pairs interaction graph, so we can sim-
plify the general definition of a probabilistic population protocol as follows. A popula-
tion protocol consists of a finite set Q of states, of which a nonempty subset X are the
initial states (thought of as inputs), a deterministic transition function (a, b) �→ (a′, b′)
that maps ordered pairs of states to ordered pairs of states, and an output function that
maps states to an output alphabet Y . The population consists of agents numbered 1
through n; agent identities are not visible to the agents themselves, but facilitate the
description of the model. A configuration C is a map from the population to states,
giving the current state of every agent. An input configuration is a map from the popu-
lation to X , representing an input consisting of a multiset of elements ofX .C can reach
C′ in one interaction, denoted C → C′, if there exist distinct agents i and j such that
C(i) = a, C(j) = b, the transition function specifies (a, b) �→ (a′, b′) and C′(i) = a′,
C′(j) = b′ and C′(k) = C(k) for all k other than i and j. In this interaction, i is
the initiator and j is the responder – this asymmetry of roles is an assumption of the
model [4].

An execution is a sequence C1, C2, . . . of configurations such that for each i, Ci →
Ci+1. An execution converges to an output y ∈ Y , if there exists an i such that for
every j ≥ i, the output function applied to every state occurring in Cj is y. In gen-
eral, individual agents may not know when convergence to a common output has been
reached, and protocols are generally designed not to halt. An execution is fair if for any
Ci and Cj such that Ci → Cj and Ci occurs infinitely often in the execution, Cj also
occurs infinitely often in the execution. A protocol stably computes a predicate P on
multisets of elements of X if for any input configuration C, every fair execution of the
protocol starting with C converges to 1 if P is true on the multiset of inputs represented
by C, and converges to 0 otherwise. Note that a fixed protocol must be able to handle
populations of arbitrary finite size – there is no dependence of the number of states on
n, the population size.

For a probabilistic population protocol, we stipulate a particular probability dis-
tribution over executions from a given configuration C1 as follows. We generate Ck+1

from Ck by drawing an ordered pair (i, j) of agents independently and uniformly, ap-
plying the transition function to (Ck(i), Ck(j)), and updating the states of i and j ac-
cordingly to obtain Ck+1. (Note that an execution generated this way will be fair with
probability 1.) In the probabilistic model we consider both the random variable of the
number of interactions until convergence and the probabilities of various error condi-
tions in our algorithms.
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3 Tools

Here we give the basic tools used to construct our virtual machine. These consist of
concentration bounds on the number of interactions needed to spread epidemics through
the population (Section 3.1), which are then used to construct a phase clock that con-
trols the machine’s instruction cycle (Section 3.2). Basic protocols for duplication (Sec-
tion 3.3), cancellation (Section 3.4), and probing (Section 3.5) are then defined and
analyzed.

3.1 Epidemics

By a one-way epidemic we denote the population protocol with state space {0, 1}
and transition rule (x, y) �→ (x,max(x, y)). Interpreting 0 as “susceptible” and 1 as
“infected,” this protocol corresponds to a simple epidemic in which transmission of the
infection occurs if and only if the initiator is infected and the responder is susceptible. In
the full paper, we show, using a reduction to coupon collector and sharp concentration
results of [21], that the number of interactions for the epidemic to finish (that is, infect
every agent) is Θ(n log n) with high probability.

It will be useful to have a slightly more general lemma that bounds the time to infect
the first k susceptible agents. Because of the high variance associated with filling the
last few bins in the coupon collection problem, we consider only k ≥ nε for ε > 0.

Lemma 1. Let T (k) be number of interactions before a one-way epidemic starting
with a single infected agent infects k agents. For any fixed ε > 0 and c > 0, there
exist positive constants c1 and c2 such that for sufficiently large n and any k > nε,
c1n ln k ≤ T (k) ≤ c2n lnk with probability at least 1− n−c.

3.2 The Phase Clock

The core of our construction is a phase clock that allows a leader to determine when
an epidemic or sequence of triggered epidemics is likely to have finished. In essence,
the phase clock allows a finite-state leader to count off Θ(n log n) total interactions
with high probability; by adjusting the constants in the clock, the resulting count is
enough to outlast the c2n lnn interactions needed to complete an epidemic by Lemma 1.
Like physical clocks, the phase clock is based on a readily-available natural phenom-
enon with the right duration constant. A good choice for this natural phenomenon, in
a probabilistic population protocol, turns out to be itself the spread of an epidemic.
Like the one-way epidemic of Section 3.1, the phase clock requires only one-way
communication.

Here is the protocol: each agent has a state in the range 0 . . .m−1 for some constant
m that indicates which phase of the clock it is infected with. (The value of m will be
chosen independent of n, but depending on c, where 1 − n−c is the desired success
probability.) Up to a point, later phases overwrite earlier phases: a responder in phase i
will adopt the phase of any initiator in phases i+1 mod m through i+m/2 mod m, but
will ignore initiators in other phases. This behavior completely describes the transition
function for non-leader responders.
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New phases are triggered by a unique leader agent. When the leader encounters
an initiator with its own phase, it spontaneously moves to the next phase. The leader
ignores interactions with initiators in other phases. The initial configuration of the phase
clock has the leader in phase 0 and all other agents in phase m − 1. A round consists
of m phases. A new round starts when the leader enters phase 0.

The normal operation of the phase clock has all the agents in a very few adjacent
states, with the leader in the foremost one. When that state becomes populated enough
for the leader to encounter another agent in that state, the leader moves on to the next
state (modulo m) and the followers are pulled along. Successive rounds should be
Θ(n log n) interactions apart with high probability; the lower bound allows messages
sent epidemically to reach the whole population, and the upper bound is essential for
the overall efficiency of our algorithms.

Analysis. We wish to show that for appropriate constants c and m, any epidemic (run-
ning in parallel with the phase clock) that starts in phase i completes by the next oc-
currence of phase (i + c) mod m with high probability. To simplify the argument,
we first consider an infinite-state version of the phase clock with state space Z ×
{leader, follower} and transition rules

(x, b), (y, follower) �→ (x, b), (max(x, y), follower)
(x, b), (x, leader) �→ (x, b), (x+ 1, leader)
(x, b), (y, leader) �→ (x, b), (y, leader) [y 
= x]

We assume the initial configuration (at interaction 0) has the leader in state 0 and
each follower in state −1. This infinite-state protocol has the useful invariant that every
agent has a phase less than or equal to that of the leader. We define phase i as starting
when the leader agent first adopts phase i. This result bounds the probability that a
phase “ends too early” by n−1/2.

Lemma 2. Let phase i start at interaction t. Then there is a constant a such that for
sufficiently large n, phase i+ 1 starts before interaction t+ an lnn with probability at
most n−1/2.

Observing that several phases must “end too early” in order for a round to “end too
early” allows us to go from a failure probability of n−1/2 for a phase to n−c for a
round.

Corollary 1. Let phase i start at interaction t. Then for any c > 0 and d > 0, there
is a constant k such that for sufficiently large n, phase i + k starts before t + dn lnn
interactions with probability at most n−c.

The following theorem gives probabilistic guarantees for a polynomial number of
rounds of the phase clock. In the proof the probability of failure due to a “straggler”
(agent so far behind that it appears to be ahead modulo m) must be also be appropri-
ately bounded, to ensure that m may be a constant independent of n.

Theorem 1. For any fixed c, d > 0, there exists a constant m such that, for all suffi-
ciently large n, the finite-state phase clock with parameter m, starting from an initial
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state consisting of one leader in phase 0 and n−1 followers in phase m−1, completes
nc rounds of m phases each, where the minimum number of interactions in any of the
nc rounds is at least dn lnn with probability at least 1− n−c.

Proof. The essential idea is to apply Corollary 1 twice: once to show that with high
probability the number of interactions between phase i + 1 and phase i + m/2 is long
enough for any old phase-i agents to be eaten up (thus avoiding any problems with
wrap-around), and once to show the lower bound on the length of a round.

To show that no agent is left behind, consider, in the infinite-state protocol, the fate
of agents in phase i or lower once at least one agent in phase i + 1 or higher exists. If
we map all phases i or lower to 0 and all phases i + 1 or higher to 1, then encounters
between agents have the same effect after the mapping as in a one-way epidemic. By
Lemma 1, there is a constant c2 such that all n agents are infected by interaction c2n lnn
with probability at least 1−n−3c. By Corollary 1, there is a constant k1 such that phase
i+ k1 + 1 starts at least c2n lnn interactions after phase i+ 1 with probability at least
1 − n−3c. Setting m > 2(k1 + 1) then ensures that all phase i (or lower) agents have
updated their phase before phase i+m/2 with probability at least 1−2n−3c. If we sum
the probability of failure over all mnc phases in the first nc rounds, we get a probability
of at most 2mn−2c that some phase i agent survives long enough to cause trouble.

Assuming that no such trouble occurs, we can simulate the finite-state phase clock by
mapping the phases of the infinite-state phase clock mod m. Now by Corollary 1 there
is a constant k2 such that the number of interactions to complete k2 consecutive phases
is at least dn lnn with probability at least 1 − n−3c. Setting m ≥ k2 thus gives that
all nc rounds take at least dn lnn interactions with probability at least 1 − ncn−3c =
1 − n−2c. Thus the total probability of failure is bounded by 2mn−2c + n−2c < n−c

for sufficiently large n as claimed.

3.3 Duplication

A duplication protocol has state space {(1, 1), (0, 1), (0, 0)} and transition rules:

(1, 1), (0, 0) �→ (0, 1), (0, 1)
(0, 0), (1, 1) �→ (0, 1), (0, 1)

with all other encounters having no effect.
When run to convergence, a duplication protocol starting with a “active” agents in

state (1, 1) and the rest in the null state (0, 0) converges to 2a “inactive” agents in state
(0, 1), provided 2a is less than n; otherwise it converges to a population of mixed active
and inactive agents with no unrecruited agents left in the null state. The invariant is
that the total number of 1 tokens is preserved while eliminating as many double-token
agents as possible. We do not consider agents in a (1, 0) state as they can be converted
to (0, 1) immediately at the start of the protocol.

When the initial number of active agents a is close to n/2, duplication may take as
much as Θ(n2) interactions to converge, as the last few active agents wait to encounter
the last few null agents. But for smaller values of a the protocol converges more quickly.
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Lemma 3. Let 2a+ b ≤ n/2. The probability that a duplication protocol starting with
a active agents and b inactive agents, has not converged after (2c+1)n lnn interactions
is at most n−c.

3.4 Cancellation

A cancellation protocol has states {(0, 0), (1, 0), (0, 1)} and transition rules:

(1, 0), (0, 1) �→ (0, 0), (0, 0)
(0, 1), (1, 0) �→ (0, 0), (0, 0)

It maintains the invariant that the number of 1 tokens in the left-hand position minus
the number of 1 tokens in the right-hand position is fixed. It converges when only (1, 0)
and (0, 0) or only (0, 1) and (0, 0) agents remain. We assume that there are no (1, 1)
agents as these can be converted to (0, 0) agents at the start of the protocol. We refer to
agents in state (1, 0) or (0, 1) as nonzero agents.

As with duplication, the number of interactions to converge when (1, 0) and (0, 1)
are nearly equally balanced can be as many as Θ(n2), since we must wait in the end
for the last few survivors to find each other. This is too slow to use cancellation to
implement subtraction directly. Instead, we will use cancellation for inequality testing,
using duplication to ensure that there is a large enough majority of one value or the
other to ensure fast convergence. We will use the following fact.

Lemma 4. Starting from any initial configuration, with probability at least 1 − n−c,
after 4(c+ 1)n lnn interactions a cancellation protocol has either converged or has at
most n/8 of each type of nonzero agent.

3.5 Probing

A probing protocol is used to detect if any agents satisfying a given predicate exist. It
uses three states (in addition to any state tested by the predicate) and has transition rules

(x, y) �→ (x,max(x, y))

when the responder does not satisfy the predicate and

(0, y) �→ (0, y)
(x, y) �→ (x, 2) [x > 0]

when the responder does. Note that this is a one-way protocol.
To initiate a probe, a leader starts in state 1; this state spreads through an initial

population of state 0 agents as in a one-way epidemic and triggers the epidemic spread
of state 2 if it reaches an agent that satisfies the predicate.

Lemma 5. For any c > 0, there is a constant d such that for sufficiently large n, with
probability at least 1 − n−c it is the case that after dn lnn interactions in the probing
protocol either (a) no agent satisfies the predicate and every agent is in state 1, or (b)
some agent satisfies the predicate and every agent is in state 2.
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4 Computation by Epidemic: The Microcode Level

In this section, we describe how to construct an abstract register machine on top of
a population protocol. This machine has a constant number of registers each capable
of holding integer values in the range 0 to n, and supports the usual arithmetic op-
erations on these registers, including addition, subtraction, multiplication and division
by constants, inequality tests, and so forth. Each of these operations takes at most a
polylogarithmic number of basic instruction cycles, where an instruction cycle takes
Θ(n log n) interactions or Θ(log n) time.

The simulation is probabilistic; there is an inverse polynomial probability of error
for each operation, on which the exponent can be made arbitrarily large at the cost of
increasing the constant factor in the running time.

The value of each register is distributed across the population in unary. For each
register A, every member i of the population maintains one bit Ai and the current value
of A is simply

∑
i Ai. Thus the finite state of each agent can be thought of as a finite

set of finite-valued control variables, and one boolean variable for each of a finite set of
registers. Recall that the identities of agents are invisible to the agents themselves, and
are used to facilitate description of the model.

We assume there is a leader agent that organizes the computation; part of the leader’s
state stores the finite-state control for the register machine. We make a distinction be-
tween the “microcode layer” of the machine, which uses the basic mechanisms of Sec-
tion 3, and the “machine code” layer, which provides familiar arithmetic operations.

At the microcode layer, we implement a basic instruction cycle in which the leader
broadcasts an instruction to all agents using an epidemic. The agents then carry out this
instruction until stopped by a second broadcast from the leader. This process repeats
until the computation terminates.

To track the current instruction, each agent (including the leader) has a current in-
struction register in addition to its other state. These instructions are tagged with a
round number in the range 0, 1, 2, where round i instructions are overwritten by round
i+ 1 (mod 3) instructions.

The instructions and their effects are given in Table 1. Most take registers as argu-
ments. We also allow any occurrence of a register to be replaced by its negation, in
which case the operation applies to those agents in which the appropriate bit is not set.
For example, SET(¬A) resets Ai, PROBE(¬A) tests for agents in which Ai is not set,
COPY(¬A,B) sets Bi to the negation of Ai, and so forth.

To interpret the table entries: when an agent changes its current instruction register
to SET(A), it sets its boolean variable for register A to 1 and waits for the next instruc-
tion. Similarly, when it changes its current instruction register to COPY(A,B), then
the agent sets its boolean variable for register B to the value of its boolean variable for
registerA. When its current instruction becomes DUP(A,B), then the agent begins run-
ning the duplication protocol (Section 3.3) on the ordered pair of its boolean variables
for registers A and B. (In the case of (1, 0), it immediately exchanges them to (0, 1),
and in the cases of (1, 1) and (0, 0), it participates in the duplication protocol when it
interacts with other agents with current instruction DUP(A,B), until either its pair be-
comes inactive or a new instruction supersedes the current one.) CANCEL(A,B) and
PROBE(A) are handled analogously, where the predicate probed is whether the agent’s
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Table 1. Instructions at the microcode level

Instruction Effect on state of agent i

NOOP No effect.
SET(A) Set Ai = 1.
COPY(A, B) Copy Ai to Bi

DUP(A, B) Run duplication protocol on state (Ai, Bi).
CANCEL(A,B) Run cancellation protocol on state (Ai, Bi).
PROBE(A) Run probe protocol with predicate Ai = 1.

boolean variable for register A is 1. We omit describing the underlying transitions as
the details are tedious.

When the leader updates its own current instruction register, the new value spreads
to all other agents in Θ(n log n) interactions with high probability (Lemma 1). The
NOOP, SET, and COPY operations take effect immediately, so no additional interac-
tions are required. The PROBE operation may require waiting for a second triggered
epidemic, but the total interactions are still bounded by O(n log n) with high proba-
bility (by Lemma 5). Only the DUP and CANCEL operations may take longer to con-
verge. Because subsequent operations overwrite each agent’s current instruction reg-
ister, issuing a new operation has the effect of cutting these operations off early. But
if this new operation is issued Ω(n log n) interactions later, the DUP operation con-
verges with high probability unless it must recruit more than half the agents (Lemma 3),
and the CANCEL operation either converges or leaves at most n/4 uncanceled values
(Lemma 4). Note that for either operation, which outcome occurred can be detected
with COPY and PROBE operations.

Thus, the leader waits for Ω(n logn) interactions between issuing successive in-
structions, where the constant is chosen based on the desired error bound. But this
can be done using a phase clock with appropriate parameter (Theorem 1): if it is large
enough that both the probability that an operation completes too late and the proba-
bility that some phase clock triggers to early is o(n−2c) per operation, then the total
probability that any of nc operations fails is o(n−c).

5 Computation by Epidemic: Higher-Level Operations

The operations of the previous section are not very convenient for programming. In this
section, we describe how to implement more traditional register operations.

These can be divided into two groups: those that require a constant number of mi-
crocode instructions, and those that are implemented using loops. The first group,
shown in Table 2, includes assignment, addition, multiplication by a constant, and zero
tests. The second group includes comparison (testing for A < B, A = B, or A > B),
subtraction, and division by a constant (including obtaining the remainder). These op-
erations are described in more detail below.

Comparison. For comparison, it is tempting just to apply CANCEL and see what to-
kens survive. But if the two registers A and B being compared are close in value,



Fast Computation by Population Protocols with a Leader 71

Table 2. Simple high-level operations and their implementations. Register X is an auxiliary reg-
ister.

Operation Effect Implementation Notes
Constant 0 A ← 0 SET(¬A)

Constant 1 A ← 1
SET(¬A)
Aleader ← 1

Assignment A ← B COPY(B, A)

Addition A ← A + B
COPY(B, X)
DUP(X, A)
PROBE(X)

May fail with X �= 0 if A + B > n/2.

Multiplication A ← kB Use repeated addition. k = O(1)
Zero test A �= 0? PROBE(A)

1: A′ ← A.
2: B′ ← B.
3: C ← 1.
4: r ← 0.
5: while true do
6: CANCEL(A′, B′).
7: if A′ = 0 and B′ = 0 then
8: return A = B.
9: else if A′ = 0 then

10: return A < B.
11: else if B′ = 0 then
12: return A > B.
13: end if
14: r ← 1 − r.
15: if r = 0 then
16: C ← C + C.
17: if addition failed then
18: return A = B.
19: end if
20: end if
21: A′ ← A′ + A′.
22: B′ ← B′ + B′.
23: end while

Fig. 1. Comparison algorithm

1: A′ ← A.
2: B′ ← B.
3: CANCEL(A′, B′).
4: if B′ = 0 then
5: C ← A.
6: return.
7: end if
8: C ← 0.
9: while A′ �= B′ + C do

10: D ← 1.
11: while A′ ≥ B′ + C + D + D do
12: D ← D + D.
13: end while
14: C ← C + D.
15: end while

Fig. 2. Subtraction algorithm

then CANCEL may take Θ(n2) interactions to converge. Instead, we apply up to 2 lgn
rounds of cancellation, alternating with duplication steps that double the discrepancy
between A and B. If A > B or B > A, the difference soon becomes large enough that
all of the minority tokens are eliminated. The case where A = B is detected by failure
to converge, using a counter variable C that doubles every other round.

The algorithm is given in Figure 1. It uses registers A′, B′, and C plus a bit r to
detect even-numbered rounds.
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Lemma 6. Algorithm 1 returns the correct answer with high probability after executing
at most O(log n) microcode operations.

Subtraction. Subtraction is the inverse of addition, and addition is a monotone op-
eration. It follows that we can implement subtraction using binary search. Our rather
rococo algorithm for computingC ← A−B, given in Figure 2 repeatedly looks for the
largest power of two that can be added to the candidate difference C without making
the sum of the differenceC and the subtrahendB greater than the minuendA. It obtains
one more 1 bit of the difference for each iteration.

The algorithm assumes A ≥ B. An initial cancellation step is used to handle partic-
ularly large inputs. This allows the algorithm to work even when A lies outside the safe
range of the addition operation.

The algorithm uses several auxiliary registers to keep track of the power of two to
add to C (this is the D register) and to perform various implicit sums and tests (as in
computing B′ + C +D +D).

Lemma 7. When A ≥ B, Algorithm 2 computes C ← A− B with high probability in
O(log3 n) microcode operations.

Division. Division of A by a constant k is analogous to subtraction; we set A′ ← A and
B ← 0 and repeatedly seek the largest power of twoD such that kD can be successfully
computed (i.e., does not cause addition to overflow) and kD ≤ A′. We then subtract
kD from A′ and add D to B.

The protocol terminates when A′ < k, i.e. when no value of D works. At this point
B holds the quotient �A/k� and A′ the remainder A mod k. Since each iteration adds
one bit to the quotient, there are at most O(lg n) iterations of the outer loop, for a total
cost of O(lg4 n) microcode operations (since each outer loop iteration requires one
subtraction operation).

One curious property of this protocol is that the leader does not learn the value of
the remainder, even though it is small enough to fit in its limited memory. If it is im-
portant for the leader to learn the remainder, it can do so using k addition and compar-
ison operations, by successively testing the remainder A′ for equality with the values
0, 1, 1+1, 1+1+1, . . . , k. The cost of this test is dominated by the cost of the division
algorithm.

Other operations. Multiplication and division by constants give us the ability to extract
individual bits of a register valueA. This is sufficient to implement basic operations like
A← B · C, A← �B/C� in polylogarithmic time using standard bitwise algorithms.

Summary. Combining preceding results gives:

Theorem 2. A probabilistic population can simulate steps of a virtual machine with a
constant number of registers holding integer values in the range 0 to n, where each step
consists of (a) assigning a constant 0 or 1 value to a register; (b) assigning the value
of one register to another; (c) adding the value of one register to another, provided the
total does not exceed n/2; (d) multiplying a register by a constant, provided the result
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does not exceed n/2; (e) testing if a register is equal to zero; (f) comparing the values
of two registers; (g) subtracting the values of two registers; or (h) dividing the value
of a register by a constant and computing the remainder. The probability that for any
single operation the simulation fails or takes more than O(n log4 n) interactions can
be made O(n−c) for any fixed c.

6 Applications

Simulating RL. In [3], it was shown that a probabilistic population protocol with a
leader could simulate a randomized LOGSPACE Turing machine with a constant num-
ber of read-only unary input tapes with polynomial slowdown. The basic technique was
to use the standard reduction of Minsky [22] of a Turing machine to a counter machine,
in which a Turing machine tape is first split into two stacks and then each stack is rep-
resented as a base-b number stored in unary. Because the construction in [3] could only
increment or decrement counters, each movement of the Turing machine head required
decrementing a counter to zero in order to implement division or multiplication. Us-
ing Theorem 2, we can perform division and multiplication in O(n log4 n) interactions,
which thus gives the number of interactions for a single Turing machine step. If we treat
this quantity as O(log4 n) time, we get a simulation with polylogarithmic slowdown.

Theorem 3. For any fixed c > 0, there is a constant d such that a probabilistic pop-
ulation protocol on a complete graph with a leader that can simulate nc steps of a
randomized LOGSPACE Turing machine with a constant number of read-only unary
input tapes using d log4 n time per step with a probability of failure bounded by n−c.

Protocols for semilinear predicates. From [3] we have that it is sufficient to be able
to compute congruence modulo k, +, and < to compute any semilinear predicate.
From Theorem 2 we have that all of these operations can be computed with a leader
in O(n log4 n) interactions with high probability. The final stage of broadcasting the
result to all agents can also be performed in O(n logn) interactions with high probabil-
ity using an epidemic.

However, there is some chance of never converging to the correct answer if the pro-
tocol fails. To eliminate this possibility, we construct an optimistic hybrid protocol in
which the fast but potentially inaccurate O(n log4 n)-interaction protocol is supple-
mented by an O(n2) leaderless protocol, with the leader choosing (in case of disagree-
ment) to switch its output from that of the fast protocol to that of the slow protocol
when it is likely the slow protocol has finished. The resulting hybrid protocol converges
to the correct answer in all executions while still converging in O(n log4 n) interactions
in expectation and with high probability.

Theorem 4. For any semilinear predicateP , and for any c > 0, there is a probabilistic
population protocol on a complete graph with a leader to compute P without error
that converges in O(n log4 n) interactions with probability at least 1 − n−c and in
expectation.
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7 Open Problems

For most of the paper, we have assumed that a unique leader agent is provided in the
initial input. The most pressing open problem is whether this assumption can be elimi-
nated without drastically raising the cost of our protocols.

One problem is the question of whether we can efficiently restart the phase clock
after completing an initial leader election phase. A proof of possibility can be obtained
by observing that the leader can shut off all other agents one at a time in O(n2 logn)
interactions, and then restart them in the same number of interactions; however, the
leader may have to wait an additional large polynomial time to be confident that it has
in fact reached all agents. We believe, based on preliminary simulation results, that a
modified version of our phase clock can be restarted much more efficiently by a newly-
elected leader. This would allow us to use our LOGSPACE simulator after an initial
O(n2)-interaction leader election stage. But more work is still needed.

Even better would be a phase clock that required no leader at all. This would allow
every agent to independently simulate the single leader, eliminating both any initial
leader election stage and the need to disseminate instructions. Whether such a leaderless
phase clock is possible is not clear.

It would be interesting to explore refinements of the underlying assumption that pairs
are drawn uniformly at random to interact, for example, to reflect the physical effects
of spatial dispersion of the agents.
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Abstract. We introduce a self-stabilizing data structure, which we call
either a min-max search tree or a max-min search tree (both abbrevi-
ated M2ST), depending on whether the root has the minimum or the
maximum value in the tree. Our structure is a refinement of the stan-
dard min-max heap (or max-min heap), with additional property that
every value in the left subtree of a node is less than or equal to every
value in the right subtree of that node. The M2ST has all the power
of a binary search tree and all the power of a min-max heap, combined;
with the additional feature that maintaining balance is easy. We give a
self-stabilizing algorithm for reorganizing the values of an asynchronous
network with a binary tree topology into an M2ST in O(n) rounds. We
then give an algorithm for reorganizing an asynchronous network with a
binary tree topology, which is already in M2ST order, into binary search
tree order in O(h) rounds. This result answers an open problem posed
in [3].

Keywords: Distributed algorithm, min-max heap, search tree,
self-stabilization.

1 Introduction

When transient faults or arbitrary initialization cause a data structure to lose a
desired property, a self-stabilizing [5,7] data structure is able to correct itself, so
that the property is restored in finite time. We present a self-stabilizing search
structure, which we call a min-max search tree on a network with a binary tree
topology.
Related Work. Abstractly, a min-max heap is defined to be a data structure
that allows insertion and deletion of the minimum and the maximum. Min-
max heaps have been defined in [2] as double-ended priority queues. Various
implementations of min-max heaps are proposed in [1,4,6,12,13], but none of
them is distributed or self-stabilizing.

A heap construction that supports insert and delete operations using a vari-
ation of a standard binary heap with the capacity of K items, is given in [9]. In
[11], Herman et al. make the heap ADT (abstract data type) and B-Tree ADT
self-stabilizing with respect to their properties. Stabilizing 2-3 trees are investi-
gated in [10]. Bein et al. [3] present the first snap-stabilizing distributed binary
search tree (BST) algorithm. The stabilization time is O(n) rounds, but every
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process i requires O(log si) bits where si is the size of the subtree rooted at i. A
lower bound of Ω(n) on the time complexity for the BST problem is also given
in [3]. They also ask, as a open problem, whether there exists a self-stabilizing
algorithm to build a BST in O(n) rounds, using O(1) bits per process.

Contributions. We present a new type of search structure, which we call a
min-max search tree, (abbreviated M2ST), a binary tree with a value at each
node, with min-max heap order, i.e., where the value at each node at an even-
numbered level (counting the root level to be 0) is the minimum of all values in
the subtree rooted at that node, and the value at each node at an odd-numbered
level is the maximum of all values in the subtree rooted at that node; but with
the additional property that all values in the left subtree of a node are less than
or equal to all values in the right subtree of that node. This structure has the
features of a binary search tree combined with the features of a min-max heap,
with the additional feature that it is easy to keep balanced.

We give a distributed algorithm that sorts a binary tree network into an
M2ST in O(n) rounds using O(1) additional bits per process. The algorithm is
self-stabilizing. We then give a distributed algorithm which sorts a binary tree
network into BST order in O(n) rounds, using O(1) bits per process. The BST
algorithm first sorts the network into a M2ST order, then sorts it into BST
order in O(h) additional rounds, where h is the height of the tree, and requires
O(1) additional bits per process.

Outline of the paper. In Sections 1 and 2 we introduce the basic concepts
needed in the paper. The M2ST data structure is introduced in Section 3, and
we discuss implementation the usual search structure operators for an M2ST .
In Section 4 we give an asynchronous distributed algorithm which sorts a binary
tree network into M2ST order starting from an arbitrary initial configuration.
In Section 5. we give an asynchronous distributed algorithm which sorts a binary
tree network into BST order, starting from a configuration which is already in
M2ST order. We conclude in Section 6.

2 Preliminaries

Throughout this paper, we will let T be a binary tree network , defined to be
a network of processes with a binary tree topology, such that each process can
only communicate with its immediate neighbors, and each process knows which
of its neighbors is its left child, right child, or parent. Thus, for example, the
root process knows it is the root, since its parent is nil. We will also assume that
each process has one value, and that a process can read its neighbors’ values.
We will say that “T is a heap” if the values of T are in heap order, and that “T
is a binary search tree” if the values of T are in inorder, and so forth.

Let T be a binary tree network. We use the following notation, where T is a
binary tree network. Let root(T ) be the root process of T . If x is a process of
T , then V (x) is the value at x, Tx is the subtree rooted at x; p(x), r(x), and
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�(x) are the parent, the right, and left child of x, respectively. TR = Tr(root) and
TL = T�(root) are the right and left subtree of the root, respectively.

We assume the local shared memory model of communication: a process can
read and write its own memory, but can only read the memory of its neighbors.
The program of every process consists of a finite set of guarded actions of the
form: < label >::< guard >→< action > that involve the process’ variables and
the variables of its neighbors. If an action has its guard, a Boolean expression,
evaluated to true, then it is called enabled. A process with at least one enabled
guard is called enabled. In a computation step, a distributed daemon selects a
nonempty subset of enabled processes. Each enabled process executes one of its
enabled actions. The guard evaluation and the execution of the corresponding
action are considered to be done in one atomic step.

The state of a process is defined by the values of its variables. A system state
(configuration) is a choice of a state for each process. If c, c′ are configurations,
we write c �→ c′ to mean that c can change to c′ in one step.

An execution e is an infinite sequence of configurations e = c1 �→ c2 �→ . . ..
Given C, the set of all possible states, and a predicate P over C, the set of all the
states that satisfy P is denoted by LP ⊆ C, and is called the set of all legitimate
states with respect to P . We say that a system is self-stabilizing with respect to
a predicate P is the following two conditions hold:

1. If c ∈ LP and c �→ c′, then c′ ∈ LP .
2. If e = c1 �→ c2 �→ . . . is a computation, then there is some integer j such

that ci ∈ LP for all i ≥ j.

For an asynchronous system, in order to compute time complexity, we use
the concept of a round introduced by Dolev et al. [8]: A round is a minimal
sequence of computation steps such that each process that was enabled in the
first configuration of the sequence executes at least once during the sequence.
We will use the strongest distributed daemon, the unfair daemon. The unfair
daemon is not required to ever select a given enabled process, unless it is the
only enabled process.

3 Min-Max and Max-Min Search Trees

We first recursively define three classes of orderings on the nodes of a binary
tree, T .

Definition 1.

– An ordering of the nodes of T is left-to-right if either T is empty, or all
nodes of TL come before all nodes of TR and the induced orderings on TL

and TR are left-to-right.
– An ordering of the nodes of T is min-max if either T is empty, or the root

node is first and the induced orderings on TL and TR are max-min. An
ordering is min-max-left-right if it is both min-max and left-to-right.
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– An ordering of the nodes of T is max-min if either T is empty, or the root
node is last and the induced orderings on TL and TR are min-max. An or-
dering is max-min-left-right if it is both max-min and left-to-right.

Property 1. The empty binary tree is vacuously both a min-max and a max-min
search tree. A non-empty binary tree T with a value at each node is a min-max
search tree (max-min search tree) if and only if the following conditions hold:

1. The minimum (maximum) value is at the root.
2. Every value in TL is less than or equal to every value in TR.
3. Both TL and TR are max-min (min-max) search trees.

Remark 1. Given a binary tree topology of size n and a set of n values, there
is a unique min-max search tree on that topology which has those values. Sim-
ilarly, there is a unique max-min search tree on that topology that has those
values.

For example, given the tree topology shown in Figure 1, and the set of values
{1, 2, . . . , 10}, the unique min-max search tree on that topology is given in Figure
1(a), and the unique max-min search tree is given in Figure 1(b).
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(a) Min-max search tree (b) Max-min search tree

Fig. 1. A min-max and max-min search tree

3.1 Operations on the M2ST Data Structure

The min-max search tree (M2ST) is an interesting concept in its own right. It
allows for all the usual operations of a search structure, as well as functioning
as min-max heap if required.

Another advantage of an M2ST is that checking whether a given value x is
within the range of the values stored in a binary tree T takes O(h) rounds if the
tree has the BST order, but only one round if the tree is an M2ST .

We now provide the code for the usual operations on data structures: find,
insert, and delete.

One additional advantage of an M2ST is that it is easy to maintain balance
while inserting an arbitrary sequence of values.
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Min-max search tree
find(x, T )::

if T = nil then return nil
else if x = V (root(T )) then return true

else if x < V (root(T )) then return false

else if x > V (�(root)) then return find(x, T R)
else return find(x, T L)

insert(x, T )::
if T = nil then T = newNode(x)
else if x < V (root(T )) then swap(x, V (root(T ))); insert(x, T L)

else if x = V (root(T )) then insert(x, T L)
else if �(root) = nil ∨ x ≤ V (�(root)) then insert(x, T L)

else insert(x, T R)

delete(x, T)::
if T = nil then return
else if x = V (root(T )) then

if T L = nil ∧ T R = nil then DeleteLeaf(T )
else V (root(T )) = V (root(T )++); delete(V (root(T )++), root(T )++)

else if x < V (root(T )) then return
else if �(root) �= nil ∧ x ≤ V (�(root)) then delete(x, T L)

else delete(x, T R)

Max-min search tree
find(x, T )::

if T = nil then return nil
else if x = V (root(T )) then return true

else if x > V (root(T )) then return false

else if x < V (r(root)) then return find(x, T L)
else return find(X, T R)

insert(x, T )::
if T = nil then T = newNode(x)
else if x > V (root(T )) then swap(x, V (root(T ))); insert(x, T R)

else if x = V (root(T )) then insert(x, T L)
else if r(root) = nil ∨ x ≤ V (r(root)) then insert(x, T L)

else insert(x, T R)

delete(x, T)::
if T = nil then return
else if x = V (root(T )) then

if T L = nil ∧ T R = nil then DeleteLeaf(T )
else V (root(T )) = V (root(T )−−); delete(V (root(T )−−), root(T )++)

else if x > V (root(T )) then return
else if r(root) �= nil ∧ x < V (r(root)) then delete(x, T L)

else delete(x, T R)

We now give the details of this balanced insert operation.
More generally, let insertOK(v) be a predicate which means that it is allowed

to insert a value into the subtree rooted at v. There are many several ways to
implement this predicate, for example:

1. insertOK(v) could mean that the height of Tv is no greater than the height
of its sibling subtree.

2. insertOK(v) could mean that the number of values currently in Tv is no
greater than the number of values currently in its sibling subtree.

3. Suppose that we are implementing a search structure using a fixed binary
tree topology, perhaps hard-wired to a chip. Then insertOK(v) could mean
that Tv has a vacancy, i.e., a process where no current value is stored.

The above code can then be rewritten to use the predicate insertOK(v) instead
of specifically asking about heights. In the third case, i.e., where the binary tree
topology is fixed, the structure will never experience false overflow; meaning that
insertion can always take place if there is a null node anywhere in the tree.
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Min-max search tree
balancedinsert(x, T )::

if T = nil then T = newNode(x)
else

if x < V (root(T )) then swap(x, V (root(T )))
/* if T L and T R have the same height, then insert x appropriately */
if h

T L = h
T R then

if x ≤ V (�(root)) then balancedinsert(x, T L)
else balancedinsert(x, T R)

/* if T L has smaller height, then insert x into T L if the M2ST property is satisfied,
else move the minimum value from T R into T L and then insert x into T R */

else if h
T L < h

T R then

if x ≤ V (�(root)) then balancedinsert(x, T L)
else

/* move the smallest value from T R into T L */
tmp = V (�(root)++)
balancedinsert(tmp, T L)
delete(tmp, T R)
/* insert x into T R*/
balancedinsert(x, T R)

/* if T L has greater height, then insert x into T R if the M2ST property is satisfied
else move the maximum value from T L and then V (�(root)), into T R and

insert x into T L */
else if h

T L > h
T R then

if x ≥ V (�(root)) then balancedinsert(x, T R)
else

/* move V (�(root)) into T R */
tmp = V (�(root))
balancedinsert(tmp, T R)
delete(tmp, T L)
/* insert x into T L */
balancedinsert(x, T L)

4 A Self-stabilizing Algorithm for Building a Min-Max
Search Tree

In this section, we describe two self-stabilizing asynchronous distributed algo-
rithms Amin and Amax, which sort a binary tree network T into a min-max
search tree and a max-min search tree, respectively. We can think of these as
just one algorithm A(parity), where A(0) = Amin and A(1) = Amax.
A takes O(n) rounds, where n is the number of processes of T , and requires

O(1) additional bits per process.
We say that v is at a Min-level if v is required to hold the minimum value

of Tv after sorting, and that v is at a Max-level if v is required to hold the
maximum value of Tv after sorting. Thus, the root of T is at a Min-level if T
is to be sorted into a min-max search structure, and at a Max-level if T is to
be sorted into a max-min search structure; and if v is not the root, v is at a
Min-level if its parent is at a Max-level and vice-versa. Each process v has a
level bit , level(v), which must, after stabilization, be 0 if that process is at a
Min-level and 1 if that process is at a Max-level. We say a level bit is correct if
it has the value that it must have after stabilization. We say that the level bit of
v is consistent if either it is correct and v is the root, or it is different from the
level bit of p(v), the parent of v. Note that, although a level bit could be both
consistent and incorrect, all level bits are consistent if and only if all level bits
are correct.

The successor process of a process v in a min-max (or max-min) search
tree is the process which is the successor of p in the min-max (or max-min)
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left-right order of the tree. The predecessor process of a process is defined sim-
ilarly. Note that the successor process of p depends only on its position (with
respect to topology), not on the values held in the processes. A works by con-
structing a virtual chain consisting of all the processes of T in min-max-left-right
order, and then emulating an asynchronous distributed chain sorting algorithm
on that virtual chain. This requires each process to “pretend” that it is adja-
cent to its predecessor and successor processes, although there may actually be
as many as two intervening processes between them. For example, given the
tree topology in Figure 1, the virtual chain obtained by considering T in min-
max-left-right order is given in Figure 4(a), and the virtual chain obtained by
considering T in max-min-left-right order is given Figure 4(b). To emulate the
chain sorting algorithm, intervening processes must relay messages. We refer to
the emulation of adjacency as a “virtual link” from a process to its successor or
predecessor process. An emulated action along this link takes O(1) rounds, as we
explain below. In Subsection 5.1, we show, in detail, how the successor process
of any process in a min-max or max-min search tree is computed.

The initial state is arbitrary. The root process knows it is the root, and can
thus correct its level bit in one round. Correctness of all level bits descends from
the root in a wave in O(h) rounds. Using its level bit, each process x knows
how to send a message to its successor process, which we call x++, or to its
predecessor process, which we call x−−. Figure 2 illustrates the definition of
x++ in the case that x is at a Min-level, while Figure 3 illustrates the definition
of x++ in the case that x is at a Max-level. (In both figures we represent a nil
link as a short double-crossed line segment.) If a figure does not indicate either
a child or a nil link in a particular place, then either possibility is allowed. For
example, the right pointer from the middle node of Figure 3(a) could be nil, or
could point to a node.
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Fig. 2. Process x is a Min-level process

We do not actually define the needed message-passing and swapping protocols
in this paper, but the following two properties guarantee they can be defined so
that each needed operation can be executed in O(1) rounds.

Property 2. For any process x in T , either x is the last process in the min-max-
left-right order, or x++ has at most distance 3 from x.



On Self-stabilizing Search Trees 83

x++

++x

x

++

x

x

x

++x ++x

x

(a) (b)

++x

x x

x ++

(c)

++x x

(d)

x

(e) (f) (g) (h)

Fig. 3. Process x is a Max-level process

Property 3. For any process y in T , there are at most two choices of x such that
y lies on the interior of the shortest path from x to x++. We call y a relay process
of that virtual link.

Lemma 1. The amount of memory necessary in every process to maintain the
virtual chain is constant (O(1) bits per process).

Proof. By Properties 2 and 3, every process x must keep routing information
for at most than six virtual pointers: the pointers to its predecessor x−− and its
successor x++, and at most four virtual pointers that pass through x. Thus, the
additional memory needed by each process is finite.

4.1 Asynchronous M2ST

Let T be a binary tree network.
We start by choosing S to be any asynchronous distributed sorting algorithm

on an oriented chain which is self-stabilizing under the unfair daemon, and which
stabilizes in O(n) rounds from an arbitrary initial configuration, and which uses
O(1) bits per node in addition to the stored values. Our technique is to emulate
S on the virtual chain of T , while increasing the time of the algorithm by only
a constant factor. We do not give the details of this emulation, rather, we only
prove that such an emulation exists.

We will need a predicate OKtoexecute(v), which returns true if the emulation
of the next action of S on v is ready to commence, false otherwise. The action
execute(v) commences the emulation of the next action of S on v, whatever that
may be. The exact details of this predicate and this action depend on the details
of the emulation of S, which we do not give in this paper.

Predicate levelOK returns true if the level bit of v is consistent, otherwise
false.

Action Lr sets the level bit of the root to be 0. Action Lnr sets the correct
levels for all other processes. Action S sorts the value of the process and the
value of successor.

Property 4. For any process x, the processes of Tx form an interval in the virtual
chain such that:
(i) If x is a Min-level process, then process x is the first process of the interval.
(ii) If x is a Max-level process, then process x is the last process of the interval.
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Algorithm 4.1 Algorithm A(0)
Predicate levelOK(v, l) ≡ ((p(v) = ⊥ ∧ level(v) = 0) ∨ (p(v) �= ⊥ ∧ level(v) �= level(p(v))))

Actions for any process v
Lr p(v) = ⊥ ∧ ¬levelOK(v) −→ level(v) = 0
Lnr p(v) �= ⊥ ∧ ¬levelOK(v) −→ level(v) = ¬level(p(v))
S level OK(v) ∧ v++ �= ⊥ ∧ levelOK(v++) ∧ OKtoexecute(v) −→ execute(v)

(a) Min-max-left-right order (b) Max-min-left-right order

Fig. 4. The Virtual Chain

Let Tmin be the tree in which the root is a Min-level process, and the values
in the processes are sorted in ascending order of the min-max-left-right chain.
Let Tmax be the tree in which the root is a Max-level process, and the values
in the processes are sorted in ascending order of the max-min-left-right chain.

Property 5. Let T sort be either Tmin or Tmax.
For any process x ∈ T , one of the following is true:

(i) if x is a Min-level process, then V (x) is the minimum value in T sort
x and

T sort
x has left-right order.
(ii) if x is a Max-level process, then V (x) is the maximum value in T sort

x and
T sort

x has left-right order.

Proof. For (i), by Property 4, process x is the first process in the min-max-left-
right chain. By applying Algorithm A(0) to T sort, in at most O(n) rounds the
values in the chain are sorted in non-descending order, thus V (x) will hold the
minimum value in the chain, and subtree Tx.

For (ii), by Property 4, process x is the last process in the min-max-left-
right chain. By applying Algorithm A(1), in at most O(n) rounds to T sort, the
values in the chain are sorted in non-descending order. thus V (x) will hold the
maximum value in the chain, and subtree Tx.

.
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In summary, we have:

Theorem 1. A binary tree network of n nodes and height h can be sorted into
min-max-left-right (or max-min-left-right) order in O(n) rounds and O(1) bits
per process in the asynchronous model, using an unfair daemon.

Note that the minimum number of rounds needed for any M2ST algorithm using
the same computational model is Ω(n) in the worst case, since it might be
necessary to move almost every value through the root.

5 Asynchronous BST Construction

We define algorithms B(0) and B(1) that run on an M2ST , T . The result of
either algorithm that the network is sorted into binary search tree order.

Algorithm B(0)::

Step 0. Let T be in min-max-left-right order.
Note that the value of every process in T R is greater than or equal to the
value of every process not in T R.
Therefore, we do not need to move values across the link from the root to T R.
Let B(1) run independently on T R.
If T L is empty, we do nothing else. Otherwise, V (�(root)) is the value
that belongs in root. We continue with Step 1.

Step 1. Swap the values of root and �(root).
From now on, ignore the root.

Step 2. The last process in the max-min-left-right chain of T L is �(root), but it now
holds the minimum item in T L.
Create a circular linked list consisting of the max-min-left-right chain of T L,
together with one link from �(root) to the first process in the chain.

Step 3. Push every item in the circular list one step forward.
The order to push descends the tree T L in a wave: thus, a process of
depth d in T L will finish this step in O(d) rounds.

Step 4. T L is now in max-min-left-right order.
Let B(1) run independently on T L.

For example, given the min-max search tree in Figure 1(a), by applying the
steps of Algorithm B(0), the tree changes are presented in Figure 5.
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Algorithm B(1)::
Step 0. Let T be in max-min-left-right order.

Note that the value of every process in T L is smaller than or equal to the
value of every process not in T L.
Therefore, we do not need to move values across the link from the root to T L.
Let B(0) run independently on T L.
If T R is empty, we do nothing else. Otherwise, V (r(root)) is the value
that belongs in root. We continue with Step 1.

Step 1. Swap the values of root and r(root).
From now on, ignore the root.

Step 2. The first process in the min-max-left-right chain of T R is r(root), but it now
holds the maximum item in T R.
Create a circular linked list consisting of the min-max-left-right chain of T R,
together with one link from r(root) to the last process in the chain.

Step 3. Push every item in the circular list one step backward.
The order to push ascends the tree T R in a wave: thus, a process of
depth d in T R will finish this step in O(d) rounds.

Step 4. T R is now in min-max-left-right order.
Let B(0) run independently on T R.

Given that the subtree TL of the tree in Figure 5(d) is max-min-left-right
order, the tree changes resulting from applying Algorithm B(1) are presented in
Figure 6.

Lemma 2. A binary tree T in min-max-left-right order or max-min-left-right
order can be sorted into BST order in O(h) rounds in the asynchronous model,
using O(1) bits per process.

Proof. The remarks in Step 0. follow from the definition of an M2ST tree. No
actions are executed during this step. Step 1. requires one round. The remark
in Step 2. follows from Property 5. Step 2. requires one round to add the extra
link, since the virtual chain of TL is already constructed and the two processes
of the extra link are adjacent. Step 3. requires O(h) rounds, since pushing the
value of any process in the circular list occurs when the order to push, which
descends the subtree in a wave, reaches that process. Step 4. requires no extra
rounds.

Theorem 2. A binary tree can be sorted into binary search tree (BST) order in
O(n) rounds in the asynchronous model, using only O(1) states and O(1) values
in any process.

Theorem 2 follows from Lemma 2.
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5.1 Finding the Successor of a Process in an M2ST

Let x be the a process in a binary tree network T . Assume that the processes have
already been partitioned into Min-level and Max-level processes. The successor
process x++ is defined as follows.

Min: Process x is a Min-level process (see Figure 2).
a. Process �(x) has a left child. Then x++ = �(�(x)) (Figure 2(a)).
b. Process �(x) is an internal node that does not have a left child. Then

x++ = �(r(x)) (Figure 2(b)).
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c. Process �(x) is a leaf node. Then x++ = �(x) (Figure 2(c)).
d. Process x is an internal node without a left child, and process r(x) has

a left child. Then x++ = r(�(x)) (Figure 2(d)).
e. Process x is an internal node without a left child, and process r(x) is an

internal node without a left child. Then x++ = r(r(x)) (Figure 2(e)).
f. Process x is an internal node without a left child, and the process r(x)

is a leaf. Then x++ = r(x) (Figure 2(f)).
g. Process x is a leaf node and is the left child of its parent p(x), and process

p(x) has a right child. Then x++ = r(p(x)) (Figure 2(g)).
h. Process x is a leaf node and is the left child of its parent p(x), and process

p(x) has no right child. Then x++ = p(x) (Figure 2(h)).
i. Process x is a leaf node and is the right child of its parent p(x). Then
x++ = p(x) (Figure 2(i)).

j. Process x is a leaf node and also the root. Then x++ is undefined.
Max: Process x is a Max-level process (see Figure 3).

a. Process x is the left child of its parent p(x), and process r(p(x)) has a
left child. Then x++ = �(r(p(x))) (Figure 3(a)).

b. Process x is the left child of its parent p(x) and the process r(p(x)) is
an internal node without a left child. Then process x++ = r(r(p(x)))
(Figure 3(b)).

c. Process x is the left child of its parent p(x), and the process r(p(x)) is a
leaf node. Then process x++ = r(p(x)) (Figure 3(c)).

d. Process x is the left child of its parent p(x), process p(x) has no right
child. and process p(p(x)) has a right child. Then x++ = r(p(p(x)))
(Figure 3(d)).

e. Process x is the right child of its parent p(x), and process p(x) is the
right child of its parent p(p(x)). Then x++ = p(p(x)) (Figure 3(e)).

f. Process x is the right child of its parent p(x), p(x) is the left child of
its parent p(p(x)), and process p(p(x)) has a right child. Then x++ =
r(p(p(x))) (Figure 3(f)).

g. Process x is the right child of its parent p(x), p(x) is the left child of
its parent p(p(x)), and process p(p(x)) has no right child. Then x++ =
p(p(x)) (Figure 3(g)).

h. Process x is the left child of its parent p(x), process p(x) has no right
child, and process p(p(x)) has no right child. Then x++ = p(p(x)) (Figure
3(h)).

i. Process x is the root. Then x++ is undefined.
j. Process x is the left child of process p(x), p(x) is the root, and p(x) has

no right child. Then x++ is undefined.
k. Process x is the right child of process p(x) and p(x) is the root. Then

x++ is undefined.

6 Conclusion

In this paper we define a data structure, M2ST , which has the combined proper-
ties of a search structure and a min-max heap. We give a self-stabilizing algorithm
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for sorting a binary tree network into M2ST order. The time to make an an ar-
bitrary tree into an M2ST is O(n) rounds (Algorithm B), and the algorithm
needs O(1) space.

Algorithm A reorganizes a min-max search tree on a binary tree network
into a binary search tree in O(h) rounds. Starting from an arbitrary state, by
combining algorithms A(0), B(0), and B(1), we obtain a distributed algorithm
to build a binary search tree on a binary tree network in an arbitrary state in
O(n) rounds, using only O(1) bits per process.
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Abstract. We consider the problem of dynamic aggregation of inputs
over a large fixed graph. A dynamic aggregation algorithm must contin-
uously compute the result of a given aggregation function over a dynam-
ically changing set of inputs. To be efficient, such an algorithm should
refrain from sending messages when the inputs do not change, and should
perform local communication whenever possible.

We present an instance-based lower bound on the efficiency of such
algorithms, and provide two algorithms matching this bound. The first,
MultI-LEAG, re-samples the inputs at intervals that are proportional to
the graph size, achieving quiescence between samplings, and is extremely
message efficient. The second, DynI-LEAG, more closely monitors the
aggregate value by sampling it more frequently, at the cost of slightly
higher message complexity.

1 Introduction

We consider the problem of continuous monitoring of an aggregation function
over a set of dynamically changing inputs on a large fixed graph. We term this
problem dynamic aggregation. For example, the inputs may reflect sensor read-
ings of temperature or seismic activity, or load reported by computers in a com-
putational grid. The aggregation function may compute the average temperature,
or whether the percentage of sensors that detect an earthquake exceeds a certain
threshold, or the maximum computer load. It is desirable to seek local solutions
to this problem, whereby input values and changes thereof do not need to be
communicated over the entire graph.

Since virtually every interesting aggregation function has some input instances
on which it cannot be computed without global communication, a priori, it is
not clear whether one can do better. Nevertheless, we have recently shown that
when computing an aggregation function on a large graph for fixed (in time)
inputs, it is often possible to reach the correct result without global commu-
nication [1]. Specifically, while some problem instances trivially require global
communication, many instances can be computed locally, i.e., in a number of
steps that is independent of the graph size. We introduced a classification of in-
stances according to a measure called Veracity Radius (VR), which captures the
degree to which a problem instance is amenable to local computation. The VR
� This work was supported in part by a grant from the Israel Ministry of Science.

S. Dolev (Ed.): DISC 2006, LNCS 4167, pp. 90–104, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Efficient Dynamic Aggregation 91

is computed by examining the r-neighborhood of a node v, which is the set of all
nodes within radius r from v. Roughly speaking, the VR identifies the minimum
neighborhood radius r0, such that for all neighborhoods with radius r ≥ r0 the
aggregation function yields the same value as for the entire graph. (The formal
definition of VR allows some slack in the environments over which the aggregate
function is computed.) VR provides a tight lower bound on computation time. In
addition, [1] presents an efficient aggregation algorithm, I-LEAG, which achieves
the lower bound up to a constant factor.

The results of [1], however, are restricted to the computation of a static aggre-
gation instance, and do not directly extend to dynamic aggregation. If I-LEAG
is to be used in a dynamic setting, the entire computation must be periodically
invoked anew, even if no inputs change. Specifically, all nodes must periodi-
cally send messages to their neighbors, which can lead to considerable waste of
resources, especially when input changes are infrequent.

In this paper, we extend the results of [1] to deal with dynamic aggregation.
We focus on algorithms that continuously compute the result of a given aggrega-
tion function at each node in the graph, and satisfy the following requirements:
(1) the algorithm’s output converges to the correct result in finite time once all
input changes cease; and (2) once the algorithm has converged, no messages are
sent as long as the input values persist.

In Sect. 3, we derive a lower bound on computation time for dynamic aggrega-
tion algorithms satisfying the above requirements. We show that if an algorithm
has converged for some input Iold, and subsequently the inputs change to Inew,
then the computation of Inew must take a number of steps that is proportional to
the maximum between the VRs of Iold and Inew. The lower bound is proven for
both the time until the correct result is observed at all nodes (output stabilization
time) and the time until no messages are sent (quiescence time).

We provide two efficient dynamic aggregation algorithms that achieve this
lower bound up to a constant factor. Our algorithms employ the basic principles
of I-LEAG, but are more involved as they need to refrain from sending messages
when there are no changes.

In Sect. 4, we consider a scenario wherein it suffices to update the output
reflecting the aggregation result periodically, e.g., every few minutes. For this
setting, we present MultI-LEAG, which operates in a multi-shot fashion: the
inputs are sampled at regular intervals, and the correct (global) result relative
to the last sample is computed before the next sample is taken. The sampling
interval is proportional to the graph diameter. MultI-LEAG selectively caches
values according to the previous input’s VR to avoid sending messages when the
inputs do not change. After every sample, MultI-LEAG reaches both output-
stabilization and quiescence in time proportional to the lower bound, which
never exceeds the sampling interval and may be considerably shorter. We call
this sample-compute-output cycle an iteration. MultI-LEAG is very efficient, and
does not send more messages than necessary.

In Sect. 5, we consider a scenario wherein the output must reflect the correct
aggregation value promptly. That is, the input is sampled very frequently, e.g., at
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intervals on the order of a single-hop message latency between neighboring nodes,
and not proportional to the graph’s diameter as in MultI-LEAG. For this setting,
we present DynI-LEAG, which invokes multiple MultI-LEAG iterations in par-
allel. Although each MultI-LEAG iteration is comprised of several phases with
different durations, DynI-LEAG manages to carefully pipeline a combination
of complete and partial MultI-LEAG iterations to achieve O(log2(diameter ))
memory usage per node. Note that DynI-LEAG inspects multiple input sam-
ples during the time frame in which MultI-LEAG conducts a single sample. The
corresponding lower bound on algorithms that operate in this mode reflects not
only two inputs, Iold and Inew, as described above, but rather all inputs sampled
within a certain time window.

There is a tradeoff between our two algorithms: whereas MultI-LEAG deliv-
ers correct results corresponding to relatively old snapshots, DynI-LEAG closely
tracks the aggregate result at the expense of a somewhat higher message com-
plexity. Nevertheless, the total number of messages sent in both algorithms de-
pends only on the actual number of input changes and on the VR values of recent
inputs but not on the system size.

Related work. Following the proliferation of large-scale distributed systems such
as sensor networks [2,3], peer-to-peer systems [4], and computational grids [5],
there is growing interest in methods for collecting and aggregating the massive
amount of data that these systems produce, e.g., [6,7,8,9,10]. The semantics of
validity for dynamic aggregation have been discussed in [11]. However, most of
this work has not dealt with locality.

The initial work on using an “instance-based” approach to solve seemingly
global problems in a local manner has focused on self-stabilization [12,13,14].
Instance-local solutions have also been proposed for distributed error confine-
ment [15], location services [16] and Minimum Spanning Tree [17]. The first
work that demonstrated instance-local aggregation algorithms by means of an
empirical study is [18,19]. Only recently, instance-local aggregation has been
formalized [1]. However, this work did not consider dynamic scenarios.

2 Preliminaries

Model and Problem Definition. Given a set D, we denote a multi-set over D
by {dn1

1 ...dnm
m }, where di ∈ D and ni ∈ N indicates the multiplicity of di.

We denote the set of multi-sets over D by ND. An aggregation function is a
function F :ND → R, where R is a discrete totally-ordered set, and F satisfies
the following: (i) convexity: ∀X,Y ∈ ND: F (X ∪ Y ) ∈

[
F (X), F (Y )

]
; and (ii)

onto (in singletons): ∀r ∈ R, ∃x ∈ D: F (x) = r. Many interesting functions
have these properties, e.g., min, max, majority, median, rounded average (with
a discrete range) and consensus (e.g., by using OR/AND functions).

We model a distributed system as a fixed undirected graph G = G(V,E).
Computation proceeds in synchronous rounds in which each node can commu-
nicate with its immediate neighbors. A graph G and an aggregation function F
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define the aggregation problem PG,F as follows: Every node v has an input value
Iv ∈ D, which can change over time, and an output register Ov ∈ R ∪ {⊥}.
Initially, Ov = ⊥ and v only knows its own input. We denote by I(t) the input
assignment (of all nodes) at time t. For a set of nodes X ⊆ V , we denote by IX
the multi-set induced by the projection of I on X , e.g., IV = I. Assume that
there exists a time t0 such that ∀t ≥ t0: I(t) = I(t0). An algorithm solves PG,F

if it has finite output-stabilization and quiescence times after t0, and its final
outputs are ∀v ∈ V : O = F (I(t0)).

For a multi-shot algorithm A, given two consecutive sampled input assign-
ments Iold and Inew, we denote by OSA(Iold, Inew) and QA(Iold, Inew) the
output-stabilization and quiescence times, respectively, following Inew. In the
general case, we denote by OSA(I) and QA(I) the output-stabilization and qui-
escence times for an infinite input sequence I in which the inputs do not change
after some time t0.

Finally, we note that every aggregation function can be represented as a tuple
F = 〈R̂, FI , Fagg, FO〉, where: R̂ is some internal representation, and FI :D → R̂,
Fagg:R̂n → R̂ and FO:R̂ → R are functions such that for every set of nodes
V = {v1, ..., vn} and an input assignment I:

F (IV ) = FO

(
Fagg

(
{FI(Iv) | v ∈ V }

))
.

In many cases, the internal representation R̂ can be extremely compact. For
example, for computing OR, it can be a single bit, and for simple majority
voting, the number of “yes” and “no” votes.

Graph Notions. Let G = G(V,E) be a graph. Denote G’s diameter and radius
by Diam(G) and Rad(G), respectively. We use the following graph-theoretic
notation:

Cluster. A subset S ⊆ V of vertices whose induced subgraphG(S) is connected.
Distance. For every two nodes v1, v2 ∈ V , the distance between v1 and v2 in

G, dist(v1, v2), is the length of the shortest path connecting them.
Neighborhood. The r−neighborhood (r ∈ R+) of a node v, Γr(v), is the set

of nodes {v′ | dist(v, v′) ≤ r}. Γ̂ (v) = Γ1(v)− {v} denotes the neighbors of
a node v. For a cluster S: Γr(S) =

⋃
v∈S Γr(v) and Γ̂ (S) = Γ1(S)− S.

3 Lower Bound

In [1], we introduced an inherent metric for locality, the Veracity Radius (VR),
which is defined as follows. A K-bounded slack function, is a non-decreasing
continuous function α:R+ → R+ such that α(r) ∈ [ r

K , r], for some K ≥ 1. Given
a graph G and an aggregation function F , the VR (parameterized by a slack
function α) of an input instance I is:

VRα(I) � min{r ∈ R+ | ∀r′ ≥ r, v ∈ V, S ⊆ V s.t. Γα(r′)(v) ⊆ S ⊆ Γr′(v):

F (IS) = F (I)}.
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Simply speaking, VR identifies the minimum neighborhood radius r0 such that
for all neighborhood-like environments with radius r ≥ r0 (i.e., all subgraphs
S that include an α(r)-neighborhood and are included in an r-neighborhood),
the aggregation function yields the same value as the entire graph. If F (Iv) =
F (I) for every v ∈ V , then VR(I) = 0 and I is called a trivial input
assignment.

Given an aggregation problem PG,F , we proved in [1] that for every r ≥ 0,
every slack function α and every deterministic algorithm A that solves P , there
exists an assignment I with VRα(I) ≤ r for which OSA(I) ≥ min{�α(r)�,
Rad(G)}. A similar bound was also proven for quiescence. However, this single-
shot lower bound is overly restrictive for dynamic systems because it ignores
previous inputs. We now show that for dynamic aggregation, in which an al-
gorithm is not allowed to send messages after it converges, both current and
previous inputs are inherent to computation time. Due to lack of space, the
proofs are detailed in the full paper [20].

For multi-shot algorithms, in which convergence is guaranteed following every
input sample, it suffices to consider only the two latest input samples:

Theorem 1 (Multi-shot Lower Bound). Let PG,F be an aggregation prob-
lem. For every slack function α, every rold, rnew ≥ 0 such that α(rold), α(rnew) ≤
Rad(G), and every deterministic multi-shot algorithm A that solves F , there ex-
ist two input samples Iold, Inew such that V Rα(Iold) ≤ rold, V Rα(Inew) ≤ rnew,
and OSA({Iold, Inew}) ≥ max{�α(rold)/6�, �α(rnew)�}. The same holds for qui-
escence.

For algorithms that do not necessarily converge between consecutive samples,
the multi-shot lower bound implies that the effects of an input assignment may
impact algorithm performance during multiple future samples; the duration of
these effects is proportional to the input’s VR:

Corollary 1 (Dynamic Lower Bound). Let PG,F be an aggregation problem.
For every slack function α, every rold, rnew ≥ 0 such that α(rold), α(rnew) ≤
Rad(G), every constant C ≥ 1, and every deterministic algorithm A that solves
F , there exist an input sequence I and time t0 such that: (1) ∀r > rold: for
every t ∈ [t0 − C · r, t0), VR(I(t)) < r; (2) VR(I(t0)) ≤ rnew; and (3) ∀t ≥ t0:
I(t) = I(t0); for which OSA(I) ≥ max{�α(rold)/6�, �α(rnew)�}. The same holds
for quiescence.

Finally, we note that for output-stabilization, these bounds are nearly tight: in
[20], we show how full information (FI) protocols, in which every node broad-
casts all input changes to all other nodes, achieve O(max{�α(rold)�, �α(rnew)�})
output-stabilization time (for both multi-shot and ongoing operation), albeit at
high memory usage and communication costs. Nevertheless, eventual quiescence
is still guaranteed.
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4 MultI-LEAG: An Efficient Multi-shot Aggregation
Algorithm

We now introduce MultI-LEAG, an efficient aggregation algorithm that operates
in a multi-shot fashion. MultI-LEAG is quiescent and maintains fixed outputs
when the input does not change, while leveraging the veracity radius of the inputs
to reach fast quiescence and output stabilization when changes do occur. This
enables MultI-LEAG to achieve an extremely low communication complexity,
which depends only on the number of changes and the VR of the previous and
current input samples, rather than on graph size.

Let G = G(V,E) be a graph, and let Λθ = �logθ(Diam(G))�. In order to
operate, MultI-LEAG requires a (θ, α)-local partition hierarchy of G, which was
first defined in [1] and utilized by the I-LEAG algorithm:

Definition 1 ((θ, α)-Local Partition Hierarchy (LPH)). Let θ ≥ 2 and let
α be a slack function. A (θ, α)-local partition hierarchy of a graph G is a triplet
〈{Si}, {Pi}, {Ti}〉, 0 ≤ i ≤ Λθ, where:

– {Si} is a set of partitions, in which for every cluster S′ ∈ Si−1 there exists
a cluster S ∈ Si such that S′ ⊆ S. The topmost level, SΛθ

, contains a single
cluster equal to V . Denote by Si(v) the cluster S ∈ Si such that v ∈ S.

– {Pi} is a set of pivot sets. Pi includes a single pivot (sometimes called cluster
head) for every cluster S ∈ Si. For every p ∈ Pi, denote Subi−1(p) = {p′ ∈
Pi−1 | p′ ∈ Si(p)}.

– {Ti} is a set of forests. For every p ∈ Pi, Ti contains a directed tree Ti(p)
whose root is p and whose leaves are either Subi−1(p) or the nodes in S0(p)
if i = 0. For every i > 0, denote by T̃i(p) the logical tree formed by con-
catenating Ti(p) and T̃i−1(p′) at every p′ ∈ Subi−1(p), where ∀p′ ∈ P0:
T̃0(p′) = T0(p′).

In addition, the following conditions must hold for every p ∈ Pi, Si(p) ∈ Si, and
Ti(p) ∈ Ti: (1) Γα(θi)(p) ⊆ Si(p) ⊆ Γθi(p); (2) Ti(p) ⊆ Si(p); (3) the height of
T̃i(p) is at most θi.

Apart from the second condition, this definition of an LPH is identical to [1],
which provides general LPH construction algorithms. Although we can do with-
out it, it greatly simplifies the presentation. Note that this condition also implies
that clusters must be connected within themselves (i.e., clusters are not weak
[1]).

An LPH can be computed once per graph, and used for any duration and any
aggregation function. We next introduce two notions that link an aggregation
problem and an LPH for it, which are closely related to VR:

Cluster in conflict. Let PG,F be an aggregation problem. Given an input as-
signment I and an LPH for G, for every level i > 0, a cluster S ⊆ Si is
in conflict if at least two of the level-(i− 1) clusters that constitute S have
different aggregate results. Level-0 clusters are always considered in conflict.
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Algorithm 1. (MultI-LEAG) for node v ∈ V

Parameters: F :ND → R, (θ, α)-local hierarchy 〈{Si}, {Pi}, {Ti}〉, 0 ≤ i ≤ Λθ of
G(V, E)

Input: Iv ∈ D
Output: Ov ∈ R ∪ {⊥} initially ⊥
Definitions: Pi−1 � V , Phases � {−1, 0, ..., Λθ},

Tree+ � i,p∈Pi
Ti(p) ignoring edge directions (i.e., Tree+ ⊆ E),

Si(v) � Si(v) ∪ {w ∈ Γ (Si(v)) | ∃u ∈ Si(v): (u, w) ∈ Tree+}
Variables:

∀u ∈ Γ (v): Ou
v ∈ R ∪ {⊥} initially ⊥,

VPv, VPnew
v ∈ Phases initially 0,

Conf v(i):Phases → {true, false}, initially true for i = 0 and false otherwise,
Aggv(i):Phases → R ∪ {⊥} initially ⊥,
Aggsent

v (i):Phases → R ∪ {⊥} initially ⊥,
Aggrecv

v (i, p):Phases × V → R ∪ {⊥} initially ⊥

Synchronous phases:

1: loop /* forever */
2: Aggv(−1) ← FI(Iv) /* read changes in input */
3: ∀i > 0: Conf v(i) ← false
4: VPv ← VPnew

v

5: for phase i = 0 to Λθ do
6: do-phase(i)

Veracity Level (VL). Let PG,F be an aggregation problem. Given an input
assignment I and an LPH for G, a node v’s Veracity Level is defined as:

VLv(I) � max{i ∈ [0, Λθ] | Si(v) is in conflict}.

It directly follows from convexity that the aggregate result of any level-
i cluster whose nodes’ VL is i, equals the global outcome. We denote by
VL(I) the maximum VL over all nodes.

MultI-LEAG is presented in Algorithm 1.. It is provided with an LPH, and
uses two procedures, do-phase and converge-cast, which are depicted in Algo-
rithms 2. and 3., resp. Code in gray only applies to the DynI-LEAG algorithm
presented in the next section, which also uses these procedures. Apart from its
input Iv and output register Ov, every node v holds the following variables: Ou

v ,
the output of every neighbor u ∈ Γ̂ (v), VPv and VPnew

v , v’s veracity phase
(used to compute v’s VL as explained shortly) in the previous and current input
samples, resp. Additionally, for every level i in which v is a pivot, v holds the
following mappings: Conf v, a boolean indicating if Si(v) is in conflict; Aggv, the
internal aggregate representation of the input values in Si(v); Aggsent

v , the last
value of Aggv sent to v’s pivot in the next level; and Aggrecv

v , the last internal
representation received from every p′ ∈ Subi−1(v).
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Algorithm 2. (do-phase procedure) for node v ∈ V

Function do-phase(i, t)
1: set timer to 5θi

2: let p ∈ Pi s.t. v ∈ Si(p)
3: if i > VPv

v(t) then /* fall back to I-LEAG */
4: if v ∈ Ti(p) ∧ ∃u ∈ Γ (v) s.t. u is v’s parent in Ti(p) and Ov

v(t) �= Ou
v (t) then

5: send 〈conflict,i,p,t〉 to u
6: else /* i ≤ VPv

v(t) */
7: if v ∈ Subi−1(p) ∧ Aggsent

v (i − 1) �= Aggv(i − 1, t) then /* send changes */
8: Agg sent

v (i − 1) ← Aggv(i − 1, t)
9: forward 〈change, i, v,Aggv(i − 1, t), p〉 towards p in Ti(p)

10: if v = p then
11: wait until timer < 4θi /* wait for all changes to arrive */
12: if ∃p′, p′′ ∈ Subi−1(v) s.t. FO(Agg recv

v (i, p′)) �= FO(Aggrecv
v (i, p′′)) then

13: Conf v(i, t) ← true
14: Aggv(i, t) ← Fagg( {Aggrecv

v (i, p′) | p′ ∈ Subi−1(v)} )
15: if i = VPv

v(t) then /* reached prev. VL: update output and VP */
16: if Ov

v(t) �= FO(Aggv(i, t)) then

17: multicast 〈output, i, v, FO(Aggv(i, t)), t〉 to Si(v)
18: if i > 0 ∧ Conf v(i, t) = false then multicast 〈update-vp, i, v, 0, t〉 to Ti(v)
19: wait until timer expires

Message handlers:

upon receiving the first 〈conflict,i,p,t〉 message:
if v = p then

Aggv(i, t) ← converge-cast(i, t) /* see Algorithm 3. */
Conf v(i, t) ← true

multicast 〈output, i, v, FO(Aggv(i, t)), t〉 to Si(p)
multicast 〈update-vp, i, v, i, t〉 to Ti(v)

else forward message to v’s parent in Ti(p)

upon receiving a 〈change, i, p′, R, p〉 message:

if v = p then Aggrecv
v (i, p′) ← R

else forward message to v’s parent in Ti(p)

upon receiving a 〈output, i, p, val , t〉 message:
wait until timer expires
if v ∈ Si(p) then Ov

v(t) ← val

∀u ∈ Γ (v): if u ∈ Si(p) then Ou
v (t) ← val

upon receiving a 〈update-vp, i, p, l, t〉 message:
if i = 0 then

if v ∈ Si(p) then

∀u ∈ Γ (v) s.t. u �∈ Si(p) ∧ (u, v) ∈ Tree+: send 〈update-vp, 0, p, l, t〉 to u
wait until timer expires,∀u ∈ Γ (v) s.t. u ∈ Si(p): VPnew,u

v (t) ← l
else if v ∈ Pi−1 then

if l = 0 ∧ Conf v(i − 1, t) = true then l ← (i − 1)
multicast 〈update-vp, i − 1, v, l, t〉 to Ti−1(v)
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Algorithm 3. (converge-cast RPC) for node v ∈ V

Function converge-cast(i, t) → R

if i > VPv
v(t) ∧ Conf v(i, t) = false then

for all p′ ∈ Subi−1(v) parallel do
tmp(p′) ← p′.converge-cast(i − 1, t) /* p′ is reached via Ti(v) */

Aggv(i, t) ← Fagg( {tmp(p′) | p′ ∈ Subi−1(v)} )
return Aggv(i, t)

MultI-LEAG operates in iterations (the outer loop). An iteration begins by
sampling the input and ends with all nodes holding the correct aggregate re-
sult matching the sampled inputs. Within an iteration, MultI-LEAG executes
Λθ synchronous phases that correspond to the levels of the partition hierarchy,
calling do-phase each time. (A timer ensures that the next phase is not started
before all nodes complete the current phase.) It is convenient to think of do-phase
as a sequential operation that takes place concurrently in every cluster S of the
current level. Informally, for every phase i and cluster S ∈ Si, do-phase operates
in one of two modes. The first is to react according to S’s conflict state: if S is in
conflict, explicitly compute its aggregate result and assign it to the output of all
nodes in S. (If not in conflict, do nothing.) The second is to merely propagate
input changes in S, if any exist, to S’s pivot.

The decision regarding which mode to use, from a node v’s perspective, is as
follows. Let j be v’s VL in the previous input, Iold. Until phase j for the current
input, Inew, is reached, we just propagate changes if there are any, and otherwise
do nothing. At phase j, we additionally verify that all nodes in Sj(v) hold the
correct output according to Inew; if they do not, we multicast the correct output
to them. Subsequently, we reactively handle conflicts as they occur. Note that
for every phase i higher than v’s current VL, Si(v) does not incur conflicts.
Thus, Multi-LEAG achieves O(max{VR(Iold),VR(Inew)}) output stabilization
and quiescence times (Theorem 2). In any case, no messages are sent when there
are no input changes.

Had we chosen to operate in conflict detection mode at all times, the resulting
protocol would closely resemble I-LEAG [1], and would send messages for every
non-trivial input (because at least one cluster would suffer a conflict) regardless
of whether any inputs change, which is unacceptable.

We now describe MultI-LEAG’s operation in more detail. For every node v,
VPv equals v’s VL according to the previous input, and remains unchanged
until the end of the iteration. VPnew

v is gradually updated to reflect the current
VL, and is only used to set VPv in the next iteration. Therefore, for facility of
exposition, we currently ignore the Conf v mapping and the update-vp message
handler, which are responsible for updating VPnew

v . For every phase i, p ∈ Pi,
and Si(p) ∈ Si, we distinguish among the following cases:

∀v ∈ Si(p): i < VPv (change propagation). Every p′ ∈ Subi−1 sends changes
in Aggp′(i−1) to p (lines 7-9). Every such update is saved in Aggrecv

p (i, p′) by
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the change message handler. After all updates are accepted (this is ensured
by the wait statement in line 11), Aggp(i) is recalculated (line 14).

∀v ∈ Si(p): i = VPv (change propagation and output validation). First,
we update Aggp(i) as described above. Next, we ensure that the output of
every v ∈ Si(p) equals F (ISi(p)). As previous phases (which follow the first
case) have not altered Si(p)’s outputs at all, every v ∈ Si(p) holds the same
output, which equals the aggregate result according to the previous input.
Therefore, it is sufficient to check only p’s output. If Op 
= FO(Aggp(i)) (line
16), then Si(p)’s correct aggregate result is multicast to Ŝi(v) and assigned
by the output handler. Specifically, every v ∈ Si(p) updates Ov, and every
neighbor u of v such that u ∈ Si(p) or (u, v) ∈ Tree+ updates Ov

u. (Tree+

denotes the union of all tree edges; see definition in Algorithm 1..) Otherwise,
the outputs of all nodes in Si(p) remain unaltered.

∀v ∈ Si(p): i > VPv (conflict detection). Assuming that all nodes within a
level-(i − 1) cluster have the same output (see previous case), conflicts are
detected without communication by comparing outputs of neighboring nodes
along Ti(p), which know each other’s output. Detected conflicts are reported
to p and handled by the conflict handler. In this case, p issues a converge-cast
call (see Algorithm 3. and explanation below) to explicitly update Aggp(i).
Finally, Si(p)’s aggregate result, FO(Aggp(i)), is multicast to Ŝi(v) as in the
previous case.

Note that according to VL’s definition, no other cases are possible.
To show how VPnew

v is gradually adjusted to reflect the current input, we begin
by describing Conf v, which records cluster conflict states. At the beginning of
an iteration, Conf v maps trivially to false for every phase other than 0 in all
nodes. In every phase i and pivot p ∈ Pi, Conf p(i) is assigned true if Si(p) is in
conflict. This is done either by examining updated aggregate results if i ≤ VPp

(line 12), or by receiving a conflict message if i > VPp.
When a new iteration begins, VPnew

v is equal to VPv. Subsequently, it is
updated by update-vp messages, which are initiated by pivot nodes and flooded
along their logical trees. Specifically, at phase i, a pivot p ∈ Pi changes VPnew

v

for every node v ∈ Si(p) in two cases. If i > VPp and Si(p) is in conflict (i.e., a
conflict message is received by p at level i), p increases VPnew

v to i. Alternatively,
if i > 0, i = VPp and Si(p) is not in conflict (line 18), p decreases VPnew

v to the
highest level for which v’s cluster wan in conflict so far. This is done by sending
the first update-vp messages with a VP value (the last parameter) of 0. When a
descendent pivot p′ of p at some level j < i receives a 0 VP value and its cluster
is in conflict, it replaces this value with j for the rest of the subtree.

Thus, for any node v, VPnew
v can be lowered at most once when phase VPv

is reached (by v’s pivot in level VPv), and possibly increased one or more times
in subsequent phases. At the end of the iteration, VPnew

v equals the input’s VL,
and is assigned to VPv.

The converge-cast procedure is described in Algorithm 3. using remote pro-
cedure call (RPC) semantics. At every phase j and pivot p ∈ Pj , invoking
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p.converge-cast(j) aggregates the inputs of Sj(p) recursively based on p’s logical
tree, T̃j(p). Note that for every level i < j and pivot p′ ∈ Pi, if i ≤ VPp′ then
Aggp′(i) is already up to date because all input changes in Sj(p′) have already
been accounted for during phase i. In addition, if i > VPp′ but Conf p′(i) = true,
then Aggp′(i) was updated by a prior converge-cast operation during conflict
handling in phase i. Thus, Aggp′(i) needs to be recalculated only if i ≤ VPp′

and Conf v(i) = false.
MultI-LEAG’s correctness and complexity are proved in [20]. Specifically, we

show that MultI-LEAG achieves the multi-shot lower bound (Theorem 1) up to
a constant factor:

Theorem 2. Let PG,F be an aggregation problem. Given a (θ, α)-LPH of G,
for every two consecutive iterations with non-trivial input assignments, Iold and
Inew, MultI-LEAG’s output stabilization and quiescence times for Inew are at
most:

(
5θ2

θ−1

)
r, where r = max{VRα(Iold),VRα(Inew)}.

5 DynI-LEAG: An Efficient Dynamic Aggregation
Algorithm

While MultI-LEAG is efficient in terms of communication and converges rapidly
after sampling the inputs, its sampling interval is proportional to the graph
diameter. Therefore, it is not suitable for applications in which fast output sta-
bilization is desirable at all times. In this section, we present DynI-LEAG, an
efficient aggregation algorithm with fast output stabilization.

DynI-LEAG achieves this by concurrently invoking multiple MultI-LEAG iter-
ations, one per sample, and pipelining their phases. This is challenging, however,
because phases have exponentially increasing durations. DynI-LEAG’s samples
occur frequently, at intervals reflecting the operation time of the first phase.
Thus, invoking a full iteration upon each sample would create a number of con-
current iterations that is linear in the graph’s diameter, which would lead to
considerable resource (messages and memory) consumption. We overcome this
challenge by invoking partial MultI-LEAG iterations, i.e., iterations that do not
execute all phases, to ensure that at every level of the LPH only a single corre-
sponding MultI-LEAG phase is executed at any given moment. This results in a
“ruler-like” schedule that executes only O(log(Diam(G))) concurrent iterations,
which we call Ruler Pipelining. Figure 1 illustrates ruler pipelining for an LPH
with θ = 2. As a consequence, DynI-LEAG requires only O(log2(Diam(G)))
memory per node (each MultI-LEAG iteration has practically the same memory
utilization as I-LEAG, which requires O(log(Diam(G))) memory for reasonable
LPHs [1]), while the interval between two consecutive MultI-LEAG phases at
the same level is only θ times that of an algorithm that requires Ω(Diam(G))
memory.

A MultI-LEAG iteration ensures that its calculated output and VP values are
correct only after it completes. Since this takes O(Diam(G)) time, yet another
challenge is to select the proper output and VP (for new iterations) from among
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Fig. 1. Ruler Pipelining for a 3-level LPH with θ = 2

multiple ongoing iterations, while achieving output-stabilization and quiescence
times proportional to the lower bound rather than the diameter.

DynI-LEAG is depicted in Algorithm 4., and uses the do-phase and converge-
cast procedures (code in gray applies). To execute concurrent MultI-LEAG it-
erations, DynI-LEAG holds for every MultI-LEAG variable, except Aggsent

v and
Aggrecv

v , a mapping that associates each value the variable holds with a time
stamp. This is also done for MultI-LEAG’s output register, Ov, which is renamed
to Ov

v to distinguish between the outputs of different iterations and the actual
DynI-LEAG output. Note that the VPv and VPnew

v variables are expanded to
include a qualifier u ∈ Γ̂ (v), which enables nodes to hold the corresponding val-
ues of their neighbors. (u = v designates v’s values.) In addition, DynI-LEAG
introduces one new variable, tv(i), which designates the starting time of the last
level-i phase. Aggsent

v and Aggrecv
v are not associated with time stamps since they

can be perfectly pipelined, i.e., for every level i, Aggsent
v (i − 1) and Aggrecv

v (i)
are only accessed by phase i. This enables DynI-LEAG to use partial iterations
at no extra cost: each input change is communicated at most once to higher
levels.

DynI-LEAG runs Λθ threads at each node, corresponding to the LPH levels,
each of which repeatedly calls the do-phase procedure (line 14) for the matching
level. An individual MultI-LEAG iteration is identified by its starting time, which
is also passed during do-phase invocations. For every level-i phase, tv(i) equals
the current time when it starts and is incremented by the phase duration, 5θi,
when it completes (line 15). The starting time of the corresponding iteration is
found by subtracting from tv(i) the duration of previous phases, Δ(i− 1). Ruler
pipelining is obtained as a direct outcome of this timing: the results of each
completed level-i phase are either used in the level-(i + 1) phase that starts at
the same time or ignored in the case of a partial iteration that ends at phase i.
The barrier in line 16 eliminates data races between phases.

The crux of the algorithm is concentrated at the beginning of a new iteration
(i.e., it is executed only by the thread handling phase 0), and comprises four op-
erations: (1) sampling the input; (2) choosing the VP and initial output values
for the new iteration; (3) estimating the output; and (4) performing some book-
keeping. The second operation is done both for a node itself and its neighbor
information to ensure that neighboring nodes know each other’s output upon
starting the iteration.
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Algorithm 4. (DynI-LEAG) for node v ∈ V

Parameters: F :ND → R, (θ, α)-local hierarchy 〈{Si}, {Pi}, {Ti}〉, 0 ≤ i ≤ Λθ of
G(V, E)

Input: Iv ∈ D
Output: Ov ∈ R initially ∅
Definitions: Pi−1 � V , Phases � {−1, 0, ..., Λθ},

Tree+ � i,p∈Pi
Ti(p) ignoring edge directions (i.e., Tree+ ⊆ E),

Si(p) � Si(p) ∪ {v ∈ Γ (Si(p)) | ∃u ∈ Si(p): (u, v) ∈ Tree+},
Δ(i) � i

j=0 5θj ,
LastIter (i, t) � t − (t mod 5θi) − Δ(i)

Variables:
tv(i):Phases → Z initially 0,
∀u ∈ Γ (v): Ou

v (t):Z → R ∪ {⊥} initially ⊥,
Conf v(i, t):Phases ×Z → {true, false} initially true for i = 0 and false otherwise,
∀u ∈ Γ (v): VPu

v (t),VPnew,u
v (t):Z → Phases initially 0,

Aggv(i, t):Phases ×Z → R ∪ {⊥} initially ⊥,
Aggsent

v (i):Phases → R ∪ {⊥} initially ⊥,
Aggrecv

v (i, p):Phases × V → R ∪ {⊥} initially ⊥

1: for all i ∈ [0, Λθ ] parallel do
2: loop /* forever */
3: if i = 0 then
4: Aggv(−1, tv(i)) ← FI(Iv) /* read input */
5: for all u ∈ Γv do
6: Candidates ← {k ∈ [0, Λθ] | VPu

v (LastIter (k, tv(0))) ≤ k ∧
VPnew,u

v (LastIter (k, tv(0))) = k}
7: VPu

v (tv(0)),VPnew,u
v (tv(0)) ← max (Candidates ∪ {0})

8: Ou
v (tv(0)) ← Ou

v (t′) where t′ = LastIter(VPu
v (tv(0)), tv(0))

9: do-bookkeeping(tv(0))
10: Ov ← Ov

v(tv(0)) /* adjust output */
11: if tv(i) ≥ Δ(i − 1) then
12: do-phase(i, tv(i) − Δ(i − 1))
13: else
14: wait for 5θi time steps
15: tv(i) ← tv(i) + 5θi

16: barrier(tv(i)) /* synchronize all threads and message handlers that
complete a phase at time tv(i) */

Function do-bookkeeping(t)
T ← { t′ | ∃j ∈ [0, Λθ ] s.t. t − (t mod 5θj) − t′ = Δ(j) or Δ(j − 1) }
∀j ∈ Phases , u ∈ Γ (v), t′ �∈ T :Ou

v (t′) ← ⊥, Conf v(j, t′) ← false,
VPu

v (t′),VPnew,u
v (t′) ← 0, Aggv(j, t′) ← ⊥

To choose a VP value, we initially prepare a list of candidate levels. Level k is
considered a candidate if Sk(v) is known to be in conflict according to the most
recent information. More formally, we look at the last iteration that completed
phase k, i.e., the iteration that started at LastIter(k, tv(0)), where tv(0), at
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this point, is the current time. During an iteration, nodes can learn if their
cluster at a certain level is in conflict by the reception (or absence) of update-vp
messages during the corresponding phase. Specifically, upon completing phase
k, if VRnew,v

v = k, then Sk(v) is in conflict. However, as update-vp messages
are only sent after an iteration completes its VP phase, this information is not
available beforehand. Consequently, we only accept k as a candidate if both
VPu

v (LastIter(k, tv(0))) ≤ k and VPnew,u
v (LastIter(k, tv(0))) = k hold. Next, we

choose the highest candidate, where 0 is always considered a candidate. Both the
initial output value and DynI-LEAG’s output estimate, Ov, are simply taken as
the current output of the iteration corresponding to the chosen candidate. Thus,
after the inputs stabilize, the choices of VP converge to VL and the outputs
converge to the global aggregate result, thereby guaranteeing both quiescence
and output stabilization (Theorem 3).

Finally, the do-bookkeeping procedure ensures that every mapping that is
never referenced again, i.e., the time its iteration has started corresponds to
neither the current nor last phase of any level, is reset to its default value. Thus,
every node has to maintain state for only 2Λθ MultI-LEAG iterations.

DynI-LEAG’s correctness and complexity are proved in [20]. Specifically, we
show that DynI-LEAG achieves the dynamic lower bound (Corollary 1) up to a
constant factor:

Theorem 3. Let PG,F be an aggregation problem. For every slack function α,
every rold, rnew ≥ 0, and every input sequence I such that all input changes cease
at time t0 and:

1. ∀r > rold: for every t ≥ t0 − 30θ · r, VRα(t) < r

2. VRα(t0) = rnew

DynI-LEAG reaches both quiescence and output-stabilization by time 40θ ·
max{rold, rnew}.

6 Conclusions

We provided two efficient algorithms, MultI-LEAG and DynI-LEAG, for dynamic
aggregation in large graphs with fixed topologies. When the inputs are stable, the
algorithms are quiescent and hence do not waste any resources from the commu-
nication network. When changes do occur, the performance of these algorithms is
proportional to the Veracity Radius of the inputs at hand, which enables them to
achieve optimal instance-local operation and resource utilization.

Consequently, these algorithms are extremely attractive for data aggrega-
tion tasks in dynamic, resource-constrained environments in which topological
changes are infrequent compared to the sampling rate, be it for periodically
obtaining the result according to the most recent sample in a very efficient man-
ner (MultI-LEAG) or for closely tracking the monitored environment to capture
global trends as fast as possible (DynI-LEAG).
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Abstract. We consider a network of processors in the absence of unique
identities, and study the k-Grouping problem of partitioning the proces-
sors into groups of size k and assigning a distinct identity to each group.
The case k = 1 corresponds to the well known problems of leader elec-
tion and enumeration for which the conditions for solvability are already
known. The grouping problem for k ≥ 2 requires to break the symmetry
between the processors partially, as opposed to problems like leader elec-
tion or enumeration where the symmetry must be broken completely (i.e.
a node has to be distinguishable from all other nodes). We determine
what properties are necessary for solving these problems, characterize
the classes of networks where it is possible to solve these problems, and
provide a solution protocol for solving them.

For the case k = 2 we also consider a stronger version of the problem,
called Pairing where each processor must also determine which other
processor is in its group. Our results show that the solvable class of net-
works in this case varies greatly, depending on the type of prior knowledge
about the network that is available to the processors. In each case, we
characterize the classes of networks where Pairing is solvable and deter-
mine the necessary and sufficient conditions for solving the problem.

1 Introduction

Consider a distributed system consisting of a network of n processors and sup-
pose we want to partition the n nodes of the network into uniquely identified
groups, each consisting of k nodes, where k divides n. This problem, called k-
Grouping, is of simple resolution if the nodes have unique identifiers. However, in
absence of distinct nodes identities (i.e., in an anonymous network), the solution
of the k-Grouping problem becomes difficult, if at all possible. The goal of this
paper is to understand under what conditions this problem is solvable in such a
setting.

Notice that when k = 1, the grouping problem is equivalent to the well
known Node-Labelling and Enumeration problems, where each node has to be
assigned a distinct label (ranging from 1 to n, in case of Enumeration). The
1-Grouping problem is also computationally equivalent to the Leader Election
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problem, where one of the nodes has to become distinguished from all others.
Although a natural extension to these problems, the k-Grouping problem for
k > 1 has never been studied before, to the best of our knowledge.

For the leader election problem, it is known that the solvability of the prob-
lem depends on the (presence or absence) of symmetry between the nodes in the
network. However, even if election is not solvable in a given network, it may be
still possible to solve the grouping problem in that same network. In fact, the
k-grouping problem for k ≥ 2 requires to break the symmetry between the nodes
only partially, as opposed to problems like leader election or enumeration where
the symmetry must be broken completely (i.e. a node has to be distinguishable
from all other nodes). Hence our investigation focuses on the computational as-
pects of partial symmetry-breaking; more precisely, our interest is in determining
what conditions are necessary for solving these problems and in characteriz-
ing the solvable instances. A case of particular interest is when k = 2, called
the Matching problem in which the nodes of the network are to be grouped in
pairs1.

It is interesting to note that the solvability of these problems depends not only
on the symmetry of the network but also on what information is initially available
to the nodes of the network, for instance, whether they know the topology or
the size of the network or whether they have a map of the network.

We are also interested in a stronger version of the grouping problem, which
we call k-Relating, where each node must also determine which other nodes have
been grouped with it. Specifically, each node should be able to compute a path
between itself and any other processor in its group. In the case k = 2, this
problem is called Pairing. and each node must know a path to the other node it
is paired with.

Related Results: The study of computability in an anonymous network of
processors, has been a subject of intense research starting from the pioneering
work of Angluin [1] who studied the problem of establishing a “center” in the
network. This work was extended by Johnson and Schneider [10] and later by
Yamashita and Kameda who gave a complete characterization of graphs where
the leader election problem is solvable [16] and of graphs where any arbitrary
function can be computed [17]. Boldi et al. [2] characterized labelled networks
based on the election problem, whereas Boldi and Vigna [3] have studied the
problem of general computability in directed graphs using the concepts of graph
fibrations [4] and coverings, (which we also use in the present paper). Others
have studied the computability issues in specific topologies or restricted to spe-
cial functions (see [11] for a survey of such results). Sakamoto [15] studied the
effects of initial conditions of the processors on computability in anonymous net-
works, while Flocchini et al. [8] investigated the impact of sense of direction on
computability in anonymous networks.

1 This problem is un-related to the distributed client-server match-making problem
studied in the literature [14], where nodes are already divided into clients and servers
and the network is not anonymous.
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Mazurkiewicz [13] gave an algorithm (in the local-computation model) for the
distributed enumeration problem, i.e. for numbering the nodes of an undirected
graph G with integers from 1 to |V (G)|. They showed that it is possible to do
this only when the graph G is “unambiguous”. Godard et al. [9] translated this
property in terms of coverings of simple graphs. Chalopin and Métivier [6] later
adapted the Mazurkiewicz algorithm to the message passing model and showed
that the enumeration problem is solvable in a symmetric directed graph G, if
and only if G is symmetric-covering-prime.
Our Results: We first consider the k-Grouping problem and provide a complete
characterization of its solvability. First of all, we show that the knowledge of the
exact size of the network is necessary for solving the problem. Then we determine
the necessary and sufficient condition for solving the k-Grouping problem, when
such knowledge is available. For the case k = 1, this characterization corresponds
precisely (as it should) to that given in [3,16] for the leader election problem.
We then present an algorithm (Algorithm 1) that solves the k-Grouping problem
using a simple extension to the Mazurkiewicz algorithm. As part of our solution,
we introduce a deterministic procedure with explicit termination, that computes
the minimum base of any given network in the message-passing system. Our
solution is able to detect if k-Grouping is solvable for any given k in any given
network and reports failure when the problem is not solvable in that network.

Building on the above results, in section 4.1, we investigate the Pairing prob-
lem under three different types of prior information that may be available to the
processors in the network, and we provide an almost complete characterization
of its solvability. The types of prior knowledge we consider are: (i) a complete
map of the network2; (ii) just the number of nodes; (iii) only an upper bound on
the number of nodes. We determine sufficient conditions for solving the Pairing
problem under all three different types of knowledge.

Finally, in section 4.2, we determine necessary conditions for solving the Pair-
ing problem in each of the different cases. We show that when a complete map is
available or, when only an upper-bound on n is known, the sufficient conditions
we have established for these two cases are necessary too; that is, our charac-
terization is complete in case (i) and (iii). In case (ii), when the nodes have
prior knowledge of the exact size of the network, there is a still gap between the
necessary and sufficient conditions.

2 The Model and the Definitions

2.1 Directed Graphs

A directed graph(digraph) D = (V (D), A(D), sD, tD) possibly having muli-
ple arcs and self-loops, is defined by a set V (D) of vertices, a set A(D) of
arcs and by two maps sD and tD that assign to each arc two elements of
V (D) : a source and a target (in general, the subscripts will be omitted). A
digraph D is strongly connected if for all vertices u, v ∈ V (D), there exists
2 The map is unanchored i.e. a node may not know its location in the map.
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a path between u and v. A symmetric digraph D is a digraph endowed with
a symmetry, that is, an involution Sym : A(D) → A(D) such that for every
a ∈ A(D), s(a) = t(Sym(a)). In a symmetric digraph, the mirror of a path
P = (a0, a1, . . . , ap) is the path (Sym(ap), Sym(ap−1), . . . , Sym(a0)). In this
paper, we will only consider strongly connected symmetric digraphs.

A digraph homomorphism γ between the digraph D and the digraph D′ is
a mapping γ : V (D) ∪ A(D) → V (D′) ∪ A(D′) such that if u, v are vertices of
D and a is an arc such that u = s(a) and v = t(a) then γ(u) = s(γ(a)) and
γ(v) = t(γ(a)). We consider digraphs where the vertices and the arcs are labelled
with labels from a recursive label set L and such digraphs will be denoted by
(D,λ), where λ : V (D) ∪A(D) → L is the labelling function. A homomorphism
from (D,λ) to (D′, λ′) is a digraph homomorphism from D to D′ which preserves
the labelling, i.e., such that λ′(γ(x)) = λ(x) for every x ∈ V (D) ∪A(D).

2.2 The Message-Passing Network Model

We represent a point-to-point message passing network by a connected sym-
metric digraph G without self-loops and multiple arcs. The vertices represent
processors and if there is a (bidirectional) communication link between proces-
sors corresponding to some vertices u and v, there is an arc auv from u to v,
an arc avu from v to u and Sym(auv) = avu. The initial state of the proces-
sors is encoded by a vertex labelling function λV : V (G) → Σ, where Σ is a
set with a total order <Σ. In particular, if all vertices have the same label i.e.
λV (v) = λV (v′), ∀v, v′ ∈ V (G), then the network is anonymous.

We assume the presence of a local orientation λA on the network: for each
vertex u (of degree d), there exists an injective mapping λA

u that associates a
unique number λA

u (v) ∈ [1, d] to each neighbor v of u. This local orientation
defines a labelling on the arcs of G as follows. For any pair of neighboring nodes
{u, v} in G, λA(auv) = (λA

u (v), λA
v (u)) and λA(avu) = (λA

v (u), λA
u (v)). From this

construction, one can notice that for any arc a ∈ (G, λ), if λA(a) = (p, q), then
λA(Sym(a)) = (q, p).

The labelled digraph (G, λ) would be called a network, if and only if it satisfies
each of the following: (i) There does not exist any arc a ∈ A(G) such that
s(a) = t(a) (i.e. no self loops), (ii) There does not exist two distinct arcs a, a′ ∈
A(G) such that s(a) = s(a′) and t(a) = t(a′) (i.e. no parallel arcs), and (iii)
λ = (λV , λA), where λV : V (G) → Σ and λA is a local orientation on G, as
defined above.

The vertices of the network (G, λ) would be called nodes or, processors. Each
processor v in the network represents an entity that is capable of performing
computation steps, sending messages on any outgoing arcs, and receiving any
message that was sent on any of the incoming arcs. Notice that the entity can
distinguish among the arcs due to the presence of local orientation. The follow-
ing procedure calls are available to the entity at a node v : Send< M, p > and
Receive< M, p >, to send (respectively receive) the message M on the communi-
cation link labelled by p. Every entity executes the same algorithm provided to
it which consists of a sequence of computation steps interspersed with procedure
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calls of the two types mentioned above. Each of the steps of execution may take
an unpredictable (but finite) amount of time (i.e. we consider fully asynchronous
systems).

For any path P = (a1, a2, . . . , aj) in the network (G, λ), the sequence of arcs
labels corresponding to it is denoted by Λ(P ) = (λA(a1), λA(a2), . . . , λA(aj)).
For any sequence of edge-labels α, we define the function Tα for a network (G, λ)
as follows. A node u = Tα(v) if and only if there is path P from v to u in G
whose label-sequence Λ(P ) is α. Notice that if λ is a local orientation then there
can be at most one node of this kind and then Tα(v) is a mapping.

Each processor, at the beginning of computation would have the same knowl-
edge about the network. As in [16] we will focus on three different kinds of initial
knowledge that may be available to the processors:

[UB] Knowledge of an upper bound on n, the size of G,
[ES] Knowledge of the exact value of n, the size of G
[MP] Knowledge of a map (i.e. an isomorphic copy) of the labelled graph (G, λ).

2.3 Problems and Definitions

Informally speaking, the problem of k-GROUPING is to partition the nodes of
the network into groups of k nodes, where nodes in the same group are identified
by a common label assigned to them.

k-GROUPING: Given the network represented by (G, λ), compute at each
node v the value LABEL(v) where LABEL : V (G) → IN satisfies the condition
that for each v ∈ V (G), |{u ∈ V (G) : LABEL(u) = LABEL(v)}| = k.

In the particular case, where k = 1, this problem corresponds to the well-
studied problems of naming/enumeration and election. For the case k = 2, we
call it the MATCHING problem where the nodes of the network are matched-
up in pairs such that nodes in a pair share the same label. Notice that the
nodes matched to each-other may not be adjacent and in general, a node may
not know which other node it has been matched with. A more difficult version
of MATCHING (or, 2-GROUPING) is the PAIRING problem which involves
forming pairs among the nodes of the graph, such that each node v knows a
path leading to the other node it is paired with, denoted by Pair(v). This is
defined formally as:

PAIRING: Given a network represented by (G, λ), compute at each node v
the sequence of edge-labels representing a path from node v to the node pair(v),
where the function pair : V (G) → V (G) is such that (i) pair(v) = u⇔ pair(u) =
v, (ii) pair(u) = pair(v) ⇔ u = v, and (iii) pair(v) 
= v for any v ∈ V (G).

The generalized version of the Pairing problem, called k-relating, k ≥ 1, is not
considered in the present paper.

Definition 1. For each of the above problems, we say that the problem is solv-
able on a given instance (G, λ), under the knowledge MP(respectively ES or, UB) if
there exists a deterministic (distributed) algorithm A such that every execution of
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algorithm A on (G, λ), succeeds in solving the problem (i.e. produces the required
output), when provided with the appropriate input according to MP(respectively
ES or, UB).

We are interested in generic solution protocols for the problems, i.e. algorithms
which, when executed on any given instance (G, λ), always terminates within a
finite time, either successfully solving the problem, or reporting failure to do so.

Definition 2. We say that an algorithm A is effective for a given problem,
under the knowledge MP(respectively ES or, UB) if for every instance (G, λ) of
the problem, the algorithm A succeeds in solving the problem if and only if the
problem is solvable on (G, λ) under the knowledge MP(respectively ES or, UB)

2.4 Fibrations and Coverings

The notions of fibrations and coverings were defined by Boldi and Vigna in [4].
We present the main definitions and properties here, that are going to be used
in this work.

A fibration between the digraphs D and D′ is a homomorphism ϕ from D to
D′ such that for each arc a′ of A(D′) and for each vertex v of V (D) such that
ϕ(v) = v′ = t(a′) there exists a unique arc a in A(D) such that t(a) = v and
ϕ(a) = a′. The fibre over a vertex v (resp. an arc a) of D′ is the set ϕ−1(v) of
vertices of D (resp. the set ϕ−1(a) of arcs of D).

An opfibration between the digraphs D and D′ is a homomorphism ϕ from
D to D′ such that for each arc a′ of A(D′) and for each vertex v of V (D) such
that ϕ(v) = v′ = s(a′) there exists a unique arc a in A(D) such that s(a) = v
and ϕ(a) = a′.

A covering projection is a fibration that is also an opfibration. If a covering
projection ϕ : D → D′ exists, D is said to be a covering of D′ via ϕ and D′

is called the base of ϕ. A symmetric digraph D is a symmetric covering of a
symmetric digraph D′ via a homomorphism ϕ if D is a covering of D′ via ϕ such
that ∀a ∈ A(D), ϕ(Sym(a)) = Sym(ϕ(a)). A digraph D is symmetric-covering-
minimal if there does not exist any graph D′ not isomorphic to D such that D
is a symmetric covering of D′.

Property 1 ([4]). Given two non-empty strongly connected digraphs D,D′, each
covering projection ϕ from D to D′ is surjective; moreover, all the fibres have the
same cardinality. This cardinality is called the number of sheets of the covering.

The notions of fibrations and of coverings extend to labelled digraphs in an ob-
vious way: the homomorphisms must preserve the labelling. Given a labelled
symmetric digraph (G, λ), the minimum base of (G, λ) is defined to be the la-
belled digraph (H,λH) such that (i) (G, λ) is a symmetric covering of (H,λH)
and (ii) (H,λH) is symmetric covering minimal.

The above definition is equivalent to that given in [12,4] where the minimum
base is defined using the degree refinement technique that is related to techniques
used for minimizing deterministic automata.
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Given a labelled digraph (G, λG) and its minimum base (H,λH), the quantity
q = |V (H)|/|V (G)| is called the symmetricity (see [16]) of the labelled digraph
(G, λG). This quantity is same as the number of sheets of the covering projection
ϕ from (G, λG) to (H,λH).

The following property says that if (G, λG) is a covering of (H,λH), then
from any execution of an algorithm on (H,λH), one can build an execution
of the algorithm on (G, λG). This is the counterpart of the lifting lemma that
Angluin gives for coverings of simple graphs [1] and the proof can be found in
[4,6].

Property 2. If (G, λG) is a covering of (H,λH) via ϕ, then any execution of an
algorithm A on (H,λH) can be lifted up to an execution on (G, λG), such that
at the end of the execution, for any v ∈ V (G), v would be in the same state as
ϕ(v).

In particular, if we consider a synchronous execution of an algorithmA on (G, λ),
then this execution is obtained by lifting up the synchronous execution of A on
the minimum base (H,λ). As a result of the above property we have the following
additional property, which is useful for proving impossibility results.

Property 3. Consider two labelled digraphs (G1, λ1) and (G2, λ2) that both cover
the same labelled digraph (H,λH) via ϕ1 and ϕ2 respectively. For any algorithm
A, there exist executions of A on (G1, λ1) and (G2, λ2) such that at the end
of these executions, any vertex v1 ∈ V (G1) would be in the same state as any
vertex v2 ∈ ϕ−1

2 (ϕ1(v)) ⊂ V (G2) provided that the vertices are given the same
input initially.

3 Solving the k-Grouping Problem

3.1 Conditions for Solvability

Throughout the rest of this paper, we shall assume that the values of k and n
are such that k divides n, which is a necessary condition for solving the problems
that we consider.

Lemma 1. For solving the k-Grouping problem for a given k in a network
(G, λ), (i) knowledge of the exact size of the network, is necessary (i.e. the
knowledge [UB] is not sufficient) and (ii) q must divide k, where q is the sym-
metricity of (G, λ).

Proof Omitted.

3.2 Solution Protocol

We give below an algorithm Grouping(n, k) for solving the k-Grouping problem
in a network of size n. The algorithm computes the minimum base (H,λH) of the
network (G, λ), using the sub-procedure Enumerate which is based on Chalopin
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and Métivier’s version of the Mazurkiewicz enumeration algorithm. However, we
modify the algorithm to obtain a pseudo-synchronous algorithm that labels the
vertices of the network with integers from 1 to |V (H)|, such that all nodes that
map to the same vertex v in H share the same label. This enables us to com-
pute the minimum base (H,λH) based on the labelling. (Note that computing
the minimum-base of a digraph is a fundamental problem which is related to
state-minimization of automata and also to graph-partitioning and isomorphism
detection [5,7]. However the known solutions are not directly applicable in the
present model.)

Algorithm 1. Grouping(n,k)
(H, num) := Enumerate(n) ;
q := n/|V (H)| ;
x := n/k ;
if q divides k and k divides n then

return (num modulo x) + 1 ;
else

Terminate with failure ;

Procedure Enumerate(n̂) at node v
n(v) := 1 ;
N(v) := ∅ ;
M(v) := {(1, λ(v), ∅} ;
for n̂4 iterations do

for p := 1 to dG(v) do send < (n(v), M(v)), p > via port p ;
for p := 1 to dG(v) do

receive < (x, M), q > via port p ;
N(v) := N(v) \ {( , p, )} ∪ {(x, p, q)} ;
M(v) := M(v) ∪ M ∪ {(n(v), λ(v), N(v))} ;

if ∃(n(v), l, N) ∈ M(v) | (λ(v),N(v)) ≺ (l, N) then
n(v) := 1 + max{x | ∃(x, l, N) ∈ M(v)} ;
M(v) := M(v) ∪ {(n(v), λ(v), N(v))} ;

Map := Construct-Graph(M(v)) ;
return (Map, n(v)) ;

During the procedure Enumerate, the state of each processor vi ∈ V (G) is
represented by (λV (vi), c(vi)), where c(vi) = (n(vi), N(vi),M(vi)) represents
the following information obtained during the computation:

– n(vi) ∈ IN is the number assigned to vi by the algorithm.
– N(vi) is the local view of vi, i.e., the information the vertex vi has about

its neighbours. This contains elements of the form (nj , pj, qj) where nj is
the number assigned to a neighbor vj and the arc from vi to vj is labelled
(pj , qj).
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– M(vi) is the mailbox of vi containing all of the information received by v0

at previous computation steps. Formally, it is a set of elements of the form
(nj , lj , Nj) where nj , lj , and Nj are respectively the number, the initial label
and the local view of some node at some previous step of the algorithm.

As in the original algorithm of Mazurkiewicz [13], we need a total order on
the local views. Given two local views N1 and N2, we shall say that N1 ≺ N2

if the maximum element for the lexicographic order of the symmetric difference
N1 ! N2 = N1 ∪N2 \ N1 ∩N2 belongs to N2. We will also say that (l1, N1) ≺
(l1, N1) if l1 <Σ l2 or if l1 = l2 and N1 ≺ N2.

Procedure Construct-Graph(M)

nmax := max{x | ∃(x, l, N) ∈ M} ;
V (H) := {vi | 1 ≤ i ≤ nmax} ;
A(H) := ∅ ;
for i := 1 to nmax do

(λH(vi), Ni) := max≺{(l, N) | (i, l, N) ∈ M} ;
foreach (j, p, q) ∈ Ni do

A(H) := A(H)∪ {aijpq} ;
s(aijpq) = vi ;
t(aijpq) = vj ;
λH(aijpq) = (p, q) ;

return (H,λH) ;

Lemma 2. During the execution of algorithm Enumerate(n̂) on a network
(G, λG) of size ≤ n̂, the map constructed by Procedure Construct-graph rep-
resents the minimum base (H,λH) of (G, λG).

Once the minimum base of (G, λG) has been constructed, it is quite straightfor-
ward to solve k-Grouping as shown in Algorithm 1. Notice that the algorithm
always succeeds if q divides k which is the necessary condition for solving k-
Grouping. Hence we have the following results:

Theorem 1. Under the knowledge [ES], k-Grouping is solvable (for any k that
divides n) in the network (G, λ) if and only if q divides k, where q is the sym-
metricity of (G, λ).

Corollary 1. When the size of the network is known, Matching is solvable in
(G, λ) if and only if the symmetricity of (G, λ) is either 1 or 2.

4 Solving the Pairing Problem

4.1 Sufficiency Conditions and Solutions

Lemma 3. If k-Grouping is solvable in (G, λ) for k = |G|/2, then Pairing is
also solvable in (G, λ).
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Combining the results of Lemma 1 and Lemma 3, we know that Pairing is
solvable in (G, λ) if the symmetricity q divides n/2. However, since q always
divides n, the above condition is equivalent to the condition that 2 divides n/q
(i.e. the size of the minimum base). This gives us the following corollary:

Corollary 2. Pairing is solvable in (G, λ) if it is solvable in (H,λH), the min-
imum base of the network (or equivalently, if H has even size).

In the minimum base (H,λH), each vertex is uniquely labelled. Thus, Pairing
is solvable in (H,λH) if and only if H has even number of vertices. From a
solution for Pairing in (H,λH), we can easily construct a corresponding solution
for (G, λG). (We only need to ensure that if a node u is paired to v, using the
label sequence α, then v should be paired to u using the inverse sequence of
α.) In case H has an odd number of vertices, then some node in G should be
paired with another node having the same label (which is possible if there is a
symmetric arc joining them).

Theorem 2. Under the knowledge [UB], Pairing is solvable for (G, λG) having
minimum base (H,λH) and symmetricity q, if any one of the following holds:

(i) (H,λH) has an even number of vertices (i.e. n/q is even) or,
(ii) (H,λH) contains a symmetric self-loop (i.e. an arc a, s.t. Sym(a) = a).

Let us now consider the case when the exact value of the network size is known.

Theorem 3. Under the knowledge [ES], Pairing is solvable for the network
(G, λG) having minimum base (H,λH) and symmetricity q, if one of the fol-
lowing holds:

(i) (H,λH) has an even number of vertices (i.e. n/q is even),
(ii) there exists a symmetric self-loop in (H,λH) (i.e., a self-loop whose label

has the form (p, p)),
(iii) the minimum base has 2|V (H)| arcs , i.e., |A(H)| = 2n/q,
(iv) q = 4 and there exists a self-loop in (H,λH),
(v) q = 2 and there exists two distinct arcs a, a′ ∈ A(H) such that s(a) = s(a′)

and t(a) = t(a′).

Proof. Suppose that the size of (H,λH) is odd and that it does not contain
any symmetric self-loop (otherwise, from Lemma 2, we already know that it is
possible to solve Pairing). Since (H,λH) does not contain any symmetric self-
loop, for each arc a ∈ A(H), there exists a′ 
= a such that Sym(a) = a′.

Suppose that (H,λH) has 2|V (H)| arcs. Then there exists exactly two simple
cycles C,C′ in (H,λH) where C′ is the mirror of C. The preimage of a cycle in
(H,λH) is a set of disjoint cycles in (G, λG). If the preimage of C contains at least
two cycles, then (G, λG) would be disconnected. Consequently, the preimage of
C must be a single cycle of length |C|.q in (G, λG). Moreover there does not exist
any other cycle in (G, λG) different from the preimage of C or C′. Since |V (H)|
is odd, and |V (G)| = q|V (H)| is even, we know that q is even. Let us fix a vertex
v = s(a0) belonging to the cycle C. Then for each vertex x ∈ ϕ−1(v), we use the



Groupings and Pairings in Anonymous Networks 115

label sequence α(x) = Λ(C)q/2 to pair it with another vertex y ∈ ϕ−1(v). Now,
the remaining vertices in G can be easily paired-up.

Suppose there exists a (non-symmetric) self-loop in (H,λH) and q = 4. Let a
be such a self-loop and let v = s(a) = t(a). As explained above, the preimage of a
is a set of cycles and the sum of the lengths of these cycles must be 4. Since (G, λ)
is a network that contains neither self-loop, nor multiple arcs, the preimage of
a cannot contain cycles of length 1 or 2, and then, the preimage of a is a set
of cycles of length 4. Consequently, we can associate to each vertex x ∈ ϕ−1(v)
the label α(x) = Λ(aa). If Tα(x)(x) = x, then it means that there exists a cycle
of length 2 in (G, λG) which is impossible. Let us now consider y = Tα(x)(x).
Since ϕ(y) = v, α(y) = α(x) and consequently Tα(y)(y) = Tα(x)(Tα(x)(x)) =
Tα(x)2(x) = TΛ(aaaa)(x) = x, since the preimage of a consists of cycles of length
4. Consequently all the vertices in ϕ−1(v) will be paired in (G, λG). For all the
other vertices we proceed as before.

Suppose that q = 2 and that there exists two arcs a, a′ ∈ A(H) such that
s(a) = s(a′) and t(a) = t(a′). Let v = s(a) and consider the cycle (a, Sym(a′))
of length 2. The preimage of this cycle in G, λG is a set of cycles and the
sum of the lengths of these cycles must be 4. As before, it implies that the
preimage of this cycle consists of a set of cycles of length 4. Then, one can
associate to each vertex x ∈ ϕ−1(v) the label α(x) = Λ(aSym(a′)). Consider
a vertex x ∈ ϕ−1(v), if Tα(x)(x) = x, then it means that there exists a cycle
of length 2 in (G, λG) which is impossible. Let us now consider y = Tα(x)(x).
Since ϕ(y) = v, α(y) = α(x) and consequently Tα(y)(y) = Tα(x)(Tα(x)(x)) =
Tα(x)2(x) = TΛ(aSym(a′)aSym(a′))(x) = x and consequently all the vertices in
ϕ−1(v) will be paired in (G, λG). For all the other vertices we proceed as
before. ��

Theorem 4. Under the knowledge [MP], Pairing can be solved for (G, λG) whose
minimum base is (H,λH) if one of the following holds:

(i) (H,λH) has an even number of vertices (i.e. n/q is even),
(ii) there exists a vertex v ∈ V (H) and a closed path P (v, v) in (H,λH) such

that for any vertex u ∈ ϕ−1(v), Tα(u) 
= u and Tα(Tα(u)) = Tα2(u) = u
where α = Λ(P ) is the sequence of labels corresponding to the path P (v, v).

The above result clearly indicates how to solve the Pairing problem, when pro-
vided with a map of the graph. Observe that the condition (ii) in Theorem 2
and the conditions (ii), (iii), (iv), (v) in Theorem 3 are particular cases of the
condition (ii) in Theorem 4.

4.2 Necessary Conditions

We now show that most of the sufficient conditions presented in Section 4.1 are
in fact, also necessary. First we state a general result about solving Pairing in
networks whose minimum base has odd number of vertices.

Lemma 4. If (G, λG) is a network whose minimum base (H,λH) has an odd
number of vertices, then for any solution to the Pairing problem in (G, λG), by
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some algorithm A, there exists v ∈ V (H) such that each node u ∈ ϕ−1(v) is
paired with another node u′ ∈ ϕ−1(v).

Theorem 5. Under the knowledge [MP], Pairing cannot be solved for any net-
work (G, λG) whose minimum base (H,λH) has the following properties:

(i) (H,λH) has an odd number of vertices, and
(ii) there does not exist a vertex v ∈ V (H) and a closed path P (v, v) in (H,λH)

such that for every vertex u ∈ ϕ−1(v), Tα(u) 
= u and Tα(Tα(u)) =
Tα2(u) = u where α = Λ(P ) is the sequence of labels of the arcs in P (v, v).

Notice that there are indeed networks (of even size) which satisfy the conditions
of Theorem 5, and thus, Pairing is unsolvable in such networks even when a map
of the network is available. One such example is shown in Figure 1.

G

1 3

2 4

2

1

2

2

1

1

2

1

H

Fig. 1. A simple network, G and (its minimum base H) where Pairing is not solvable.
Here each edge between two nodes represents a pair of arcs, one in each direction (For
clarity, the edge labels have been removed from G).

Theorem 6. Under the knowledge [ES], Pairing is not solvable for any network
(G, λG) having minimum base (H,λH) and symmetricity q, if all of the following
hold:

(i) (H,λH) has an odd number of vertices,
(ii) the minimum base has strictly more than 2|V (H)| arcs , i.e., |A(H)| >

2n/q,
(iii) there does not exist any self-loop in (H,λH), and
(iv) there does not exist two distinct arcs a, a′ ∈ A(H) such that s(a) = s(a′)

and t(a) = t(a′).

The above result shows that there is a gap between the necessary and sufficient
conditions for the case when the exact network size is known. In fact, if the
minimum base of the network contains asymmetric self-loop and parallel arcs,
then we do not know the exact conditions necessary for solving the Pairing
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problem. In these cases, it may be possible to characterize the networks in terms
of the number of self-loops or parallel arcs in their minimum base, and thus
minimize this gap between the necessary and sufficient conditions.

Theorem 7. Under the knowledge [UB], Pairing is not solvable in any network
(G, λG) having minimum base (H,λH), if the following holds:

(i) (H,λH) has an odd number of vertices, and
(ii) there does not exist any symmetric self-loop in (H,λH) (i.e. an arc a such

that Sym(a)=a).

Proof. Let (H,λH) be any symmetric digraph with odd number of vertices and
having no symmetric self-loops. If there is an algorithm A that solves Pair-
ing in (G, λG) under the knowledge [UB] then this algorithm should work for
every network (G′, λ′G) which covers (H,λH) (the algorithm cannot differenti-
ate between two networks with a common minimum base, when only an upper
bound on the network size is known). We shall now show that the algorithm
A would fail for at least one network (G, λG) that covers (H,λH). First note
that |A(H)| ≥ 2 · |V (H)| because otherwise either G is disconnected or G is an
odd-sized tree (where Pairing is not possible anyway).

If |A(H)| ≥ 2 |V (H)|, then there exists an arc a ∈ A(H) such that H ′ =
H \ {a, Sym(a)} is strongly connected. (a could be either a self-loop or one of
the pair of parallel arcs or, one of the arcs in a cycle). Let u = s(a), v = t(a),
and a′ = Sym(a) 
= a. Consider the connected digraph H ′ that is obtained from
H by removing the arcs a and a′. Suppose (G′, λ′G) be a network of odd size,
whose minimum base is (H ′, λH). Notice that it is always possible to construct
such a G′, if H ′ has no symmetric self-loops.

We now construct two networks (G1, λG1) and (G2, λG2) defined as follows. To
construct (G1, λG1), we take 4 distinct copies (G′

0, λ
′
0), . . . , (G

′
3, λ

′
3) of (G′, λ′G).

We will denote by ui1, ui2, ... (resp. vi1, vi2, ...) the vertices that corresponds to
u (resp. v) in (G′

i, λi). We then add the arc aij with the same label as a (and
the symmetric arc a′ij with the same label as a′) between uij and vrj , r = i+ 1
mod 4 for all i, j. To construct (G2, λG2), we do the same but we consider
8 distinct copies of (G′, λ′G). Clearly, the two graphs we have constructed are
symmetric coverings of (H,λH). Thus, due to Lemma 4, there exists a vertex
v ∈ V (H), such that all nodes in ϕ−1(v) are paired among themselves, both in
network (G1, λG1) and network (G2, λG2).

Due to property 2, there exists an execution of A on (G1, λG1) (respectively
(G2, λG2)) where the each node in the pre-image of v computes the same label
sequence α as computed by v in an execution of A on (H,λH). Consider the path
P (v, v) in (H,λH), which corresponds to the sequence α. Let |P |a (resp. |P |a′)
be the number of times the arc a (resp, a′) appears in P and let na = |P |a−|P |a′ .

CLAIM (1): na is of the form 4r1 + 2 for some integer r1.
CLAIM (2): na is of the form 8r2 + 4 for some integer r2.

To see why the first claim is true, consider the subgraph G′
i of G1. There are

an odd number of vertices in G′
i, which belong to the preimage of v. Thus, at
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least one of these nodes must be paired with a node in some other subgraph
G′

j , j 
= i of G1. ( Notice that whenever we traverse an arc belonging to the
pre-image of a, we move from one subgraph G′

i to the next G′
i+1 mod 4.) Thus,

in this case, j = i + na mod 4 and also i = j + na mod 4. So, na must be of
the form 4r1 + 2 for some integer r1. This proves the first claim. For the second
claim, we consider the graph (G2, λG2) where, using a similar argument we can
show that na must be of the form 8r2 + 4 for some integer r2.

Note that the two claims above cannot be true simultaneously. This implies
that the algorithm A must fail for one of the networks (G1, λG1) or (G2, λG2).

��

Due to the earlier results and Theorem 7, we have a complete characterization
of those networks where Pairing is solvable when provided with an upper bound
on the network size.

5 Conclusions and Open Problems

In this paper, we studied the problem of k-Grouping which is a generalization
of the node-enumeration or the election problem, in anonymous networks. In
particular we also studied the problem of Matching or Pairing the nodes of the
network. For the Pairing problem, the solvability depends on the amount of prior
knowledge available. When an upper bound on the network size is known, it is
possible to compute the minimum base for the network. We characterized the
solvable instances of the Pairing problem in terms of the minimum base of the
network. When the exact network size is known, the network can be represented
by its minimum base and its symmetricity. In this case, the characterization pre-
sented in this paper is not complete and there is a gap between the necessary and
sufficient conditions, which needs to be investigated. Another possible extension
of this work would be to study the generalization of the Pairing(or 2-Relating)
problem to other values of k (say for k = 3, 4, 5, . . . ) or for arbitrary values of k.
It would also be interesting to consider the problem of approximate k-groupings
in the case when k does not divide n.

Acknowledgments. The authors would like to thank Paola Flocchini for the many
helpful discussions and comments.
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Abstract. This paper provides a proof of correctness for the celebrated
Minimum Spanning Tree protocol of Gallager, Humblet and Spira
[GHS83]. Both the protocol and the quest for a natural correctness proof
have had considerable impact on the literature concerning network pro-
tocols and verification. We present an invariance proof that is based on a
new intermediate-level abstraction of the protocol. A central role of the
intermediate-level configurations in the proof is to facilitate the state-
ment of invariants and other properties of the executions of GHS at the
low level. This provides a powerful tool for both the statement and the
proof of properties of the algorithm. The result is the first proof that
follows the spirit of the informal arguments made in the original paper.

1 Introduction

In a seminal paper, Gallager, Humblet and Spira presented a communication-
efficient protocol for computing the minimum spanning tree (MST) of an asyn-
chronous network in which communication links have unique weights [GHS83].
The protocol is very elegant and intuitive. It is also special for employing a very
high degree of asynchrony among the nodes of the network, without forcing its
execution to proceed in a well-formed sequence of phases of computation. The
importance of the GHS protocol has made the task of proving its correctness
a natural challenge for verification and formal methods. The arguments given
in [GHS83] for why the protocol should be correct, while informal, are convinc-
ing. Formalizing them, however, has proven to be extremely elusive. Two PhD
theses have offered extensive refinement proofs of its correctness [W88, S01].
Both of these proofs are quite long (circa 170-180 pages). Many other attempts
to prove the correctness of the GHS algorithm have been attempted. A few of
them resulted in proofs of modified versions of the algorithm, which solve the
MST problem with similar complexity [CG88, Hes99, JZ92, SdR87]. In granting
the Edsger W. Dijkstra prize1 in distributed computing: 2004 for [GHS83], the
committee pointed out that “Finding a proof [of correctness for the GHS algo-
rithm] that copes with the intricacies of this algorithm in a natural way is still very

1 See www.podc.org/dijkstra/2004.html
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much an open problem in protocol verification and formal methods.” Our goal in
this paper is to present such a proof. The full version of our proof is roughly
half the size of the previous proofs, but presenting it in detail is still beyond the
scope of this abstract. We will therefore attempt to describe the overall structure
of the proof, the novel aspects of the proof technique used, and to provide some
insights into what makes proving this particular protocol elusive.

The GHS algorithm grows a minimum-spanning forest by adding MST edges
one by one, until the forest turns into the MST.2 In the spirit of Boru̇vka’s
centralized MST algorithm [Bor26], each fragment in the forest computes its
minimum-weight outgoing edge (mwe), and adds it to the forest. In order to
control the communication costs, the GHS algorithm enables only some MST
edges to be added to the forest at any given stage, while blocking others. As a
result, one well-known issue underlying the correctness of GHS is the fact that
progress in the search for an mwe in one fragment depends on what happens
in neighboring fragments. Indeed, only progress of searches in fragments of the
lowest existing level is guaranteed, and even this is true only provided that no
sleeping node is awakened. Carefully capturing this interdependence is subtle.
The GHS algorithm makes use of a number of optimizations (such as not sending
a Reject message when it can be inferred by the recipient), adding a further
layer of complexity to any proof of correctness. We believe that a major barrier
to taming the correctness proof of the GHS algorithm comes from a lesser-known
subtlety in the algorithm: While the GHS algorithm does not employ all of the
nodes of a fragment in the search for the fragment’s mwe, it is not possible
in general to use a node’s local information (local state and local history) in
order to determine its role in the current search. More specifically, the following
three states of a node v in the network with respect to the search in its current
fragment are undistinguishable:

(a) v has participated in the current search and completed its role in the search;
(b) v will participate in the current search, but has not actively started its

participation; and
(c) v will not participate in the current search.

This matters in reasoning about the GHS algorithm because nodes in each of
the three states satisfy fundamentally different invariance properties.

This paper offers a new approach and new invariance proof for the GHS
algorithm. Its main contributions are:

– The proof is natural in that
• Correctness is proven for the original algorithm within the exact model

and assumptions of [GHS83];
• The proof directly formalizes the informal argument for correctness sket-

ched in the original paper [GHS83], and its development provides insight
into what makes proving the correctness of GHS difficult; and

2 We assume that the reader is familiar with the GHS algorithm, as presented in
[GHS83].
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• The full proof is roughly half the length of the previous proofs (under
100 pages long, most of which is a simple case analysis to verify that all
invariants hold under all possible transitions). Given that the GHS algo-
rithm contains seven possible message types, nine variables per process
and over fifty possible branches of control when treating a message, any
rigorous manual proof would necessarily involve a few tens of invariants,
whose verification would require tens of pages of (boring) detail.

– We introduce a new intermediate-level description of the GHS algorithm,
called the rainbow construction. It is obtained by abstracting away all com-
munication events and most of the state information in the GHS execution,
and maintains just enough detail to properly account for the state of nodes
with respect to the search in their fragments. The rainbow construction re-
fines the standard high-level abstraction of the GHS algorithm at the level of
a forest of fragments, and its configuration (called a painted forest), is much
more compact and intuitive than that of the detailed GHS algorithm. The
rainbow construction is of independent interest, as it may be a useful level of
abstraction for simplifying other proofs of GHS, such as those of [W88, S01].

– We use configurations of the intermediate-level rainbow construction as aux-
iliary global variables associated with configurations of the detailed GHS
algorithm. Safety and Liveness properties of GHS are then stated based on
the values and terminology of the intermediate configuration.

– By breaking the GHS algorithm into three levels of abstraction and reasoning
about the algorithm at each of the levels, this proof provides insight into the
issues and sources of difficulty involved in establishing the correctness of the
GHS algorithm.

This paper is structured as follows. Section 2 describes a high-level construc-
tion in the style of [Bor26] that is typically used to describe the GHS protocol at
the level of fragments of a minimum-spanning forest. Section 3 refines the top-
level view to the rainbow construction, which accounts for essential aspects of
the GHS algorithm, while abstracting away communicated messages and details
of variable’s values. Essential structural properties of the executions of GHS
are established at the level of the rainbow construction. Section 4 overviews
our correctness proof for the GHS algorithm. It describes how the intermediate-
level configurations are used for expressing invariants of the GHS algorithm, and
sketches the liveness proof that ties all of the pieces together, formalizing the
intuitive argument in the original paper [GHS83].

2 The Top-Level View of GHS

Given is an asynchronous network modelled as a weighted, connected undirected
graph G = (V,E, ), in which the edge weights are denoted by e for each edge
e ∈ E. The edge weights are assumed to be pairwise distinct, and hence G has a
unique minimum-spanning tree (see, e.g., [Bol79, Har69]), which we shall denote
simply by MST. Every node of V stands for a processor, and edges stand for
bidirectional FIFO communication links. Processors are aware of the ports and
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weights of the edges they are adjacent on. The problem is to design an efficient
distributed algorithm that will result in every node marking each of its local
ports (standing for incident edges) as either Branch if it is an MST edge, or as
Rejected if it is not.

The GHS algorithm can be viewed as an attempt to distribute Boru̇vka’s
centralized MST algorithm [Bor26]. Starting from singleton nodes, it “grows”
fragments by adding MST edges one by one. Every edge added to the forest
combines a pair of fragments to create a larger fragment. We will denote the
number |V| of processors by n throughout the paper. Once n − 1 edges have
been added, there is a single fragment left, and it is the MST. By assigning a
level to each fragment, and taking care that fragments combine only in specific
ways, the GHS algorithm ensures that a node will participate in at most logn
searches for the minimum weight edge of a fragment. As a result, the protocol
uses O(|V| log |V|+ |E|) short messages.

2.1 Minimum Spanning Forests

The GHS algorithm maintains a forest of fragments, each of which corresponds
to a triple F = (L, c,G), where L—the level of F—is a natural number, G =
(V,E)—the graph of F—is a subtree of the MST, and either

– F = (0, {}, ({v}, {})), where v ∈ V (so F is a singleton node and its core is
the empty set), or

– L > 0 and c = {v, w} ∈ E. In this case, we call c = {v, w} the core edge
of F , with v and w being its core nodes.

A minimal spanning forest (msf) of G is a set F = {F1, . . . , Fk} of fragments
whose node sets define a partition of V. Thus, every node of G appears in exactly
one fragment of F . We use Fv = (Lv, cv, Gv) to denote the fragment of a node v
and its components.

The edges of the fragments F ∈ F are called forest edges (of F). If {u, v} is
a forest edge, then the directed edge (u, v) is called inbound if (i) {u, v} 
= cv
and (ii) v is closer to cv than u is. If (u, v) is inbound, we consider (v, u) to be
outbound. These notions extend to paths. A directed path of fragment edges is
called inbound (resp., outbound) if all the edges in the path are inbound (resp.,
outbound). We denote by Tv the graph consisting of all outbound paths that
start at v. Thus, Tv is a subtree of Fv rooted at v. With each node in a non-
singleton fragment we associate a parent node as follows. For nodes v and w on
a core edge (i.e., if cv = {v, w}), we say that v is the parent of w (and vice-
versa), and write parent(w) = v. Otherwise, we define parent(w) = v to hold
if (w, v) is inbound. As a partial converse, we define the set of children of v by
child(v) = {w : (v, w) is outbound}. Notice that nodes of a core edge are not
children of one another.

An edge e = {v, w} ∈ E is an external edge (w.r.t. F) if Fv 
= Fw. Let V
be a subset of nodes of V. We define mwe(V,F) to be the edge of minimal
weight among the external edges in F that have at least one node in V . The
parameter F is omitted whenever the forest is clear from context, so e.g., we
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write mwe(V ) instead of mwe(V,F). Again for ease of exposition, we shall abuse
notation slightly and allow, for any structure X that contains a set of nodes
V (X), to write mwe(X) instead of mwe(V (X)). We denote the weight of mwe(V )
by mwe(V ).3 If there is no external edge in F with at least one node in V , then
mwe(V ) does not exist, and we define mwe(V ) =∞. Finally, if mwe(V ) = {v, w}
where v ∈ V , then we denote by dmwe(V ) the directed edge (v, w). This is the
result of directing mwe(V ) away from V .

2.2 The Merge and Absorb (M&A) Construction

At the level of fragments and forests, the GHS algorithm starts out with an
initial msf Fι consisting of all singleton fragments. Adding an MST edge to the
forest combines two fragments into one. This can occur in two manners: One is
a merge, in which two fragments of equal level L combine, and form a fragment
of level L + 1 whose core is the MST edge that was just added. The second
is via an absorb, in which a fragment of lower level is added into one with a
higher level. The resulting fragment maintains the level and core of the latter.
The Merge and Absorb operations combining two fragments F = (L, c,G) and
F ′ = (L′, c′, G′) are formally defined in Table 1. Given graphs G1 = (V1, E1)
and G2 = (V2, E2) we use comb(G1, e, G2) in the table to denote the graph G =(
(V1 ∪V2), (E1 ∪E2 ∪{e})

)
. The Guard field in the table describes the conditions

under which an operation may be performed, and the Action field describes the
transition caused by this operation.

Table 1. The M&A Construction

Operation Guard Condition Action

Merge(F, F ′) L = L′, F ← F ∪ {F ′′} \ {F, F ′},
mwe(F ) = mwe(F ′) = e where F ′′ = L + 1, e, comb(G, e, G′)

Absorb(F, F ′) L < L′, F ← F ∪ {F ′′} \ {F, F ′},
mwe(F ) ∩ V ′ �= ∅ where F ′′ = L′, c′, comb(G, mwe(F ), G′)

We view Table 1 as defining a nondeterministic (sequential) construction that
starts with Fι and where at each step one operation whose guard condition is
enabled is performed, for as long as enabled operations exist. Obviously, this
construction cannot perform more than n− 1 operations, since at each step one
new MST edge is added to the forest.

We write F �→ F ′ if F ′ can be obtained from F by performing a single Merge
or Absorb operation as described above. To capture reachability in the M&A
construction, we define � to be the reflexive transitive closure of �→. Thus,

3 Note that edge-weights are not specified explicitly in subgraphs and fragments, since
they are always inherited from G.
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F � F ′ if F ′ can be obtained by starting from F and performing a sequence
of (zero or more) Merge and Absorb operations. We will only be interested in
forests F that are reachable from the initial forest Fι, so that Fι � F .

A number of properties that are relevant in the analysis of the GHS algorithm
can be shown already at the level of the M&A construction. Such, for example, is
the well-known fact that fragment levels can never exceed logn. Other properties
are useful tools for bounding the dynamic behavior of the GHS algorithm. We
think of the GHS algorithm in terms of broadcast and convergecast waves gen-
erated from and returning to the core of a fragment. In the M&A construction,
the inbound/outbound orientation of a directed forest edge (v, w) can change as
a result of a Merge or Absorb operation. It is not immediate that these changes
do not interfere with these communication waves. The following claim shows
essentially that such changes occur only on the path between a core edge and
the fragment’s mwe:

Lemma 2.1. Let (v, w) be an outbound edge in the F , and assume that F �→ F ′.
If (v, w) is inbound in F ′, then mwe(Tv,F) = mwe(Fv ,F).

During the reporting (convergecast) phase of a search, nodes send information
about the mwe of their subtree towards the core. A node’s subtree, however,
might change before this message even arrives at its parent. The following prop-
erty is used to show that the reported information remains valid. We say that
a directed external edge (v, w) is ascending if Lv ≤ Lw, and (v, w) is strictly
ascending if Lv < Lw. We can show

Lemma 2.2. If dmwe(Tv) is ascending, then mwe(Tv) remains unchanged as
long as the identity of cv is unchanged.

In the convergecast phase of the search for an mwe(Fv), a node v sends the
value of mwe(Tv) to its ancestors only if dmwe(Tv) is ascending.4 Lemma 2.2
establishes that this information will remain valid throughout the search for
mwe(Fv).

3 The Rainbow Construction

A central tool in our analysis of the GHS algorithm is a novel intermediate-level
abstraction called the rainbow construction. The M&A construction abstracts
away the process of searching for an mwe(F ). The rainbow construction tries
to mimic essential aspects of the search process in the GHS algorithm, while
completely abstracting away details of communication between processes and
practically all information about local variables. The rainbow construction op-
erates on an enriched ghs forest. In addition to the partition into fragments, it
assigns color states to nodes in order to keep track of their role in the current
fragment’s search. In the spirit of the GHS algorithm, a non-singleton fragment
is identified with its core edge; in particular, we think of searches as being per-
formed on behalf of a given core edge.
4 In fact, an outgoing edge node is found out to be external only if it is ascending.
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Define the set Colors = {slp,wkn,W,G,R,B} of possible colors for nodes,
whose elements stand for Asleep, Awake, White, Green, Red and Blue, re-
spectively. The colors slp and wkn will be used to describe the state of a node
in a singleton fragment. In non-singleton fragments, a node is White if it will
participate in the current search, but hasn’t actively joined the search yet. A
node turns Green when it starts to actively participate in the search, and then
becomes Red once it has completed its role in the search. Finally, a Blue node is
excluded from participating in the current search. Roughly speaking, since the
search is activated via an outbound (broadcast) wave from the core edge, and
completes via in inbound (convergecast) wave, the search completes once both
core nodes are Red.

Formally, a configuration of the rainbow construction is represented by a
painted forest, which is a pair P = (F , col) consisting of a ghs forest F and an
assignment col : V → Colors of colors to the nodes. With respect to a painted
forest P , a directed edge (v, w) is pending, denoted by Pend(v, w), if either (i)
Lv = 0 (so v is a singleton), col(v) = wkn, and dmwe(v) = (v, w), or (ii) Lv > 0,
both nodes of the core edge cv are Red, and dmwe(Fv) = (v, w). Pending edges
play a role in our definition of the rainbow construction. Intuitively, a pending
edge is an MST edge for which the search has completed; the edge will, in due
time, be added to the forest.

Table 2. The Rainbow Construction

Op Guard Condition Action description

M[v, w] Pend(w, v) and Pend(v, w) Merge(Fv, Fw) merge on edge {v, w}
col(Vw ∪ Vv) ← W

A[w, v] Pend(w, v) Absorb(Fw, Fv) absorb on edge (w, v)

col(Vw) ← B col(v) ∈ {R, B}
W otherwise.

G[v] col(v) = W and either col(v) ← G search at v begins
(i) v ∈ cv or (Initiate(..Find) received)
(ii) v ∈ child(w), col(w) = G

R[v] col(v) = G col(v) ← R search at v ends
mwe(v) is ascending (Report sent by v)
∀u ∈ child(v) : col(u) = R

Wa[v] col(v) = slp col(v) ← wkn wakeup

The rainbow construction, depicted in Table 2, starts out with the initial
painted forest Pι = (Fι, colι), where Fι is the initial msf from the top level
construction, and colι(v) = slp for all v ∈ V. The construction consists of five
operations that may be applied to a painted forest. As in the M&A construction,
each operation is specified by a guard condition, and an action on the painted
forest that is enabled (allowed) if the guard is true. Two of the operations add
an edge to the forest and perform Merge and the Absorb on fragments, while
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the other three change the color of nodes to track progress in the search at the
node level. In the latter, a node v turns Green by G[v], which is allowed only
if v is White and is either a core node or the child of a Green node. It turns
Red via R[v], which may happen only if it is Green, all of its children are Red,
and its local mwe is ascending. More trivially, Wa[v] corresponds to a singleton
node waking up. The Merge and Absorb operations in the rainbow construction
extend those of the M&A construction by keeping track of the role of nodes in the
fragments whose core is modified by the operation. (In the Table 2, we denote by
col(V ′)← X the simultaneous assignment of the color X to all nodes of V ′.) A
Merge colors all nodes in the resulting fragment White, while the Absorb A[w, v]
comes in two flavors: It paints the nodes of the absorbed fragment Fw White
if they are intended to participate in the search in the combined fragment, and
paints them Blue if not. In the spirit of the M&A construction, we interpret the
rainbow construction as performing at each step one nondeterministically chosen
operation whose guard condition is enabled, for as long as enabled operations
exist.

We write P �→ P ′ if P ′ can be obtained from P by performing a single step of
the rainbow construction, and define � on painted forests as the reflexive and
transitive closure of �→. As with ghs forests, we will be concerned exclusively
with painted forests that are reachable from the initial forest Pι.

3.1 Properties of the Rainbow Construction

In terms of the colors provided by the rainbow construction, the first phase of a
“search” for the mwe in a fragment consists of an outbound moving front from
the core edge that turns White nodes to Green. This is followed by an inbound
front moving from the outermost formerly White nodes to the core, which turns
Green nodes to Red. We think of the search as having completed once both core
nodes are Red. The following lemma characterizes the patterns of colors that
can appear on outgoing paths starting from the core:

Lemma 3.1. Let p = u0, u1, . . . , uk be an outbound path starting at a core
node u0. The sequence 〈col(u0), . . . , col(uk)〉 of colors along p forms a string
in the regular language G∗W ∗ + G∗R∗RB∗.

A major difficulty in any attempt to rigorously reason about the GHS algorithm
is caused by the fact that the sets of nodes and edges in a fragment change while
the search within the fragment is being performed. An induction on the number
of steps performed in the rainbow construction can be used to show:

Lemma 3.2. Let col(v) ∈ {W,G,R}. Then cv is unchanged as long as col(v)
does not turn from R to non-R.

The combination of Lemmas 3.1 and 3.2 guarantees that the outbound paths
from the fargment’s core remain stable during the broadcast and convergecast
activities involved in the search for a fragment’s mwe. The analogous result sup-
porting the success of broadcast to Blue (non-searching) nodes is slightly more
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subtle, and it depends on a refinement of Lemma 2.1 from the M&A construc-
tion, which states that an edge can change orientation only if both its nodes are
Red:

Lemma 3.3. Assume that P �→ P ′ and that (v, w) is not inbound in P but is
inbound in P ′. Then col(v,P) = col(w,P) = R.

Based on Lemma 3.3 and Lemma 3.1, the following lemma will allow us to show
that paths near the leaves are stable for long enough to ensure the success of
broadcast to non-searching (Blue) nodes in the GHS algorithm:

Lemma 3.4. Let col(w) = B and assume that p is a path with color pattern
RB∗B ending in node w. Then p remains outbound as long as col(w) 
= G.

While reasoning about paths in the searching part of the fragment, as done in
Lemma 3.2, does not appear to be very complex, the ability to express and
prove properties such as Lemma 3.4, concerning the distant “dark side” of the
fragment, is another indication of the power of the rainbow construction. Both
lemmas are instrumental in establishing liveness of the GHS algorithm.

Lemma 3.1 is used both for proving other structural properties of painted
forests and the rainbow construction, and to considerably reduce the case analy-
sis involved in proving invariants of the GHS algorithm. We now present two
useful claims whose proofs make essential use of Lemma 3.1.

The Absorb operation A[w, v] in the rainbow construction has two possible
outcomes, that differ in the colors they assign to nodes of the absorbed frag-
ment. Specifically, the nodes of an absorbed fragment Fw are colored Blue if
the connecting node v at the absorbing fragment is either Red or Blue; other-
wise, the nodes of Fw are colored White. Notice that a node’s role in the search
process of its current fragment, as determined by the distinction between Blue
(non-participant) and White (future participant) and Red (past participant) de-
pends on an event that occurs at the connecting edge in the absorb operation,
which may be very distant from the node. In particular, it is independent of
the node’s actions or history. The distinction between White and Blue nodes is
worthwhile, because nodes of these colors satisfy different invariants, as we shall
illustrate in the next section. Intuitively, the GHS algorithm ignores the mwe’s
of Blue nodes during the search for a fragment’s mwe. Using Lemma 2.1 and 2.2
from the top-level M&A construction and Lemma 3.1, we can show that this is
justified by

Lemma 3.5. If col(u) = R then mwe(Tu) depends only on the non-Blue nodes
of Tu.

As a result, if u has reported a value for mwe(Tu) in the convergecast phase,
and a fragment is absorbed at one of the nodes in u’s subtree, then the reported
value remains correct, because the absorbed fragment consists exclusively of Blue
nodes. By Lemma 3.5, we can now show:

Lemma 3.6. If Pend(v, w) then (v, w) is ascending.
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The proof is roughly as follows. By definition of Pend(v, w), both nodes of cv are
Red. Lemma 3.5 implies that col(v) 
= B, and so by Lemma 3.1 we obtain that
col(v) = R. The guard for R[v] in the rainbow construction ensures that mwe(v)
is ascending when v turns Red, and by Lemmas 2.2 and 3.2 it remains ascend-
ing as long as col(v) = R. Lemma 3.6 implies that when the guard conditions
for M[v, w] and A[v, w] are satisfied in the rainbow construction, the guards of
their counterpart Merge and Absorb operations in the M&A construction hold
as well.

4 Proving Correctness of the GHS Algorithm

The top-level and the rainbow constructions play two roles in our proof. First
of all, they allow us to reason about certain aspects of the algorithm at a higher
level of abstraction, avoiding many details of the low level. The second, less
common, role is to provide a compact description of the current state of the
algorithm at a given time. This provides us with an invaluable tool for reasoning
about properties of the algorithm at the detailed low level. Various properties
that are very difficult to express solely at the level of the GHS algorithm become
expressible in a reasonably compact way. In this section we present a rough
overview of the proof, and illustrate the role that the higher-level constructions
play in the proof.

The correctness proof of the GHS algorithm is performed by reasoning about
executions of the GHS program. For the model of computation we adopt the
exact model5 described in [GHS83]. A run of the (standard) GHS algorithm is a
sequence C0, α1, C1, α2, C2, . . ., where C0 is an initial global state, and the αi are
scheduler actions. Processor activations are interleaved and each response to a
scheduler action executes atomically to completion. Formally, the MST problem
is specified as follows:

Definition 4.1. MST Problem Specification: For every weighted network
G = (V,E, ) with unique weights, if at least one node spontaneously awakens,
the algorithm must eventually reach a configuration in which:

ST1 Every node in V marks each of its ports as either Branch (an MST edge)
or Rejected (a non-MST edge); and

ST2 All channels are empty.

In order to use the rainbow construction as a description of the GHS executions,
we augment the GHS algorithm by adding, for each of the five rainbow construc-
tion operations, a single line at an appropriately chosen location in the text of
the GHS algorithm, at which the rainbow operation is performed. An execution
of the augmented algorithm constructs an execution of the rainbow construction

5 We make one additional assumption regarding an initial value for one of the local
variables, since without this extra assumption the GHS algorithm is incorrect, as
discovered by Chou [C88].
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in tandem with the execution of the standard GHS algorithm. Starting from an
extended initial configuration of the form C0 = (C0,Pι), the augmented algo-
rithm maintains an extended configuration of the form C = (C,P), where C is a
global state of the original GHS algorithm, and P is a painted forest. As we prove
in the full paper, whenever a rainbow operation is reached in an execution of the
augmented algorithm, its guard is satisfied. As a result, the auxiliary painted
forest is able to usefully track the standard configuration. Since the original GHS
algorithm has no access to the painted forest component of the configuration,
and neither it nor the rainbow construction modify the other’s state, that there
is an isomorphism between the set of executions of the GHS algorithm and that
of the augmented algorithm. of the configuration.

Reasoning about GHS executions can thus be performed using the extended
configuration of the augmented GHS program. The proof has two main parts.
The first establishes a list of invariant (safety) properties that hold throughout
the execution. The second part consists of a proof of liveness, guaranteeing that
the algorithm will achieve its goal: compute the MST and terminate.

4.1 Invariants

Since a painted forest is associated with every configuration of GHS, every node
has a well-defined and easily accessible fragment and color in each configuration.
The proof makes essential use of the painted forest for stating invariants and
for proving liveness properties. We shall now illustrate this use on one of the
invariants of the GHS algorithm. Each node (processor) v maintains a number
of local variables in the GHS algorithm. These include the variables FNv, LNv and
SNv that stand for v’s local view of its fragment (FNv), the fragment’s level (LNv),
and whether v is actively searching (SNv = Find) or not (SNv = Found). We use
a table that states an invariant for the value of each local variable as a function
of the node’s color. To illustrate this, the row stating the invariant properties
for the level variable LNv is copied here in Table 3. In Green and Red nodes v,
the variable LNv must portray the true level Lv of v’s current fragment Fv. For a
White node v, which is yet to start its search, the value of LNv must be strictly
lower than Lv, and if v is a (White) core node then necessarily LNv = Lv − 1.
For a Blue node v, which does not participate in the search on behalf of cv,
the invariant for LNv is that LNv ≤ Lv. Since whether a node is Red, White,
or Blue is independent of the node’s local history, distinctions such as those
presented in Table 3 are at best very cumbersome to express without access
to the terminology provided by using the painted forest as an auxiliary global
history variable.

Table 3. Invariant properties for the LNv variable

Color: slp wkn G R W B

Property: LNv = ? LNv = 0 LNv = Lv LNv = Lv LNv < Lv ∧ LNv ≤ Lv

(don’t care) v ∈ cv ⇒ LNv = Lv − 1
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Another useful invariant of the GHS algorithm states that the values of the
LNv variables decrease in a weakly monotone fashion along outbound paths from
the core to leaves of a fragment. Formally,

Lemma 4.1. If v ∈ child(w) then (i) LNv ≤ LNw, and (ii) LNv = LNw iff
FNv = FNw.

The claim in Lemma 4.1 is expressed in terms of the forest and is independent of
the colors in the painted forest. Proving that the lemma is an invariant, however,
makes use of colors. The subtlety involved in proving this lemma stems from
the fact that fragments are not static: They change when fragments combine.
Moreover, Merge and Absorb cause some inbound paths to become outbound
paths and vice-versa. To prove the lemma we must demonstrate that the changes
that occur do not invalidate the truth of this invariant. Lemma 3.3 implies that
a forest edge can change orientation in the rainbow construction only if both of
its nodes are Red. By Table 3 we have that LNv = Lv holds for Red nodes v. For
a forest edge {v, w} both nodes are in the same fragment, hence in particular
Lv = Lw. It follows that whenever an edge flips orientation, the LN variables at
both ends are equal, and so the monotonicity property stated in Lemma 4.1 is
not foiled.

In addition to the invariants on variable values mentioned above, we present 17
lemmas that state invariant properties of channels and communication. These pro-
vide constraints onwhatmessages andwhatmessage sequences can appear in chan-
nels of different types. They are expressed via extensive use of the painted forest
to determine fragment information as well as to distinguish between channel states
based on the colors of the nodes at their endpoints. One of the lemmas, for example,
implies that a Changerootmessage can appear only in an outbound channel con-
necting twoRed nodes. Other invariants can be used to show that only Changeroot
messages can appear in such a channel. Special treatment is given to the merging
activity at core edges, to the testing performed at Green nodes with a complicating
optimization employed by GHS, and to the patterns of Initiate messages along
outgoing paths. The Initiate (broadcast) messages are the only type of message
of which multiple instances can appear in a single channel.

An extended configuration is called legal if it satisfies all of the stated invari-
ants. The invariant theorem states that every reachable configuration is legal.
Roughly speaking, it is proven via one joint induction argument. The basis es-
tablishes that the invariants are all true in the initial (extended) configuration of
every GHS execution, and the inductive step shows that each single atomic step
of GHS—consisting of one of the Response procedures of the GHS algorithm
that starts out in a legal configuration, yields a legal configuration. The proof
of the inductive step is a long case analysis of limited interest. It is a natural
candidate for a computer-aided proof.

4.2 Liveness

We now sketch the liveness claims for the proof, formalizing the informal argu-
ments given in [GHS83]. A basic low-level claim, which we omit, shows based on
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the model of communication that every message in a channel will be repeatedly
received at the destination unless it is consumed. One of the ingenious aspects
of the GHS algorithm has to do with the fact that many messages are not im-
mediately responded to. Rather, they are returned to the channel to be received
again and considered at a later time. As a result, progress in the algorithm is
not a priori guaranteed. The two scenarios in which such delays may occur are
as follows.

Testing: A Green node u that has not yet discovered the value of mwe(u) sends
a Test(Lμ, Fμ) message, where Lμ = LNu and Fμ = FNu, on its lightest candidate
(port) for an external edge. A node v receiving such a message will reply to it
provided LNv ≥ Lμ. The message will be delayed otherwise.

Connecting: A fragment’s mwe(Fv) edge, which is directed from the fragment’s
node v, is discovered once the Pend(v, w) condition holds. Given the reliability
of communication, we can use the invariants and the rainbow construction to
show by induction on the distance between cv and v that:6

Lemma 4.2. Pend(v, w) ⇒ �
(
Connect(Lv) ∈ (v, w)

)
.

Consumption by w of the Connect(Lv) message, that the lemma guarantees will
be in the channel (v, w), is, however, delayed by the GHS algorithm until LNw

grows enough to satisfy Lv ≤ LNw, and often even until Lv < LNw.
To establish that progress takes place in spite of this inhibiting behavior of

GHS, perhaps the most essential liveness property, which can be proved using
Lemma 3.1, Lemma 3.2, and Lemma 3.4, is:

Lemma 4.3.
(
Lv = l̂ > 0 ∧ cv = ê

)
⇒ �

(
LNv = l̂ ∧ FNv = ê

)
.

Lemma 4.3 states that, for every node of a given fragment, the local variables will
eventually display the current level and fragment name. (For a Blue node, this
may happen at a time when the node’s fragment may already have a different
name and level.) The lemma can be used to show that progress is guaranteed in
testing on ascending edges and when trying to connect on ascending or strictly
ascending edges.

We now consider progress in the search process in a non-singleton fragment.
Using invariants on the possible contents of core channels to reason about core
nodes, and Lemma 3.2 for non-core nodes, we can show by induction on the
distance between v and cv that:

Lemma 4.4.
(
col(v) = W ∧ cv = ê

)
⇒ �

(
col(v) ∈ {G,R} ∧ cv = ê

)
.

Once Green, a node v searches its untested ports for a mwe(v), and awaits mwe
reports from its children. Using Lemma 4.3 we can show that v’s local search
will complete successfully if dmwe(v) is ascending. Moreover, the node v will
eventually turn Red if dmwe(w) is ascending for every w ∈ Tv.

6 We use the temporal logic � operator for “eventually” [MP95]. In addition, all of
our liveness claims are implicitly universally quantified—they apply to all configu-
rations C and all nodes v, w, etc.



A New Proof of the GHS Minimum Spanning Tree Algorithm 133

Let us denote by WakeNo and EdgeNo the number of non-sleeping nodes,
and the number of forest edges, respectively. Clearly, 0 ≤WakeNo ≤ n and 0 ≤
EdgeNo ≤ n− 1. Moreover, EdgeNo < n− 1 iff there is more than one fragment
in the forest, so that at least one more MST edge needs to be added. Think of a
fragment as being active if it is not a sleeping singleton node. Let Lmin(C) be the
minimal level of any active fragment in C. In [GHS83] the authors argue that, if
EdgeNo < n− 1 then one fragment of level Lmin will be guaranteed to succeed
in adding an MST edge. We now present a slightly more rigorous argument.

For a fragment of level Lmin(C), every external edge is either ascending, or
connected to a sleeping singleton. It follows that in a fragment of minimal level,
every local search at a Green node will either succeed, or will wake up a sleeping
singleton. Formally, we can show:

Lemma 4.5. Lv = Lmin ∧ col(v) = G ⇒
�
(
WakeNo will strictly increase ∨ (col(v) = R)

)
.

Applying Lemma 4.5 by induction on the structure of Fv we obtain that minimal-
level fragments complete their unless new nodes are awaken.

Lemma 4.6. Lv = Lmin ∧ mwe(Fv) 
=∞ ⇒
�
(
WakeNo will strictly increase ∨ Pend(dmwe(Fv))

)
.

Combining this with Lemmas 4.2 and 4.3, we can establish:

Lemma 4.7. EdgeNo < n− 1 ⇒
�(WakeNo will strictly increase ∨ EdgeNo will strictly increase).

Sketch of proof: The problem specification assumes that at some point at
least one node wakes up. Thus, initially we have WakeNo = 0 and are guaranteed
that WakeNo will increase. Ultimately, at most n nodes can be woken up overall.
Thus, in every execution there must be some point after which no sleeping node
ever wakes up. Let C be a such a configuration with EdgeNo < n − 1 (so there
are at least two fragments in C). By Corollary 4.6 all searches in fragments of
level Lmin are guaranteed to complete, and by Lemma 4.2 their dmwe’s will
contain Connect messages. If any of these dmwe’s point to fragments of strictly
higher levels, then we have by Lemma 4.3 and the GHS behavior that an Absorb
will result, and EdgeNo will increase. Otherwise, all of these dmwe’s point to
fragments of level Lmin. Because edge weights are distinct, one of these mwe’s
is the lightest of them all. This edge must be the mwe of both fragments it is
incident on. A Merge will thus take place on this edge, and EdgeNo will increase.

Since 0 ≤ WakeNo + EdgeNo ≤ 2n− 1 with equality only when the MST is
complete, we immediately obtain:

Lemma 4.8. In every execution of the GHS algorithm, the forest eventually
consists of the MST.

Once the forest consists of a single tree, we have that WakeNo = n and can use
Lemma 4.5 to prove that the search will complete with both core nodes Red.
Further reasoning using the invariants then shows that at that point all ports
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are properly marked, and all messages remaining in the channels are consumed
without modifying the port markings, and so eventually all channels are empty.
We thus obtain our main theorem:

Theorem 4.1. Every run of the GHS algorithm reaches a state satisfying the
specification of the MST problem given by conditions ST1 and ST2 in Defini-
tion 4.1.

5 Conclusions

It is no accident that the GHS algorithm has become a notorious challenge for
verification of distributed protocols. The considerable nondeterminism inherent
in the scheduler’s timing choices results in the runs of GHS lacking a natural
phase structure. A fragment may concurrently be engaged in many activities
involving outbound broadcasts, inbound convergecasts, and local testing. More-
over, while all of these are taking place, the structure of the fragment may change
as a result of other fragments being absorbed into it.

The main novelty of our proof comes from the introduction of the intermediate-
level of abstraction that we called the rainbow construction. Executions of the
rainbow construction refine the standard high-level description of GHS in terms
of Merge and Absorb at the graph level, and they are refined by executions of the
detailed GHS algorithm. We do not, however, prove refinement mappings between
the three levels. Rather, we prove structural properties at the abstract levels, and
use configurations of the rainbow construction as global auxiliary history variables
when reasoning about the detailed GHS algorithm. The auxiliary configurations
of the rainbow construction enable cleaner and simpler statement of invariance
properties, and facilitates the reasoning about progress guarantees in executions
of GHS. Structural properties such as the characterization of color patterns along
outgoing path in Lemma 3.1 considerably reduce the amount of case analysis re-
quired in the proofs.

We believe that the rainbow construction as well as some of our analysis
can help in simplifying the proofs of GHS in other frameworks, such as the I/O
automata approach of [W88], and the Petri-net based proof of [S01]. There is also
hope that our decomposition of the problem will enable an efficient mechanized
proof for GHS.7

Earlier attempts at proving the GHS algorithm have led some of the re-
searchers involved to conclude that, in the end, there is no alternative to a large
invariance proof in this case, and such a proof is necessarily tedious and boring.
This paper suggests that generating a manageable invariance proof of GHS is
itself nontrivial. In our proof, the use of the rainbow construction made this
task tractable. The fact that our liveness proof is a direct formalization of the
argument described in [GHS83] suggests that our correctness proof is “natural.”

7 Hesselink [Hes99] set out to produce such a proof, and ended up proving correctness
of a related MST algorithm.
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Abstract. Consider a distributed system N in which each agent has an input
value and each communication link has a weight. Given a global function, that
is, a function f whose value depends on the whole network, the goal is for every
agent to eventually compute the value f(N). We call this problem global function
computation. Various solutions for instances of this problem, such as Boolean
function computation, leader election, (minimum) spanning tree construction,
and network determination, have been proposed, each under particular assump-
tions about what processors know about the system and how this knowledge can
be acquired. We give a necessary and sufficient condition for the problem to be
solvable that generalizes a number of well-known results [3, 28, 29]. We then pro-
vide a knowledge-based (kb) program (like those of Fagin, Halpern, Moses, and
Vardi [8, 9]) that solves global function computation whenever possible. Finally,
we improve the message overhead inherent in our initial kb program by giving
a counterfactual belief-based program [15] that also solves the global function
computation whenever possible, but where agents send messages only when they
believe it is necessary to do so. The latter program is shown to be implemented
by a number of well-known algorithms for solving leader election.

1 Introduction

Consider a distributed system N in which each agent has an input value and each com-
munication link has a weight. Given a global function, that is, a function f whose value
depends on the whole network, the goal is for every agent to eventually compute the
value f(N). We call this problem global function computation. Many distributed proto-
cols involve computing some global function of the network. This problem is typically
straightforward if the network is known. For example, if the goal is to compute the
spanning tree of the network, one can simply apply one of the well-known algorithms
proposed by Kruskal or Prim. However, in a distributed setting, agents may have only
local information, which makes the problem more difficult. For example, the algorithm
proposed by Gallager, Humblet and Spira [11] is known for its complexity.1 Moreover,

1 Gallager, Humblet, and Spira’s algorithm does not actually solve the minimum spanning tree
as we have defined it, since agents do not compute the minimum spanning tree, but only learn
relevant information about it, such as which of its edges lead in the direction of the root.
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the algorithm does not work for all networks, although it is guaranteed to work correctly
when agents have distinct inputs and no two edges have identical weights.

Computing shortest paths between nodes in a network is another instance of global
function computation that has been studied extensively. [10, 4]. The well-known leader
election problem [21] can also be viewed as an instance of global computation in all
systems where agents have distinct inputs: the leader is the agent with the largest (or
smallest) input. The difficulty in solving global function computation depends on what
processors know. For example, when processors know their identifiers (names) and all
ids are unique, several solutions for the leader election problem have been proposed,
both in the synchronous and asynchronous settings [6, 19, 25]. On the other hand, An-
gluin [1], and Johnson and Schneider [18] proved that it is impossible to deterministi-
cally elect a leader if agents may share names. In a similar vein, Attiya, Snir and War-
muth [3] prove that there is no deterministic algorithm that computes a non-constant
Boolean global function in a ring of unknown and arbitrarily large size if agents’ names
are not necessarily unique. Attiya, Gorbach, and Moran [2] characterize what can be
computed in what they call totally anonymous shared memory systems, where access to
shared memory is anonymous.

We aim to better understand what agents need to know to compute a global function.
We do this using the framework of knowledge-based (kb) programs, proposed by Fagin,
Halpern, Moses and Vardi [8, 9]. Intuitively, in a kb program, an agent’s actions may
depend on his knowledge. To say that the agent with identity i knows some fact ϕ we
simply write Kiϕ. For example, if agent i sends a message msg to agent j only if he
does not know that j already has the message, then the agent is following a kb program
that can be written as

if Ki(hasj(msg)) then skip else send(msg).

Knowledge-based programs abstract away from particular details of implementation
and generalize classes of standard programs. They provide a high-level framework for
the design and specification of distributed protocols. They have been applied to a num-
ber of problems, such as atomic commitment [14], distributed commitment [22], Byzan-
tine agreement [7, 16], sequence transmission [17], and analyzing the TCP protocol
[27].

We first characterize when global function computation is solvable, i.e., for which
networks N and global functions f agents can eventually learn f(N). As we said ear-
lier, whether or not agents can learn f(N) depends on what they initially know about
N . We model what agents initially know as a set N of networks; the intuition is that
N is the set of all networks such that it is common knowledge that N belongs to N .
For example, if it is commonly known that the network is a ring, N is the set of all
rings; this corresponds to the setting considered by Attiya, Snir and Warmuth [3]. If, in
addition, the size n of N is common knowledge, then N is the (smaller) set of all rings
of size n. Yamashita and Kameda [28] focus on three different types of sets N : (1) for
a given n, the set of all networks of size n, (2) for a fixed d, the set of all networks of
diameter at most d, and (3) for a graph G, the set of networks whose underlying graph
is G, for all possible labelings of nodes and edges. In general, the more that is initially
known, the smallerN is. Our problem can be rephrased as follows: given N and f , for
which sets N is it possible for all agents in N to eventually learn f(N)?
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For simplicity, we assume that the network is finite and connected, that communi-
cation is reliable, and that no agents fail. Consider the following simple protocol, run
by each agent in the network: agents start by sending what they initially know to all
of their neighbors; agents wait until they receive information from all their neighbors;
and then agents transmit all they know on all outgoing links. This is a full-information
protocol, since agents send to their neighbors everything they know. Clearly with the
full-information protocol all agents will eventually know all available information about
the network. Intuitively, if f(N) can be computed at all, then it can be computed when
agents run this full-information protocol. However, there are cases when this protocol
fails; no matter how long agents run the protocol, they will never learn f(N). This can
happen because

1. although the agents actually have all the information they could possibly get, and
this information suffices to compute the value of f , the agents do not know this;

2. although the agents have all the information they could possibly get (and perhaps
even know this), the information does not suffice to compute the function value.

In Section 2, we illustrate these situations with simple examples. We show that there is
a natural way of capturing what agents know in terms of bisimilarity relations [23], and
use bisimilarity to characterize exactly when global function computation is solvable.
We show that this characterization provides a significant generalization of results of
Attiya, Snir, and Warmuth [3] and Yamashita and Kameda [29].

We then show that the simple program where each agent just forwards all the new
information it obtains about the network solves the global function computation prob-
lem whenever possible. It is perhaps obvious that, if anything works at all, this program
works. We show that the program terminates with each agent knowing the global func-
tion value iff the condition that we have identified holds.

Our program, while correct, is typically not optimal in terms of the number of mes-
sages sent. Generally speaking, the problem is that agents may send information to
agents who already know it or will get it via another route. For example, consider an
oriented ring. A simple strategy of always sending information to the right is just as
effective as sending information in both directions. Thus, roughly speaking, we want to
change the program so that an agent sends whatever information he learns to a neighbor
only if he does not know that the neighbor will eventually learn it anyway.

Since agents decide which actions to perform based on what they know, this will be
a kb program. While the intuition behind this kb program is quite straightforward, there
are subtleties involved in formalizing it. One problem is that, in describing kb programs,
it has been assumed that names are commonly known. However, if the network size is
unknown, then the names of all the agents in the network cannot be commonly known.
Things get even more complicated if we assume that identifiers are not unique. For
example, if identifiers are not unique, it does not make sense to write “agent i knows
ϕ”; Kiϕ is not well defined if more than one agent can have the id i.

We deal with these problems using techniques introduced by Grove and Halpern
[12, 13]. Observe that it makes perfect sense to talk about each agent acting based on
his own knowledge by saying “if I know ϕ, then . . . ”. I here represents the name each
agent uses to refer to himself. This deals with self-reference; by using relative names
appropriately, we can also handle the problem of how an agent refers to other agents.
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A second problem arises in expressing the fact that an agent should send informa-
tion to a neighbor only if the neighbor will not eventually learn it anyway. As shown
by Halpern and Moses [15] (HM from now on), the most obvious way of expressing it
does not work; to capture this intuition correctly we must use counterfactuals. These
are statements of the form ϕ > ψ, which are read “if ϕ then ψ”, but the “if ... then” is
not treated as a standard material implication. In particular, the formula is not necessar-
ily true if ϕ is false. In Section 3.1, we provide a kb program that uses counterfactuals
which solves the global function computation problem whenever possible, while con-
siderably reducing communication overhead.

As a reality check, for the special case of leader election in networks with distinct ids,
we show in Section 4 that the kb program is essentially implemented by the protocols
of Lann, Chang and Roberts [19, 6], and Peterson [25], which all work in rings (under
slightly different assumptions), and by the optimal flooding protocol [21] in networks
of bounded diameter. Thus, the kb program with counterfactuals shows the underlying
commonality of all these programs and captures the key intuition behind their design.

The rest of this paper is organized as follows. In Section 2, we give our character-
ization of when global function computation is possible. In Section 3 we describe the
kb program for global function computation, and show how to optimize it so as to min-
imize messages. In Section 4, we show that the program essentially implements some
standard solutions to leader election in a ring. For space reasons, we defer the detailed
formal definitions and the proofs of results to the full paper.

2 Characterizing When Global Function Computation is Solvable

We model a network as a directed, simple (no self-loops), connected, finite graph, where
both nodes and edges are labeled. Each node represents an agent; its label is the agent’s
input, possibly together with the agent’s name (identifier). Edges represent communi-
cation links; edge labels usually denote the cost of message transmission along links.
Communication is reliable, meaning that every message sent is eventually delivered and
no messages are duplicated or corrupted.

We assume that initially agents know their local information, i.e., their own input
value, the number of outgoing links, and the weights associated with these links. How-
ever, agents do not necessarily know the weights on non-local edges, or any topological
characteristics of the network, such as size, upper bound on the diameter, or the un-
derlying graph. Additionally, agents may not know the identity of the agents they can
directly communicate with, or if they share their names with other agents. In order
to uniquely identify agents in a network N of size n, we label agents with “external
names” 1, . . ., n. Agents do not necessarily know these external names; we use them
for our convenience when reasoning about the system. In particular, we assume that the
global function f does not depend on these external names; f(N) = f(N ′) for any two
networks N and N ′ that differ only in the way that nodes are labeled.

Throughout the paper we use the following notation: We write V (N) for the set of
agents in N and E(N) for the set of edges. For each i ∈ V (N), let OutN (i) be the set
of i’s neighbors on outgoing links, so that OutN (i) = {j ∈ V (N) | (i, j) ∈ E(N)};
let InN (i) be the set of i’s neighbors on incoming links, so that InN (i) = {j ∈
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V (N) | (j, i) ∈ E(N))}; let inN (i) denote i’s input value. Finally, if e is an edge
in E(N), let wN (e) denote e’s label.

We want to understand, for a given network N and global function f , when it is
possible for agents to eventually know f(N). This depends on what agents know about
N . As mentioned in the introduction, the general (and unstated) assumption in the lit-
erature is that, besides their local information, whatever agents know initially about the
network is common knowledge. We start our analysis by making the same assumption,
and characterize the initial common knowledge as a set N of networks.

In this section, we assume that agents are following a full-information protocol. We
think of the protocol as proceeding in rounds: in each round agents send to all neighbors
messages describing all the information they have; messages are stamped with the round
number; round k for agent i starts after he has received all round k − 1 messages from
his neighbors (since message delivery is reliable, this is guaranteed to happen). The
round-based version of the full-information protocol makes sense both in synchronous
and asynchronous settings, and for any assumptions about the order in which messages
are delivered.

Intuitively, the full-information protocol reduces uncertainty. For example, suppose
that N consists of all unidirectional 3-node rings, and let N be a three node ring in
which agents have inputs a, b, and c, and all edges have the same weight w. Let i
be the external name of the agent with input a. Initially, i considers possible all 3-
nodes rings in which the weight on his outgoing edge is w and his input is a. After
the first round, i learns from his incoming neighbor, who has external name j, that
j’s incoming edge also has weight w, and that j has input c. Agent j learns in the
first round that his incoming neighbor has input b and that his incoming edge also has
weight w. Agent j communicates this information to i in round 2. At the end of round
2, i knows everything about the network N , as do the other two agents. Moreover, he
knows exactly what the network is. But this depends on the fact that i knows that the
ring has size 3.

Round 0 Round 1 Round 2

Fig. 1. How i’s information changes with the full-information protocol

Now consider the same network N , but suppose that agents do not know the ring
size, i.e., N is the set of all unidirectional rings, of all possible sizes and for all input
and weight distributions. Again, at the end of round 2, agent i has all the information
that he could possibly get, as do the other two agents. However, at no point are agents
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able to distinguish the network N from a 6-node ring N ′ in which agents look just like
the agents on the 3-node ring (see Figure 2). Consider the pair of agents i in N and
i′ in N ′. It is easy to check that these agents get exactly the same messages in every
round of the full-information protocol. Thus, they have no way of distinguishing which
is the true situation. If the function f has different values on N and N ′, then the agents
cannot compute f(N). On the other hand, ifN consists only of networks where inputs
are distinct, then i realizes at the end of round 2 that he must be k’s neighbor, and then
he knows the network configuration.

Fig. 2. Two indistinguishable networks

We want to characterize when agent i in network N thinks he could be agent i′ in
network N ′. Intuitively, at round k, i thinks it possible that he could be i′ if there is a
bijection μ that maps i’s incoming neighbors to i′’s incoming neighbors such that, at
the previous round k − 1, each incoming neighbor j of i thought that he could be μ(j).

Definition 1. Given networks N and N ′ and agents i ∈ V (N) and i′ ∈ V (N ′), i and
i′ are 0-bisimilar, written (N, i) ∼0 (N ′, i′), iff

– inN(i) = inN ′(i′);
– there is a bijection fout : OutN (i) −→ OutN ′(i′) that preserves edge-labels; that

is, for all j ∈ OutN (i), we have wN (i, j) = wN ′(i′, fout(j)).

For k > 0, i and i′ are k-bisimilar, written (N, i) ∼k (N ′, i′), iff

– (N, i) ∼0 (N ′, i′), and
– there is a bijection f in : InN (i) −→ InN ′(i′) such that for all j ∈ InN (i)

• wN (j, i) = wN ′(f in(j), i′),
• the (j, i) edge is bidirectional iff the (f in(j), i′) edge is bidirectional, and
• (N, j) ∼k−1 (N ′, f in(j)).

Note that ∼k is an equivalence relation on the set of pairs (N, i) with i ∈ V (N), and
that ∼k+1 is a refinement of ∼k.

The following lemma relates bisimilarity and the full-information protocol:

Lemma 1. The following are equivalent:

(a) (N, i) ∼k (N ′, i′).
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(b) Agents i ∈ V (N) and i′ ∈ V (N ′) have the same initial local information and
receive the same messages in each of the first k rounds of the full-information pro-
tocol.

(c) If the system is synchronous, then i and i′ have the same initial local information
and receive the same messages in each of the first k rounds of every deterministic
protocol.

Intuitively, if the function f can be computed on N , then it can be computed using a
full-information protocol. The value of f can be computed when f takes on the same
value at all networks that the agents consider possible. The round at which this happens
may depend on the networkN , the function f , and what it is initially known. Moreover,
if it does not happen, then f is not computable. Using Lemma 1, we can characterize if
and when it happens.

Theorem 1. The global function f can be computed on networks in N iff, for all net-
works N ∈ N , there exists a constant kN ,N,f , such that, for all networks N ′ ∈ N , all
i ∈ V (N), and all i′ ∈ V (N ′), if (N, i) ∼kN ,N,f

(N ′, i′) then f(N ′) = f(N).

Proof: First suppose that the condition in the statement of the theorem holds. At the
beginning of each round k, each agent i in the network proceeds as follows. If i received
the value of f in the previous round, then i forwards the value to all of its neighbors and
terminates; otherwise, i computes f ’s value on all the networksN ′ such that there exists
an i′ such that agent i′ would have received the same messages in the first k− 1 rounds
in network N ′ as i actually received. (By Lemma 1, these are just the pairs (N ′, i′) such
that (N ′, i′) ∼k−1 (N, i).) If all the values are equal, then i sends the value to all his
neighbors and terminates; otherwise, i sends whatever new information he has received
about the network to all his neighbors.

Let ki be the first round with the property that for all N ′ ∈ N and i′ in N ′, if
(N, i) ∼ki (N ′, i′), then f(N ′) = f(N). (By assumption, such a ki exists and it is at
most kN ,N,f .) It is easy to see that, by round ki, i learns the value of f(N), since either
i gets the same messages that it gets in the full-information protocol up to round ki or
it gets the function value. Thus, i terminates by the end of round ki + 1 at the latest,
after sending the value of f , and the protocol terminates in at most kN ,N,f + 1 rounds.
Clearly all agents learn f(N) according to this protocol.

Now suppose that the condition in the theorem does not hold and, by way of contra-
diction, that the value of f can be computed by some protocol P on all the networks
in N . There must exist some network N for which the condition in the theorem fails.
Consider a run where all messages are delivered synchronously. There must be some
round k such that all agents in N have computed the function value by round k. Since
the condition fails, there must exist a network N ′ ∈ N and agents i ∈ V (N) and
i′ ∈ V (N ′) such that (N, i) ∼k (N ′, i′) and f(N) 
= f(N ′). By Lemma 1, i and i′

have the same initial information and receive the same messages in the first k rounds of
protocolP . Thus, they must output the same value for the function at round k. But since
f(N) 
= f(N ′), one of these answers must be wrong, contradicting our assumption that
P computes the value of f in all networks in N .

Intuitively, kN ,N,f is a round at which each agent i knows that f takes on the same value
at all the networks i considers possible at that round. Since we are implicitly assuming
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that agents do not forget, the set of networks that agent i considers possible never grows.
Thus, if f takes on the same value at all the networks that agent i considers possible
at round k, then f will take on the same value at all networks that i considers possible
at round k′ > k, so every agent knows the value of f(N) in round kN ,N,f . In some
cases, we can provide a useful upper bound on kN ,N,f . For example, if N consists
only of networks with distinct identifiers, or, more generally, of networks in which no
two agents are locally the same, i.e., (N, i) 
∼0 (N, j) for all i 
= j, then we can take
kN ,N,f = diam(N) + 1, where diam(N) is the diameter of N .

Theorem 2. If initially it is common knowledge that no two agents are locally the same,
then all global functions can be computed; indeed, we can take kN ,N,f =diam(N) + 1.

Attiya, Snir, and Warmuth [3] prove an analogue of Lemma 1 in their setting (where
all networks are rings) and use it to prove a number of impossibility results. In our
language, these impossibility results all show that there does not exist a k such that
(N, i) ∼k (N ′, i′) implies f(N) = f(N ′) for the functions f of interest, and thus are
instances of Theorem 1.2

Yamashita and Kameda characterize when global functions can be computed in undi-
rected networks (which have no weights associated with the edges), assuming that an
upper bound on the size of the network is known. They define a notion of view and
show that two agents have the same information whenever their views are similar in a
precise technical sense; f(N) is computable iff for all networks N ′ such that agents in
N and N ′ have similar views, f(N ′) = f(N). Their notion of similarity is essentially
our notion of bisimilarity restricted to undirected networks with no edge labels. Thus,
their result is a special case of Theorem 1 for the case that N consists of undirected
networks with no edge labels of size at most n∗ for some fixed constant n∗; they show
that kN ,N,f can be taken to be n∗ in that case. Not only does our result generalize theirs,
but our characterization is arguably much cleaner.

Theorem 2 sheds light on why the well-known protocol for minimum spanning tree
construction proposed by Gallager, Humblet, and Spira [11] can deal both with systems
with distinct ids (provided that there is a commonly-known ordering on ids) and for net-
works with identical ids but distinct edge-weights. These are just instances of situations
where it is common knowledge that no two agents are locally the same.

3 Standard and kb Programs for Global Function Computation

3.1 Dealing with Shared Names

A knowledge-based (kb) program Pgkb has the form

if t1 ∧ k1 then act1
if t2 ∧ k2 then act2
. . . ,

2 We remark that Attiya, Snir, and Warmuth allow their global functions to depend on external
names given to agents in the network. This essentially amounts to assuming that the agent’s
names are part of their input.
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where the tjs are standard tests (not involving knowledge or beliefs, but possibly in-
volving temporal operators such as ♦ and counterfactuals), the kjs are knowledge tests
(that could also involve belief, as we shall see), and the actjs are actions. The intended
interpretation is that agent i runs this program forever. At each point in time, i nonde-
terministically executes one of the actions actj such that the test tj ∧ kj is satisfied;
if no such action exists, i does nothing. We sometime use obvious abbreviations like
if . . . then . . . else. A standard program is one with no knowledge tests.

Even in a standard program, there are issues of naming if we work in networks where
the names of agents are not common knowledge (see [24, 13]). Following Grove and
Halpern [12, 13] (GH from now on), we distinguish between agents and their names. We
assume that programs mention only names, not agents (since in general the programmer
will have access only to the names, which can be viewed as denoting roles). We use N
to denote the set of all possible names and assume that one of the names is I . In the
semantics, we associate with each name the agent who has that name. With each run
(or execution) of the program, we associate the set of agents that exist in that run. For
simplicity, we assume that the set of agents is constant over the run; that is, we are
not allowing agents to enter the system or leave the system. However, different sets of
agent may be associated with different runs. We assume that each agent has a way of
naming his neighbors, and gives each of his neighbors different names. However, two
different agents may use the same name for different neighbors. For example, in a ring,
each agent may name his neighbors L and R; in an arbitrary network, an agent whose
outdegree is d may refer to his outgoing neighbors as 1, 2, ..., d. We allow actions in
a program to depend on names, so the meaning of an action may depend on which
agent is running it. For example, in our program for global function computation, if i
uses name n to refer to his neighbor j, we write i’s action of sending message msg
to j as sendn(msg). Similarly, if A is a set of names, then we take sendA(msg) to
be the action of sending msg to each of the agents in A (and not sending anything to
any other agents). For convenience, let Nbr denote the neighbors of an agent, so that
sendNbr(msg) is the action of sending msg to all of an agent’s neighbors.

We assume that message delivery is handled by the channel (and is not under the
control of the agents). In the program, we use a primitive proposition some new info
that we interpret as true for agent i iff i has received some new information; in our set-
ting, that means that i has learned about another agent in the network and his input, has
learned the weight labeling some edges, or has learned that there are no further agents
in the network. (Note that in the latter case, i can also compute the function value. For
example, in doing leader election on a unidirectional ring, if i gets its id back after send-
ing it around the network, then i knows that it has heard from all agents in the network,
and can then compute which agent has the highest id.) Note that some new info is a
proposition whose truth is relative to an agent. As already pointed out by GH, once we
work in a setting with relative names, then both propositions and names need to be
interpreted relative to an agent. In the program, the action sendn(new info) has the
effect of i sending n whatever new information i learned.

With this background, we can describe the program for global function computation,
which we call PgGC ; each agent runs the program

if some new info then sendNbr(new info); receive,
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where the receive action updates the agent’s state by receiving any messages that are
waiting to be delivered. Next we prove that PgGC is correct.

Theorem 3. PgGC solves the global function computation problem whenever possible.
That is, if N and f satisfy the condition in Theorem 1, then with PgGC eventually all
agents know the function value; otherwise, no agent ever knows the function value.

As written, PgGC does not terminate; however, we can easily modify it so that it ter-
minates if agents learn the function value. (They will send at most one message after
learning the function value.)

3.2 Improving Message Overhead

While sending only the new information that an agent learns at each step reduces the
size of messages, it does not preclude sending unnecessary messages. One way of re-
ducing communication is to have agent i not send information to the agent he names n
if he knows that n already knows the information.

To capture this, assume first that there is a modal operator Kn in the language for
each name n ∈ N. When interpreted relative to agent i, Knϕ is read as “the agent i
named n knows fact ϕ”. Let cont(new info) be a primitive proposition that charac-
terizes the content of the message new info. For example, suppose that N is a uni-
directional ring, and new info says that i’s left neighbor has input value v1. Then
cont(new info) is true at all points where i’s left neighbor has input value v1. (Note
that cont(new info) is a proposition whose truth is relative to an agent.) Thus, it seems
that the following kb program should solve the global function computation problem,
while decreasing the number of messages:

if some new info then
for each nonempty subset A of agents do
if A = {n : ¬KIKn(cont(new info))} then sendA(new info); receive.

While this essentially works, there are some subtleties in interpreting this kb program.
As observed by GH, once we allow relative names, we must be careful about scop-
ing. For example, suppose that, in an oriented ring, i’s left neighbor is j and j’s left
neighbor is k. What does a formula such as KIKL(left input = 3) mean when it is
interpreted relative to agent i? Does it mean that i knows that j knows that k’s input is
3, or does it mean that i knows that j knows that j’s input is 3? That is, do we interpret
the “left” in left input relative to i or relative to i’s left neighbor j? Similarly, to which
agent does the second L in KIKLKLϕ refer? That, of course, depends on the appli-
cation. Using a first-order logic of naming, as in [12], allows us to distinguish the two
interpretations readily. In a propositional logic, we cannot do this. In the propositional
logic, Grove and Halpern [13] assumed innermost scoping, so that the left in left input
and the second L in KIKLKLϕ are interpreted relative to the “current” agent consid-
ered when they are evaluated (which is j). As we will see, in our interpretation, we
want to interpret it relative to I (in this case, i). As we will see, in a formula such
as KIKn cont(new info), we want to interpret cont(new info) relative to “I”, the
agent i that sends the message, not with respect to the agent j that is the interpreta-
tion of n. To capture this, we add limited quantification over names to the language. In
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particular, we allow formulas of the form ∃n′(Calls(n, I,n′) ∧Kn(n′’sϕ)), which is
interpreted as “there exists a name n′ such that the agent I names n gives name n′ to
the agent that currently has name I and n knows that ϕ interpreted relative to n′ holds”.
Then, instead of writing KIKncont(new info), we write KI(∃n′(Calls(n, I,n′) ∧
Kn(n′’scont(new info)))).

We can further reduce message complexity by not sending information not only if the
recipient of the message already knows the information, but also if he will eventually
know the information. It seems relatively straightforward to capture this: we simply add
a ♦ operator and replace the test KI(∃n′(Calls(n, I, n′)∧Kn(n′’scont(new info))))
by KI♦(∃n′(Calls(n, I,n′) ∧ Kn(n′’scont(new info)))). Unfortunately, as already
observed by HM, this modification will not work. To see why, we need to give some
background on the semantics of kb programs.

A protocol for agent i is a function from the states of agent i to actions. We can
associate with every joint protocol P (that is, a tuple consisting of a protocol for each
agent) the system R(P ) that represents P , which consists of the runs of P . We can
determine whether a knowledge test is true at each point in the system. Thus, given a kb
program Pgkb and a system I, we can “run” Pgkb, using I to determine the truth of the
knowledge tests. The set of runs of the resulting protocol determine another system. I
represents a kb program Pgkb if I is a fixed point of this process; that is, running Pgkb

with respect to I gives back I. A protocol P de facto implements a kb program Pgkb if
P and Pgkb act the same at all points in the system that represents P ; see [15].

As observed by HM, once we add the ♦ operator, the resulting kb program has no
representation. For suppose it is represented by a system I. Does i (the agent repre-
sented by I) send new info to n in I? If it does, then I can’t represent the program
because, in I, i knows that n will eventually know new info, should send new info to
n. Similarly it follows that no agent should send new info to n in I. On the other hand,
if no one sends new info to n, then n will not know it, and i should send it. Roughly
speaking, i should send the information iff i does not send the information.

HM suggest the use of counterfactuals to deal with this problem. As we said in the
introduction, a counterfactual has the form ϕ > ψ, which is read as “if ϕ were the case
then ψ”. As is standard in the philosophy literature (see, for example, [20, 26]) such a
statement is taken to be true if, in the closest worlds to the current world where ϕ is
true, ψ is also true. In particular, we discuss their concrete interpretation of “closest
worlds”. Once we have counterfactuals, we must consider systems with runs that are
not runs of the program. These are runs where, for example, counter to fact, the agent
does not send a message (although the program says it should). We make these runs
unlikely relative to the actual runs in the system. But the presence of these runs makes
it more convenient to consider belief, rather than knowledge. Roughly speaking, this is
because there will always be runs that the agent considers possible that are not runs of
the program; using belief allows us to exclude these runs. We write Bnϕ to denote that
the agent named n believes ϕ, although this is perhaps better read as “the agent named
n knows that ϕ is (almost certainly) true”.

Using counterfactuals, we can modify the program to say that agent i should send the
information only if i does not believe “if I do not send the information, then n will even-
tually learn it anyway”. To capture this, we use the proposition do(sendn(new info)),
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which is true if i has sent new info to n. If there are only finitely many possible values
of f , say v1, . . . , vk, then the formula Bn(f = v1) ∨ . . . ∨ Bn(f = vk) captures the
fact that the agent with name n knows the value of f . However, in general, we want to
allow an unbounded number of function values. For example, if agents have distinct nu-
merical ids, we are trying to elect as leader the agent with the highest id, and there is no
bound on the size of the network, then the set of possible values of f is unbounded. We
deal with this problem by allowing limited quantification over values. In particular, we
also use formulas of the form ∃vBn(f = v), which intuitively say that the agent with
name n knows the value of f . Let PgGC

cb denote the following modification of PgGC :

if some new info then
for each nonempty subset A of agents do
if A = {n : ¬BI(¬do(sendn(new info)) > ♦(∃n′(Calls(n, I,n′)

∧Bn(n′’scont(new info))) ∨ ∃vBn(f = v))}
then sendA(new info); receive

In this program, the agent i representing I sends n the new information if i does not
believe that n will eventually learn the new information or the function value in any
case. This improved program still solves the global function computation problem
whenever possible.

Theorem 4. PgGC
cb solves the global function computation problem whenever possible:

for all N and f such that the condition in Theorem 1 is satisfied and all protocols P
that de facto implement PgGC

cb , in every run r of the system that represents P , eventually
all agents know f(Nr).

4 Case Study: Leader Election

In this section we focus on leader election. If we take the function f to describe a
method for computing a leader, and require that all agents eventually know who is cho-
sen as leader, this problem becomes an instance of global function computation. We
assume that agents have distinct identifiers (which is the context in which leader elec-
tion has been studied in the literature). It follows from Corollary 2 that leader election
is solvable in this context; the only question is what the complexity is. Although leader
election is only one instance of the global function computation problem, it is of par-
ticular interest, since it has been studied so intensively in the literature. We show that
a number of well-known protocols for leader election in the literature essentially im-
plement the program PgGC

cb . In particular, we consider a protocol combining ideas of
Lann [19] and Chang and Roberts [6] (LCR from now on) presented by Lynch [21],
which works in unidirectional rings, and Peterson’s [25] protocol P1 for unidirectional
rings and P2 for bidirectional rings. We briefly sketch the LCR protocol and Peterson’s
protocol P2, closely following Lynch’s [21] treatment; we omit the description of P1
for space reasons.

The LCR protocol works in unidirectional rings, and does not assume a bound on
their size. Each agent starts by sending its id along the ring; whenever it receives a
value, if the value is larger than the maximum value seen so far, then the agent forwards
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it; if not, it does nothing, except when it receives its own id. If this id is M , the agent
then sends the message “the agent with id M is the leader” to its neighbor. Each agent
who receives such a message forwards it until it reaches the agent with id M again. The
LCR protocol is correct because it ensures that the maximum id travels along the ring
and is forwarded by each agent until some agent receives its own id back. That agent
then knows that its id is larger than that of any other agent, and thus becomes the leader.

Peterson’s protocol P2 for bidirectional rings operates in phases. In each phase,
agents are designated as either active or passive. Intuitively, the active agents are those
still competing in the election. Once an agent becomes passive, it remains passive, but
continues to forward messages. Initially all agents are active. In each phase, an active
agent compares its id with the ids of the closest active agent to its right and the closest
active agent to its left. If its id is the largest of the three, it continues to be active; oth-
erwise, it becomes passive. Just as with the LCR protocol, when an agent receives back
its own id, it declares itself leader. Then if its id is M , it sends the message “the agent
with id M is the leader”, which is forwarded around the ring until everyone knows who
the leader is.

Peterson shows that, at each phase, the number of active agents is at most half that
of the previous phase, and always includes the agent with the largest id. It follows
that, eventually, the only active agent is the one with the largest id. Peterson’s protocol
terminates when the agent that has the maximum id discovers that it has the maximum
id by receiving its own id back. The message complexity of Peterson’s protocol is thus
O(n log n), where n is the number of agents.

We remark that although they all work for rings, the LCR protocol is quite different
from P1 and P2. In the LCR protocol, agents forward their values along their unique
outgoing link. Eventually, the agent with the maximum input receives its own value
and realizes that it has the maximum value. In P1 and P2, agents are either active or
passive; in each round, the number of active agents is reduced, and eventually only the
agent with the maximum value remains active.

Despite their differences, LCR, P1, and P2 all essentially implement PgGC
cb . There

are two reasons we write “essentially” here. The first, rather trivial reason is that, when
agents send information, they do not send all the information they learn (even if the
agent they are sending it to will never learn this information). For example, in the LCR
protocol, if agent i learns that its left neighbor has value N and this is the largest value
that it has seen, it passes alongN without passing along the fact that its left neighbor has
this value. We can easily deal with this by modifying the protocols so that all the agents
send new info rather than whatever message they were supposed to send. However,
this modification does not suffice. The reason is that the modified protocols send some
“unnecessary” messages. This is easiest to see in the case of LCR. Suppose that j is
the processor with highest id. When j receives the message with its id back and sends
it around the ring again (this is essentially the message saying that j is the leader), in
a full-information protocol, j’s second message will include the id j′ of the processor
just before j. Thus, when j′ receives j’s second message, it will not need to forward
it to j. If LCR′ is the modification of LCR where each process sends new info rather
than maxid , and the last message in LCR is not sent, then we can show that LCR′

indeed de facto implements PgGC
cb . The modifications to P2 that are needed to get a
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protocol P2′ that de facto implements PgGC
cb are similar in spirit, although somewhat

more complicated. We leave details to the full paper. x

Theorem 5. The following all hold:

(a) Given parameter d, the optimal flooding protocol de facto implements PgGC
cb in

contexts where (i) all networks have diameter at most d and (ii) all agents have
distinct identifiers.

(b) LCR′ de facto implements PgGC
cb in all contexts where (i) all networks are unidirec-

tional rings and (ii) agents have distinct identifiers.
(c) There exists a protocol P1′ that agrees with P1 up to the last phase (except that it

sends new info) and implements PgGC
cb in all contexts where (i) all networks are

unidirectional rings and (ii) agents have distinct identifiers.
(d) There exists a protocol P2′ that agrees with P2 up to the last phase (except that

it sends new info) and de facto implements PgGC
cb in all contexts where (i) all

networks are bidirectional rings and (ii) agents have distinct identifiers.

Theorem 5 brings out the underlying commonality of all these protocols. Moreover,
it emphasizes the connection between counterfactual reasoning and message optimal-
ity. Finally, it shows that reasoning at the kb level can be a useful tool for improving
the message complexity of protocols. For example, although P2′ has the same order
of magnitude message complexity as P2 (O(n logn)), it typically sends O(n) fewer
messages. While this improvement comes at the price of possibly longer messages, it
does suggest that this approach can result in nontrivial improvements. Moreover, it sug-
gests that starting with a high-level kb program and then trying to implement it using a
standard program can be a useful design methodology. Indeed, our hope is that we will
be able to synthesize standard programs by starting with high-level kb specifications,
synthesizing a kb program that satisfies the specification, and then instantiating the kb
program as a standard program. We have some preliminary results along these lines
that give us confidence in the general approach [5]; we hope that further work will lend
further credence to this approach.
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Checking a Multithreaded Algorithm with
+CAL

Leslie Lamport

Microsoft Research

Abstract. A colleague told me about a multithreaded algorithm that
was later reported to have a bug. I rewrote the algorithm in the +cal al-
gorithm language, ran the TLC model checker on it, and found the error.
Programs are not released without being tested; why should algorithms
be published without being model checked?

1 Introduction

On a Wednesday afternoon in March of this year, my colleague Yuan Yu told
me that Detlefs et al. [1] had described a multithreaded algorithm to implement
a shared two-sided queue using a double-compare-and-swap (DCAS) operation,
and that Doherty et al. [2] later reported a bug in it. I decided to rewrite the
algorithm in +cal [3] and check it with the TLC model checker, largely as a test
of the +cal language. After working on it that afternoon, part of Sunday, and
a couple of hours on Monday, I found the bug. This is the story of what I did.
A +cal specification of the algorithm and an error trace that it produced are
available on the Web [4]. I hope my experience will inspire computer scientists
to model check their own algorithms before publishing them.

+cal is an algorithm language, not a programming language. It is expressive
enough to provide a practical alternative to informal pseudo-code for writing
high-level descriptions of algorithms. It cannot be compiled into efficient exe-
cutable code, but an algorithm written in +cal can be translated into a TLA+

specification that can be model checked or reasoned about with any desired
degree of formality. Space does not permit me to describe the language and
its enormous expressive power here. The two-sided queue algorithm is a low-
level one, so its +cal version looks much like its description in an ordinary
programming language. The features of +cal relevant to this example are ex-
plained here. A detailed description of the language along with the translator
and model-checker software are on the Web [3].

1.1 The Story

I began by converting the algorithm from the C code of the paper into +cal as
a collection of procedures, the way Detlefs et al. described it. (They actually
extended C with an atomically statement to represent the DCAS operation,
and they explained in the text what operations were considered atomic.) Other
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than minor syntax errors, the only bug in my first try was an incorrect modeling
of the DCAS operation caused by my confusion about C’s “&” and “*” operators.
I found my errors by running TLC on small instances of the algorithm, and I
quickly fixed them.

I next wrote a small test harness consisting of a collection of processes that
nondeterministically called the procedures. It kept an upper-bound approxi-
mation to the multi-set of queued elements and checked to make sure that the
element returned by a pop was in that multi-set. It also kept a lower bound on
the number of queued elements and checked for a pop returning “empty” when
it shouldn’t have. However, my test for an incorrect “empty” was wrong, and
there was no simple way to fix it. So, I eliminated that test.

Running TLC on an instance of the algorithm with 2 enqueable values, 2
processes, and a heap of size 3 completed in 17 minutes, finding no bug. (Except
where noted, execution times are for a 2.4 or 3 GHz personal computer.) The
algorithm uses a fixed “dummy” node, so the maximum queue length is one less
than the heap size. My next step was to check it on a larger model. I figured
that checking with only a single enqueable value should suffice, because a pop
that correctly removed an element was unlikely to return anything other than
that element’s correct value. I started running TLC on a model with 3 processes
and 4 heap locations just before leaving for a three-day vacation. I returned to
find that my computer had crashed after running TLC for two or three hours.
I rebooted and restarted TLC from a checkpoint. A day later I saw that TLC
had not yet found an error and its queue of unexamined states was still growing,
so I stopped it.

I next decided to write a higher-level specification and let TLC check that
the algorithm implemented this specification under a suitable refinement map-
ping [5] (often called an abstraction function). I also wrote a new version of the
algorithm, without procedure calls, to reduce the size of the state space. This
turned out to be unnecessary; TLC would easily have found the bug without
that optimization.

I made a first guess at the refinement mapping based on the pictures in the
Detlefs et al. paper showing how the implementation worked, but it was wrong.
Correcting it would have required understanding the algorithm, and I didn’t
want to take the time to do that. Instead, I decided that an atomic change to
the queue in the abstract specification was probably implemented by a successful
DCAS operation. So, I added a dummy variable queue to the algorithm that is
modified in the obvious way when the DCAS operation succeeds, and I wrote a
simple refinement mapping in which the abstract specification’s queue equaled
queue. However, this refinement mapping didn’t work right, producing spurious
error reports on pop operations that return “empty”.

A pop should be allowed to return “empty” if the abstract queue was empty at
any time between the call to and return from the operation. I had to add another
dummy variable to the algorithm to record if the queue had been empty between
the call and return, and to modify the specification. Having added these dummy
variables, I realized that I could check correctness by simply adding assertions
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to the algorithm; there was no need for a high-level specification and refinement
mapping. I added the assertions, and TLC found the bug in about 20 seconds
for an instance with 2 processes and 4 heap locations. (TLC would have found
the bug with only 3 heap locations.) The bug was manifest by a pop returning
“empty” with a non-empty queue—a type of error my first attempt couldn’t
detect.

After finding the error, I looked at the paper by Doherty et al. to check that
I had found the same error they did. I discovered that I had found one of two
errors they reported. I then removed the test that caught the first error and
tried to find the second one. TLC quickly discovered the error on a model with
3 processes and 4 heap locations. As explained below, getting it to do this in a
short time required a bit of cleverness. Using a naive, straightforward approach,
it took TLC 1 2

3 days to find the error. Explicit-state model checking is well suited
for parallel execution, and TLC can make use of shared-memory multiprocessing
and networked computing. Run on a 384 processor Azul Systems computer [6],
TLC found the error in less than an hour.

1.2 The Moral

I started knowing only that there was a bug in the algorithm. I knew nothing
about the algorithm, and I had no idea what the bug was—except that Yuan Yu
told me that he thought a safety property rather than a liveness property was
violated. (I would have begun by looking for a safety violation anyway, since
that is the most common form of error.) I still know essentially nothing about
how the algorithm was supposed to work. I did not keep a record of exactly how
much time I spent finding the error, but it probably totaled less than 10 hours.
Had Detlefs et al. used +cal as they were developing their algorithm, model
checking it would have taken very little extra time. They would certainly have
found the first error and would probably have found the second.

There are two reasons I was able to find the first bug as quickly as I did, de-
spite not understanding the algorithm. The obvious reason is that I was familiar
with +cal and TLC. However, because this is a very low-level algorithm, orig-
inally written in simple C code, very little experience using +cal was needed.
The most difficult part of +cal for most people is its very expressive mathe-
matical expression language, which is needed only for describing more abstract,
higher-level algorithms. The second reason is that the algorithm was expressed
in precise code. Published concurrent algorithms are usually written in very in-
formal pseudo-code, and it is often necessary to understand the algorithm from
its description in the text in order to know what the pseudo-code is supposed to
mean. In this case, the authors clearly stated what the algorithm did.

Section 2 describes the algorithm’s translation from C to +cal, and Section 3
describes how I checked it. The translation is quite straightforward. Had +cal
been available at the time, I expect Detlefs et al. would have had no trouble
doing it themselves. However, they would have gotten more benefit by using
+cal from the start instead of C (or, more precisely, pseudo-C). Before devising
the published algorithm, they most likely came up with other versions that they
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later found to be wrong. They probably would have discovered those errors
much more quickly by running TLC on the +cal code. Algorithms are often
developed by trial and error, devising a plausible algorithm and checking if it
works in various scenarios. TLC can do the checking for small instances much
faster and more thoroughly than a person.

2 Translating from the C Version

A major criterion for the +cal language was simplicity. The measure of a lan-
guage’s simplicity is how simple its formal semantics are. A +cal algorithm is
translated to a TLA+ specification [7], which can then be checked by TLC. The
TLA+ translation defines the meaning of a +cal algorithm. (Because TLA+

is based on ordinary mathematics, its formal semantics are quite simple.) The
simplicity of +cal was achieved by making it easy to understand the correspon-
dence between a +cal algorithm and its translation. The translator itself, which
is implemented in Java, is specified in TLA+.

Simplicity dictated that +cal eschew many common programming language
concepts, like pointers, objects, and types. (Despite its lack of such constructs,
and in part because it is untyped, +cal is much more expressive than any
programming language.) C’s pointer operations are represented in the +cal
version using an explicit array (function) variable Heap indexed by (with domain)
a set of addresses. A pointer-valued variable like lh in the C version becomes an
address-valued variable, and the C expression lh->L is represented by the +cal
expression Heap[lh].L.

The only tricky part of translating from pointers to heap addresses came in
the DCAS operation. Figure 1 contains the pseudo-C version. Such an operation

boolean DCAS(val *addr1, val *addr2,

val old1, val old2,

val new1, val new2) {

atomically {

if ((*addr1 == old1) &&

(*addr2 == old2)) {

*addr1 = new1;

*addr2 = new2;

return true;

} else return false; } }

Fig. 1. The DCAS operation in pseudo-C

is naturally defined in +cal as a macro. A +cal macro consists of a sequence
of statements, not an expression. I therefore defined a DCAS macro with an
additional first argument, so the +cal statement
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DCAS(result, a1, ... )

represents the C statement

result = DCAS(a1, ... )

The difficulty in writing the DCAS macro came from the pointer arguments
addr1 and addr2. A direct translation of the original DCAS operation would
have required an extra layer of complexity. A pointer-valued variable like lh
would have had to be represented by a variable whose value was not a heap
address, but rather the address of a memory location containing a heap address.
However, this complication was unnecessary because, in all the algorithm’s uses
of the DCAS operation, the first two arguments are &-expressions. In the trans-
lation, I essentially defined the DCAS macro as if the “*”s were removed from
the *addr1 and *addr2 parameters in Figure 1, and the “&”s were removed from
the uses of the macro. This led me to the macro definition of Figure 2. (The
“||” multiple-assignment construct is explained in Section 2.3 below; for now,

macro DCAS(result, addr1, addr2, old1, old2, new1, new2) {

if ( (addr1 = old1) ∧
(addr2 = old2)) {

addr1 := new1 ||

addr2 := new2 ;

result := TRUE;

} else result := FALSE; }

Fig. 2. The DCAS operation in +cal

consider it to be a semicolon.) The statement

if (DCAS(&LeftHat, &RightHat, lh, rh, Dummy, Dummy)) ...

is then represented in +cal as

DCAS(temp, LeftHat, RightHat, lh, rh, Dummy, Dummy) ;

if (temp) ...

The +cal translator replaces the DCAS statement by the syntactic expansion of
the DCAS macro. (As explained below, the atomically is implicit in the +cal
version.)

Most of my colleagues cannot immediately see that the result of the substitu-
tion is a correct translation of the C version. Since the expanded +cal macro is
quite simple, any difficulty must lie in understanding C’s “*” and “&” operators.
A language for describing algorithms should be simple, and its operators should
be easy to understand.

As an illustration of the translation, Figure 3 shows the original C version
of the popLeft procedure, exactly as presented by Detlefs et al., and my +cal
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C Version
1 val popLeft() {

2 while (true) {

3 lh = LeftHat;

4 rh = RightHat;

5 if (lh->L == lh) return "empty";

6 if (lh == rh) {

7 if (DCAS(&LeftHat, &RightHat, lh, rh, Dummy, Dummy))

8 return lh->V;

9 } else {

10 lhR = lh>R;

11 if (DCAS(&LeftHat, &lh>R, lh, lhR, lhR, lh)) {

12 result = lh->V;

13 lh->L = Dummy;

14 lh->V = null;

15 return result;

16 } } } }

+cal Version
procedure popLeft()

variables rh, lh, lhR, temp, result; {

O2: while (TRUE) {

lh := LeftHat;

O4: rh := RightHat;

O5: if (Heap[lh].L = lh) {rVal[self] := "empty"; return};

O6: if (lh = rh) {

DCAS(temp, LeftHat, RightHat, lh, rh, Dummy, Dummy);

if (temp) {

O8: rVal[self] := Heap[lh].V; return}

} else {

O10: lhR := Heap[lh].R;

O11: DCAS(temp, LeftHat, Heap[lh].R, lh, lhR, lhR, lh);

if (temp) {

O12: result := Heap[lh].V;

O13: Heap[lh].L := Dummy ||

Heap[lh].V := null;

rVal[self] := result; O15: return ;

} } } }

Fig. 3. The C and +cal versions of the popLeft procedure

version. This was my original translation, before I added dummy variables for
checking. (While it is essentially the same as my first version, I have made a
number of cosmetic changes—mainly reformatting the code and changing label
names to correspond to the line numbers of the corresponding control points in
the C version.) The non-obvious aspects of the +cal language that appear in
this example are explained in Sections 2.1–2.3 below.
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A cursory examination shows how similar the two versions are. I of course
formatted the +cal version to look as much as possible like the C version. (To
this end, I used +cal’s more compact c-syntax rather the alternative p-syntax
that is a bit easier to understand.) The +cal version is three lines longer because
of the extra line added in translating each DCAS operation and because of the
local variable declarations that are missing from the pseudo-C code.

2.1 Labels and the Grain of Atomicity

Labels are used to specify the grain of atomicity in a +cal algorithm. Execution
of a single atomic step begins at a label and continues until the next label that
is encountered. For example, execution of a step starting with control at label
O6:

– ends at O8 if lh = rh evaluates to true and the DCAS operation sets temp
to true.

– ends at O2 if lh = rh evaluates to true and the DCAS operation sets temp
to false.

– ends at O10 if lh = rh evaluates to false.

Because the DCAS macro contains no labels, its execution is atomic. (+cal
does not permit labels in a macro definition.)

To simplify model checking and reasoning about an algorithm, one wants to
write it with the coarsest possible grain of atomicity that permits all relevant
interleavings of actions from different processes. Detlefs et al. assume that a
read or write of a single memory value is atomic. (Presumably, a heap address
and an enqueued value each constitute a single memory value.)

I have adopted the standard method of using the coarsest grain of atomic-
ity in which each atomic action contains only a single access to a shared data
item. The shared variables relevant for this procedure are Heap, LeftHat , and
RightHat . However, the labeling rules of +cal required some additional labels.
In particular, the label O2 is required, even though the call of the procedure
affects only the process’s local state and could be made part of the same action
as the evaluation of LeftHat .

2.2 Procedures

To maintain the simplicity of its translation to TLA+, a +cal procedure cannot
return a value. Values are passed through global variables. In this algorithm, I
have used the variable rVal to pass the value returned by a procedure. When
executed by a process p, a procedure returns the value v by setting rVal [p] to
v . In +cal code, self equals the name of the current process.

2.3 Multiple Assignment

One of +cal’s restrictions on labeling/atomicity, made to simplify the TLA+

translation, is that a variable can be assigned a value by at most one statement
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during the execution of a single atomic step. A single multiple assignment state-
ment can be used to set the values of several components of a single variable. A
multiple assignment like

Heap[lh].L := Dummy || Heap[lh].V := null

is executed by first evaluating all the right-hand expressions, and then perform-
ing all the indicated assignments.

3 Checking the Algorithm

To check the correctness of the algorithm, I added two global history variables:

– queue, whose value is the state of the abstract queue.

– sVal , where sVal [p] is set by process p to remember certain information
about the state for later use.

Adding dummy variables means rewriting the algorithm by adding statements
that set the new variables but do not change the behavior if the values of those
variables are ignored [5]. The +cal code for the popLeft procedure with the
dummy variables appears in Figure 4. (The original code is in gray.)

The queue variable is modified in the obvious way by an atomic step that
contains a successful DCAS operation (one that sets temp to true). The assert
statements in steps O8 and O12 check that the value the procedure is about to
return is the correct one.

The assert statement in step O5 attempts to check that, when the procedure
is about to return the value "empty", it is permitted to do so. An "empty"
return value is legal if the abstract queue was empty at some point between
when the procedure was called and when it returns. The assertion actually
checks that the queue was empty when operation O2 was executed or is empty
when the procedure is about to execute the return in operation O5. This test
is pessimistic. The assertion would fail if operations of other processes made
the queue empty and then non-empty again some time between the execution
of those two operations, causing TLC incorrectly to report an error. For a
correct test, each process would have to maintain a variable that is set by other
processes when they remove the last item from the queue. However, the shared
variables whose values determine if the procedure returns "empty" are read only
by these two operations. Such a false alarm therefore seemed unlikely to me,
and I decided to try this simpler test. (Knowing for sure would have required
understanding the algorithm.) TLC returns a shortest-length path that contains
an error. I therefore knew that, if the assertion could reveal an error, then TLC
would produce a trace that showed the error rather than a longer trace in which
another process happened to empty the queue at just the right time to make the
execution correct. This assertion did find the bug—namely, a possible execution
containing the following sequence of relevant events:
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procedure popLeft()

variables rh, lh, lhR, temp, result; {

O2: while (TRUE) {

lh := LeftHat;

sVal[self] := (queue = << >>);

O4: rh := RightHat;

O5: if (Heap[lh].L = lh) {

assert sVal[self] ∨ (queue = 〈 〉) ;

rVal[self] := "empty"; return ;} ;

O6: if (lh = rh) {

DCAS(temp, LeftHat, RightHat, lh, rh, Dummy, Dummy);

if (temp) {

sVal[self] := Head(queue);

queue := Tail(queue);

O8: rVal[self] := Heap[lh].V;

assert rVal[self] = sVal[self];

return}

} else {

O10: lhR := Heap[lh].R;

O11: DCAS(temp, LeftHat, Heap[lh].R, lh, lhR, lhR, lh);

if (temp) {

sVal[self] := Head(queue) ;

queue := Tail(queue) ;

O12: result := Heap[lh].V;

assert result = sVal[self] ;

O13: Heap[lh].L := Dummy ||

Heap[lh].V := null;

rVal[self] := result; O15: return ;

} } } }

Fig. 4. The popLeft procedure with checking

– Process 1 begins a pushRight operation.
– Process 1’s pushRight operation completes successfully.
– Process 1 begins a pushLeft operation.
– Process 2 begins a popLeft operation
– Process 1’s pushLeft operation completes successfully.
– Process 1 begins a popRight operation.
– Process 2’s popLeft operation returns the value "empty".

The actual execution trace, and the complete +cal algorithm that produced it,
are available on the Web [4].

After finding the bug, I read the Doherty et al. paper and found that there
was another error in the algorithm that caused it to pop the same element twice
from the queue. I decided to see if TLC could find it, using the version without
procedures. The paper’s description of the bug indicated that it could occur in a
much coarser-grained version of the algorithm than I had been checking. (Since
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an execution of a coarse-grained algorithm represents a possible execution of a
finer-grained version, an error in the coarse-grained version is an error in the
original algorithm. Of course, the converse is not true.) To save model-checking
time, I removed as many labels as I could without significantly changing the
code, which was about 1/3 of them. I then ran TLC on an increasing sequence
of models, and in a few hours it found the error on a model with 3 processes and
4 heap locations, reporting an execution that described the following sequence
of events:

– Process 1 begins a pushRight operation.
– Process 2 begins a popRight operation.
– Process 1’s pushRight operation completes successfully.
– Process 1 begins a popRight operation.
– Process 3 begins and then successfully completes a pushLeft operation.
– Process 3 begins a popLeft operation.
– Process 1’s popRight operation completes successfully.
– Process 1 begins and then successfully completes a pushLeft operation.
– Process 1 begins and then successfully completes a popLeft operation.
– Process 2’s popRight operation completes successfully.
– Process 3’s popLeft operation tries to remove an item from an empty queue.

I found the second bug quickly because I knew how to look for it. However,
checking models on a coarser-grained version when the fine-grained version takes
a long time is an obvious way of speeding up the search for bugs. It is not
often done because, when written in most model-checking languages, changing
an algorithm’s grain of atomicity is not as easy as commenting out some labels.
Someone who understands the algorithm will have a sense of how coarse a version
is likely to reveal errors.

I decided to see how long it would take TLC to find the bug by checking the
fine-grained version. I started it running shortly before leaving on a long trip.
When I returned, I found that it had indeed found the error—after running for
a little more than a month. Examining the +cal code, I realized that it had
two unnecessary labels. They caused some operations local to a process to be
separate steps, increasing the number of reachable states. I removed those labels.
I estimate that TLC would have found the error in the new version in about two
weeks. However, by observing processor utilization, it was easy to see that TLC
was spending most of its time doing disk I/O and was therefore memory-bound.
I had been running it on a 2.4 GHz personal computer with 1 GByte of memory.
I switched to a 3 GHz machine with 4 GBytes of memory, and TLC found the
error in 40 hours. Running the model checker in the background for a couple of
days is not a problem.

TLC can be instructed to use multiple processors. We have found that it
can obtain a factor of n speedup by using n processors, for n up to at least 8.
TLC can therefore take full advantage of the coming generation of multicore
computers. (Inefficiencies of the Java runtimes currently available for personal
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computers significantly reduce the speedup obtained with those machines.) Us-
ing a version of TLC modified for execution with a large number of proces-
sors, the 40-hour uniprocessor execution was reduced to less than an hour on
a first-generation 384-processor Azul Systems computer [6]. Since each of that
computer’s processors is much slower than 3 GHz, this probably represents a
speedup by close to a factor of 384. (Azul Systems does not reveal the actual
speed of their processors.) It is likely that, within a few years, computers will
be widely available on which TLC runs 10 times faster than it does today.

There is an amusing footnote to this story. After doing the checking, I noticed
that I had inadvertently omitted a label from the pushRight operation, letting
one atomic action access two shared variables. I added the missing label and ran
TLC on the slightly finer-grained algorithm, using the same personal computer
as before. Because TLC does a breadth-first exploration of the state space, I
knew that it would find a counterexample with one additional step. Indeed, it
found exactly the same error trace, except with one of the original 46 steps split
into two. However, instead of 40 hours, TLC took only 37.2 hours! It found
the error after examining 148 million distinct states rather than 157 million.
Figuring out how this could happen is a nice puzzle.

4 Conclusion

+cal was not needed for this example. The algorithm could have been written in
other languages with model checkers. Promela, the language of the Spin model
checker, would probably have been a fine choice [8]. In fact, Doherty did use Spin
to demonstrate the bug, although he wrote the Promela version expressly to find
the bug he had already discovered [9]. However, most concurrent algorithms are
not written as low-level pseudo-C programs. They are often written as higher-
level algorithms, which are naturally described using mathematical concepts like
quantification, sets, and sequences rather than the primitive operators provided
by languages like C and Java. For such algorithms, +cal is clearly superior to
Promela and similar model-checking languages.

One can model check not only the algorithm, but also its proof. Because TLA+

is based on mathematics, TLC is well suited to check an algorithm’s proof. Rig-
orous proofs require invariance reasoning and may also involve showing that the
algorithm implements a higher-level specification under a refinement mapping.
TLC can check both invariance and implementation under a refinement map-
ping. Since they understood the algorithm, Detlefs et al. would have been able to
define queue as a refinement mapping instead of adding it as a dummy variable
the way I did. An error in an invariant or refinement mapping usually manifests
itself before the algorithm does something wrong, allowing a model checker to
find the problem sooner. Checking a refinement mapping might have revealed
the two-sided queue algorithm’s second error quickly, even on the fine-grained
version.

Model checking is no substitute for proof. Most algorithms can be checked
only on instances of an algorithm that are too small to give us complete
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confidence in their correctness. Moreover, a model checker does not explain
why the algorithm works.

Conversely, a hand proof is no substitute for model checking. As the two-sided
queue example shows, it is easy to make a mistake in an informal proof. Model
checking can increase our confidence in an algorithm—even one that has been
proved correct.

How much confidence model checking provides depends upon the algorithm. A
simple, easy-to-use model checker like TLC can verify only particular instances—
for example, 3 processes and 4 heap locations. The number of reachable states,
and hence the time required for complete model checking, increases exponentially
with the size of the model. Only fairly small instances can be checked. However,
almost every error manifests itself on a very small instance—one that may or
may not be too large to model check. TLC can also check randomly generated
executions on quite large instances. However, such checking can usually catch
only simple errors.

My own experience indicates that model checking is unlikely to catch sub-
tle errors in fault-tolerant algorithms that rely on replication and unbounded
counters. It does much better on traditional synchronization algorithms like the
two-sided queue implementation. However, even when it cannot rule out subtle
errors, model checking is remarkably effective at catching simpler errors quickly.
One can waste a lot of time trying to prove the correctness of an algorithm with
a bug that, in retrospect, is obvious.

Model checking can be viewed as a sophisticated form of testing. Testing is
not a substitute for good programming practice, but we don’t release programs
for others to use without testing them. For years, model checking has been
a standard tool of hardware designers. Why is it seldom used by algorithm
designers? With +cal, there is no longer the excuse that the language of model
checkers is too low-level for describing algorithms. Model checking algorithms
prior to submitting them for publication should become the norm.
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Abstract. A complete framework for modelling memory consistency
that includes register and control dependencies is presented. It allows us
to determine whether or not a given computation could have arisen from
a given program running on a given multiprocessor architecture. The
framework is used to provide an exact description of the computations
of (a subset of) the Itanium instruction set on an Itanium multiprocessor
architecture. We show that capturing register and control dependencies
is crucial: a producer/consumer problem is solvable without using strong
synchronization primitives on Itanium multiprocessors, but is impossible
without exploiting these dependencies.

Keywords: Multiprocessor memory consistency, register and control de-
pendency, Itanium, process coordination.

1 Introduction

To overcome inefficiency bottlenecks, modern shared memory multiprocessors
have complicated memory organization such as replication in caches and write
buffers, multiple buses, and out-of-order memory accesses. This causes proces-
sors to have differing views of the shared memory, which satisfy only some weak
consistency guarantees. To program such systems, programmers need a precise
specification of these guarantees, expressed as constraints on the outcomes of
executions of programs. We provide a general and intuitive framework for defin-
ing the complete memory consistency model of a multiprocessor architecture
including its control and register dependencies. The framework facilitates the
specification of the exact set of computations that can arise from a multiproces-
sor system.

As a running example, we illustrate our framework with the Itanium pro-
gramming language and architecture. Our techniques are exploited to specify
the sets of computations that can arise from a multiprocessor program that uses
a subset of the Intel Itanium instruction set when it is executed on an Itanium
multiprocessor architecture. Since Itanium multiprocessors have a complicated
architecture for which a complete correct description of its memory consistency,
at the level of indivisible Itanium instructions, does not exist in the literature,
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this is a second contribution of this paper. Another contribution is to show
that including register and control dependencies in memory consistency mod-
els is crucial. We prove that a certain producer/consumer coordination problem
is solvable without using strong synchronization primitives on Itanium multi-
processors, but is impossible without exploiting these dependencies.

Our complete framework is an extension of our previous work [5]. It maintains
the ability to describe systems at different levels of abstraction and to prove
their equivalence. But our previous framework could only capture constraints
that arise from shared memory; it did not capture the constraints that arise
from control dependencies in an individual processor’s program, nor consistency
constraints due to private register dependencies. While our previous framework
could be used to determine if a given computation could arise from a given
shared memory architecture, it did not extend to answering if the computation
could arise from executing a given program on that architecture. These short-
coming are corrected in this paper. We have also used similar ideas to explore
the possibility or impossibility of implementing some objects on various weak
memory consistency machines [8,9,10,11]. A common feature of all of these is
the notion of abstract specifications and implementations, as a generalization of
the methodology used for algorithm design in linearizable [4] or sequentially con-
sistent systems. Even though the systems we consider are substantially weaker
than these, we can compose our implementations to achieve implementations of
abstract objects on various multiprocessors with weak memory models (or to
prove impossibilities).

Local dependencies are modelled in [1,2]. Indeed, the framework of [1] contains
many of the features of our framework, including the association of a program
with an instantiation, which is similar to our computations, and the capturing
of branching and register dependencies. We are unaware, however, of how to use
that framework to describe systems at various levels and to prove equivalence.

There are several models for Itanium computations in the literature. Chatter-
jee and Gopalakrishnan [3] presented an operational model that they describe
as a simple formal model for Itanium. Their model is simplified and does not
include data dependencies. Yang, Gopalakrishnan, et. al. [18] specify Itanium
memory ordering rules in terms that can be applied to verification using Prolog
with a finite domain constant solver and a boolean Satisfiability checker. Joshi,
Lamport, et. al. [16] applied the TLA+ specification language to the Itanium
manual specifications [14] and use the TLC model checker on the resulting spec-
ifications. It was this work that brought about a clear description of the Itanium
memory order [12], but it does not inclued a formal definition of local dependence
order.

We use only enough of a simplified Itanium system to illustrate our frame-
work with an Itanium running example. Other work [7] (also [15] in progress) fo-
cuses on the completed Itanium memory consistency. Thus we omit store release,
load acquire, semaphore or memory fence instructions, and we do not consider
procedure stack adjustments. Furthermore, we assume that memory accesses
that are not to identical locations do not overlap, all memory is in the same
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coherence domain, and all memory locations are cacheable (called WB in the
Itanium manuals).

2 Modelling Multiprocessor Systems and Their
Computations

We model a multiprocessor system as a collection of programs operating on a
collection of objects under some constraints called a memory consistency model.

Informally, as each processor of such a system executes its program, it issues
a sequence of operation invocations on the objects of the system, and receives
operation responses for each invocation. Matching each response with its invo-
cation provides each processor with a sequence of operations, which is its “view”
of the execution. We think of a computation as the collection of these views —
one for each processor in the system. Because the response of an invocation is
determined by the programs of the other processors, the asynchronous interac-
tion of the processors, and the memory organization of the system, there are
typically many computations possible for each system. For any such system we
seek a way to determine exactly what computations are possible.

Although our framework is general, and can be used for any multiprocessor
system, this paper focuses on the computations that can arise from a given
program running on some typical multiprocessor architecture, say A, where the
objects are private registers and shared memory locations. We use a running
example based on the Intel Itanium multiprocessor architecture to illustrate the
definitions and their use.

Instructions and programs: The programming language of A consists of a
collection of (machine specific) operations, called instructions, that perform a va-
riety of load, store, arithmetic and logical functions. Instructions are partitioned
into two classes:

– Branch instructions are all instructions that contain a conditional or uncon-
ditional branch to a specified label including procedure calls and procedure
returns, and

– operational instructions are all other instructions.
Branch instructions transfer program control to a target instruction specified
by a label, by operating on the value in the program counter register. Oper-
ational instructions move data from one register/memory location to another
and/or perform arithmetic or logical functions on the data in registers/memory
locations.1

Example - Itanium instruction: The Itanium operational instruction “ld8
r2=[r1]” takes the value from the memory location whose address is stored in
register r1, and places that value in register r2. In any execution, this instruction

1 The instructions of a program are assumed to be in a format that has been prepared
to be processed by an assembler, i.e., some instructions are preceded by labels and
the target of a branch is specified by such a label.
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1. loop: ld8 r1 = [r3] ;load r1 with data whose address is in r3
2. add r1 = #1, r1 ;add 1 to r1
3. cmp.ge p1, p0=#3,r1 ;if 3 is greater than or equal to the value in r1 then
4. (p1) br loop ; go back to loop
5. st8 [r4], r1 ;store value of r1 into memory whose address is in r4

Fig. 1. An Itanium individual program

has associated with it some value v in r1, some value w in the memory location
with address v and the value u stored in r2.

An individual program is a finite sequence of instructions from the program-
ming language of A.

Example - Itanium individual program: Figure 1 is an example of an
Itanium individual program.

A multiprogram for an n processor machine with architecture A is a collection
of n individual programs— one assigned to each processor.

Computations: An instruction that is augmented with arbitrary associated
values (from the allowed domain), for all the registers and memory locations
that it reads is a completed instruction. For a conditional branch instruction,
“br(cond) label”, the domain of register cond is {0, 1}, and associating one of
these values resolves the conditional branch. So the completed form of this in-
struction is shortened to exactly one of two read operations that access cond and
return 0 or 1 (namely, 0=read(cond) or 1=read(cond)). An individual computa-
tion of an individual processor is any sequence of completed instructions. We do
not (yet) care what the instructions are or what values are associated with the
instructions. A (multiprocessor) computation is a set of individual computations,
one for each processor. Notice that a computation is defined non-operationally.
It is not a single sequence describing an execution of the whole system, nor
is there any relationship required between the register and memory values as-
sociated with the different completed instructions. Informally, a multiprocessor
computation simply records the sequence of operational instructions performed
(and therefore completed) by each processor and the values in condition registers
that it read along the way.

Example - 2-processor computations: Three 2-processor computations are
given in Figures 2, 3 and 4. (The actual values recorded in these computation
can be bizarre, but they are still computations.)

Central goal: We aim to construct a comprehensive framework that is capable
of capturing the control and register dependences of any multiprocessor archi-
tecture A, and the constraints that arise from the memory organization of A.
The definition of any such A must be precise enough to decide the following
Architecture-Computation decision problem.
Input: a multiprogram P , containing an individual program for each processor

of A, and a multiprocessor computation C.

Question: Could C arise from executing P on A?
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p1 p2

ld8 r1 = [r3] (νr3=1284, νm(1284)=7) ld8 r1 = [r3] (νr3=1027, νm(1027)=12)
add r1 = #1,r1 (νr1=15 ) cmp.ge p1,p0 = #3,r1(νr1=4)
cmp.ge p1,p0 = #3,r1 (νr1=7) add r1 = #1,r1 (νr1=6)
1=read(p1) 0=read(p1)
add r1 = #1,r1 (νr1=7) st8 [r4] = r1 (νr4=1104, νr1=7)
cmp.ge p1,p0 = #3, r1 (νr1=21)
0=read(p1)
st8 [r4] = r1 (νr4=101, νr1=17)

Fig. 2. Computation 1 (arbitrary values are associated with instructions)

p1 p2

ld8 r1 = [r3] (νr3=1284, νm(1284)=7) ld8 r1 = [r3] (νr3=1027, νm(1027)=12)
add r1 = #1,r1 (νr1=15 ) add r1 = #1,r1 (νr1=4)
cmp.ge p1,p0 = #3,r1 (νr1=7) cmp.ge p1,p0 = #3,r1(νr1=6)
1=read(p1) 0=read(p1)
add r1 = #1,r1 (νr1=7 ) st8 [r4] = r1 (νr4=1104, νr1=7)
cmp.ge p1,p0 = #3, r1 (νr1=21)
0=read(p1)
st8 [r4] = r1 (νr4=101, νr1=17)

Fig. 3. Computation 2

p1 p2

ld8 r1 = [r3] (νr3=1284, νm(1284)=2) ld8 r1 = [r3] (νr3=1280, νm(1280)=5)
add r1 = #1,r1 (νr1=2) add r1 = #1,r1 (νr1=5)
cmp.ge p1,p0 = #3,r1 (νr1=3) cmp.ge p1,p0 = #3,r1(νr1=6)
1=read(p1) 0=read(p1)
add r1 = #1,r1 (νr1=3) st8 [r4] = r1 (νr4=1284, νr1=0)
cmp.ge p1,p0 = #3, r1 (νr1=4)
0=read(p1)
st8 [r4] = r1 (νr4=1280, νr1=1)

Fig. 4. Computation 3

Example - An instance of the Architecture-Computation Problem: Let
IP = {prog1, prog2} where prog1 and prog2 are both the program in Figure 1.
When applied to our running example, the Architecture-Computation problem
becomes: “Could Computation 1 (respectively, 2 or 3) in Figure 2 (respectively,
3 or 4) arise from running IP on an Itanium multiprocessor?”

Two major steps are required to answer the Architecture-Computation ques-
tion. The first is to determine if each processor’s individual computation (ig-
noring the associated values) could have arisen from its program. If the answer
is yes, then the second step is to determine whether or not the individual pro-
gram sequences could have interacted in such a way under architecture A as to
produce the values associated with each of the instructions in the computation.

Step 1: Program graphs and computational forms. To answer the first
question, each processor’s program is modelled as a directed graph, such that any
computation of an individual program must correspond to some path through its
graph. Specifically, for any individual program prog associate a directed node-
labeled graph called the program-graph of prog, denoted G(prog), as follows.
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Nodes of G(prog): For every operational instruction inst, there is a ver-
tex η(inst) with label inst. For every conditional branch instruction br
of the form “br(cond) label:”, there are two vertices, η0(br) with label
0=read(cond) and η1(br) with label 1=read(cond). Henceforth, the labels
of vertices of G(prog) are referred to as node-labels to distinguish them from
the labels of instructions in prog . Notice that unconditional branches do not
correspond to a node.

Directed edges of G(prog): For any instruction inst in prog , associate a set
of vertices, vertices(inst), by:

– for an operational instruction inst, vertices(inst) = {η(inst)},
– for a conditional branch instruction br, vertices(br) = {η0(br), η1(br)},
– for an unconditional branch instruction, say “br continue-here”, then

vertices(brcontinue− here) = vertices(înst) where înst is the instruc-
tion with label “continue-here:”.

Denote by p-succ(inst) the instruction in prog that follows inst. For each
vertex η in G(prog), define g-succ(η) by:

– for an operational instruction, inst,
g-succ(η(inst)) = vertices(p-succ(inst))

– for a conditional branch instruction, br= br(cond) label”, where
înst is the instruction with label “label:”, g-succ(η0(br)) =
vertices(p-succ(br)) and g-succ(η1(br)) = vertices(înst).

Finally, for each vertex η in G(prog), there is a directed edge from η to every
vertex in g-succ(η).

Example - Program graph for an Itanium program: The program graph
of the Itanium individual program of Figure 1 is:

        cmp.ge  p1,p0=#3,r1

            st      [r4],r1

           0=read  (p1)

           add        r1=#1,r1    1 = read   (p1)

           ld8      r1=[r3]

Let start be the first instruction in an individual program prog . An in-
dividual program sequence for prog is the sequence of the node-labels on any
(possibly non-simple) directed path in G(prog) that begins with any vertex
in vertices(start). Let P = {prog1, prog2, ..., progn} be a multiprogram. Then
CF= {prog-seq1, prog-seq2, ..., prog-seqn} is a computational form of P if and
only if for 1 ≤ i ≤ n, prog-seqi is an individual program sequence for prog i. A
computation C agrees with CF if, for each i, the ith sequence of instructions in
C, (ignoring values) is the same as prog-seqi. From these definitions we have:

Claim. A multiprocessor computation can be a computation of a multiprogram
P only if it agrees with a computational form of P .
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prog-seq1 prog-seq2
ld8 r1 = [r3] ld8 r1 = [r3]
add r1 = #1,r1 add r1 = #1,r1
cmp.ge p1,p0 = #3,r1 cmp.ge p1,p0 = #3,r1
1=read(p1) 0=read(p1)
add r1 = #1,r1 st8 [r4] = r1
cmp.ge p1,p0 = #3,r1
0=read(p1)
st8 [r4] = r1

Fig. 5. A computational form

Example - Computational form for an Itanium 2-processor multipro-
gram: CF= {prog-seq1, prog-seq2}, where prog-seq1 and prog-seq2 are given
in Figure 5, is a computational form of the Itanium multiprogram IP in the
running example.

Notice that a computational form contains only operational instructions; there
are no branch instructions. In the program graph each conditional branch in-
struction is replaced by one node for each of the two possible outcomes. The
outgoing edges of these nodes lead to the next instruction that is correct given
the value of the condition. Each unconditional branch is replaced only by edges.

Example - Agreement of computations with an Itanium computational
form: Both computations in Figures 3 and 4 agree with the computational form
for IP in Figure 5 but the computation in Figure 2 does not because the cmp.ge
and add instructions of p2 are in the opposite order from the order of the add
and cmp.ge node-labels in the program graph.

Step 2: From computational forms to computations: To answer the sec-
ond question, the rules of interaction for the machine with architecture A are
modelled as a collection of constraints on various subsets of the instructions of a
computation. For each subset there is a specified partial order, for which there
must be a total order extension that is valid (to be defined next). Furthermore
there may be agreement properties required between some of the total order
extensions.
Validity
Meaning of instructions: To define validity, each entry in a computational
form (i.e. each node-label, ηl) is assigned a meaning, denotedM(ηl), by mapping
it to a short program that uses only read, write, arithmetic and logic operations
on variables. Specifically, the programming language Trivial:

– has two kinds of objects: single-reader/single-writer atomic variables and
multi-reader/multi-writer atomic variables, and

– supports five types of operations: read and write operations on atomic vari-
ables, arithmetic and logic operations on single-reader/single-writer atomic
variables, and “if-conditional-then-operations-else-operations”

Recall that each node-label, ηl, is either an operational instruction or
0=read(cond), or 1=read(cond). For ηl ∈ {0 = read(cond), 1 = read(cond)}
define M(ηl) to be the identity function. If ηl is an operational instruction
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M( ld8 r1=[r3]) M(add r1=#1,[r3]) M(cmp.eq p1,p2=r1,r3) M(st8 [r4]=r5)

ν1 = read(r3) ν1 = read(r3) ν1 = read(r2) ν1 = read(r5)
ν2 = read(ν1) ν2 = read(ν1) ν2 = read(r3) ν2 = read(r4)
write(r1, ν2) ν3 = 1 + ν2 if ( ν1==ν2) then { write(mem(ν2), ν1)

write(r1, ν3) write(p2, 1)
write(p1, 0) }

else { write(p2, 0)
write(p1, 1) }

(a) (b) (c) (d)

Fig. 6. Meaning of four Itanium instructions

then M(ηl) is defined to be the short Trivial program that re-expresses the
semantics of the instruction as specified by the instruction manual of A.

Example - Meaning of some Itanium operational instructions: Figure
6 gives four examples. These can be extracted from the Itanium Instruction Set
Reference manual [13].

Recall that a completed instruction, inst, has values associated with each
register or shared memory location that it reads, and the variables in M(inst)
are assigned by reading, writing, or performing arithmetic/logic operations on
the values in these registers. If the register values in the completed instruction
inst are used to compute the values of the corresponding variables in M(inst),
the resulting sequence of Trivial operations is called the derived completed
meaning of inst, denoted DM(inst). Because the operations are completed,
the conditional operations in this sequence can be resolved, so the derived com-
pleted meaning of inst is reduced to a sequence I of completed read, write
and arithmetic/logic operations. Define the remote derived completed meaning
of inst, denoted RDM(inst), to be the subsequence of I consisting of only the
completed write operations to shared memory locations.
Example - Derived completed meanings: The derived completed meaning
of the completed instruction ld8 r1 = [r3] (νr3=1284, νm(1284)=7) is “1284 =
read(r3), 7 = read(1284), write(r1, 7)” whereas its remote derived completed
meaning is the empty list. For st8 [r4] = r5 (νr4=1280, νr5=1) the derived
completed meaning is 1 = read(r5), 1280 = read(r4), write(mem(1280), 1) and
the remote derived meaning is just write(mem(1280), 1).
Definition of validity of a sequence of completed instructions: Let
S = s1, s2, . . . , sk be any sequence of completed instructions of a computation.
The computed meaning of S is the sequence formed by concatenating DM(si)
for i from 1 to k. For a given individual program p, the computed meaning of S
for p is the sequence formed by concatenating as follows. Replace each si that
is an instruction by p with DM(si); replace each si that is an instruction by
a processor different from p with RDM(si). Notice that both the computed
meaning of S and the computed meaning of S for p are sequences of read, write
and arithmetic/logic operations on atomic variables, so it is straightforward to
determine if such a sequence is valid. Specifically, it is valid if each read returns
the value of the last write to the same variable and all arithmetic/logic operations
on variables are correct. Finally, a sequence S of completed instructions from
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a computation is valid (respectively, valid for p) if the computed meaning of S
(respectively, the computed meaning of S for p) is valid.

Partial orders and memory consistency models: The final task is to cap-
ture the rules that govern executions of multiprograms under architecture A as
defining properties of the computations that can be produced. These properties,
collectively called a memory consistency model, are different for every multi-
processor machine, but have the same general structure. They are expressed as
a collection of partial orders relations on the completed instructions of a com-
putation. Each of these partial orders is required to have a total order extension
that

– is valid and
– shares some agreement properties with other partial orders.

Example - The Itanium memory consistency model2: Let I(C) be the set
of all completed instructions in a computation C. I(C)|p denotes the subset of
I(C) in processor p’s program sequence; I(C)|x denotes the subset whose meaning
contains a read or write operation on (register or shared memory) variable x; and
I(C)|br is the subset whose meaning is 0=read(cond) or 1=read(cond), where
cond is a (condition) register. I(C)|r denotes the subset containing only the
instruction instances that contain a read operation on a shared memory variable;
I(C)|w the subset containing only the instruction instances that contain a write
operation on a shared memory variable. The relation (I(C), prog−→ ), called program
order, is the set of all pairs (i, j) of completed instructions that are in the same
individual computation of C and such that i precedes j in that sequence. For any
partial order relation (I(C), y−→ ), the notation i

y−→ j is used interchangeably
with (i, j) ∈ (I(C), y−→ ).

Define the following partial orders:
– Local dependence order (I(C), depp−→ ): For i, j ∈ I(C)|p, i

depp−→ j if i
prog−→ j and

either
Register: i, j ∈ I(C)|x, where x is a register, or
Branch: i ∈ I(C)|br.

– Orderable order (I(C)|p ∪ I(C)|w, ordp−→ ) for each p ∈ P : i
ordp−→ j if i, j ∈

I(C)|p ∪ I(C)|w and i
prog−→ j and i, j ∈ I(C)|x and (i ∈ I(C)|w or j ∈ I(C)|w)

Itanium memory consistency definition: A computation C satisfies Itanium

consistency if for each p ∈ P , there is a total order
Sp−→ of the operations

I(C)|p ∪ I(C)|w that is valid for p, such that

1. (I(C)|p, depp−→ ) ⊆ (I(C)|p ∪ I(C)|w, Sp−→ ), (Local requirement) and

2. (I(C)|p ∪ I(C)|w, ordp−→ ) ⊆ (I(C)|p ∪ I(C)|w, Sp−→ ), (Orderable requirement)
and

3. If i1, i2 ∈ I(C)|x|w and i1
Sp−→ i2 then i1

Sq−→ i2, ∀q ∈ P , (Same Memory
agreement) and

2 Itanium provides a rich instruction set, which includes semaphore and fence instruc-
tions. The definition formulated here ignores acquire, release, and fence instructions.
The development and proofs for the general Itanium definition are elsewhere [7].
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4. There does not exist a cycle of i1, i2 . . . ik ∈ I(C)|w where ij ∈ I(C)|pj , ∀j ∈
{1, 2, . . .k} and k ≤ n such that: ik

S1−→ i1, and i1
S2−→ i2, and i2

S3−→ i3 . . .

and ik−1
Sk−→ ik (Cycle-free agreement)

Define Itanium-Dep (Itanium minus dependence) to be identical to the pre-
ceding definition, without the Local requirement.
Example - Itanium-Dep and Itanium consistency: Computation 3 of
Figure 4 satisfies Itanium-Dep. The following sequences satisfy the Orderable
requirement, the Same Memory agreement, and Cycle-free agreement properties.
show that Computation 3 satisfies Itanium-Dep requirements and agreement
properties:

Sp1 : ld8 r1 = [r3] (νr3=1284, νm(1284)=2)
Sp1−→ st8p2 [r4p2 ] = r1p2 (νr4p2

=1284,

νr1p2
=0)

Sp1−→ st8 [r4] = r1 (νr4=1280, νr1=2)
Sp1−→ add r1 = #1,r1 (νr1=2)

Sp1−→

cmp.ge p1,p0 = #3,r1 (νr1=3)
Sp1−→ 1=read(p1)

Sp1−→ add r1 = #1,r1 (νr1=3 )
Sp1−→

cmp.ge p1,p0 = #3, r1 (νr1=4)
Sp1−→ 0=read(p1)

Sp2 : st8 [r4] = r1 (νr4=1284, νr1=0, νm(1284)←0 )
Sp2−→ ld8 r1 = [r3] (νr3=1280,

νm(1280)=5, νr1←5)
Sp2−→ add r1 = #1,r1 (νr1=5 νr1←6)

Sp2−→ cmp.ge p1,p0 = #3,

r1(νr1=6, νp1←0)
Sp2−→ 0=read(p1)

Sp2−→ st8p1 [r4p1 ] = r1p1 (νr4=1280, νr1p1
= 1,

νm(1280)←1 )
To show that these sequences are valid we provide Trivial instructions for

the derived completed meaning or remote derived completed meaning for each
instruction in the sequence above. Square brackets, [ ], delineate the operations
for each instruction.

Validity Sequence for Sp1 : [ 1284 = read(r3), 2 = read(1284), write(r1, 2) ]
[ write(1284, 0) ] [2 = read(r1), 1280 = read(r4), write(1280, 2)] [2 = read(r1),
3 = 1 + 2, write(r1, 3) ] [3 = read(r1), if ( #3 geq > 3 ) then write(p1, 1) else
write(p1, 0) ] [1=read(p1) ] [3 = read(r1), 4 = 1 + 3, write(r1, 4) ] [4 = read(r1),
if ( #3 geq > 4 ) then write(p1, 1) else write(p1, 0) ] [0=read(p1) ]

Validity Sequence for Sp2 : [ 0 = read(r1), 1284 = read(r4), write(1284, 0)
] [ 1280 = read(r3), 5 = read(1280), write(r1, 5)] [5 = read(r1), 6 = 1 + 5,
write(r1, 6) ] [6 = read(r1), if ( #3 geq 6 ) then write(p1, 1) else write(p1, 0)]
[0=read(p1)] [write(1280, 1)]

However, Computation 3 does not satisfy Itanium because it must extend
Local dependence order, which requires that the st8 instruction in each sequence
follows the add instructions in that sequence, which would break validity. A
computation that is similar to Computation 3 except that the st8 instruction
by p1 has values (νr4=1280, νr1=3) and the st8 instruction by p2 has values
(νr4=1280, νr1=6) satisfies Itanium.

3 Consequences of Ignoring Dependence Order

Ignoring register and control dependences can lead to erroneous conclusions
about the capabilities or limitations of the architecture under consideration.
This section illustrates such an error using a simple producer-consumer example
and the Itanium architecture.
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3.1 A Simple Producer-Consumer Multiprocessor System

Informally, the simple producer-consumer (SPC) multiprocessor system defined
here has one producer program, producing items, which are consumed by a single
consumer program. The producer and consumer take turns in producing and
consuming items. This specialized system can be defined using the framework of
Section 2 as follows:3

Objects: A SPC object X supports two operations P-write(X ,ι) and ι=C-
read(X). The semantics of these operations are exactly the same as the read
and write operations on an atomic variable. However, the validity requirement
is substantially stronger.
Validity: A sequence of (C-read and P-write) operations on SPC object X is valid
if: (1) it starts with a P-write operation, (2) alternates between C-read and P-
write operations, (3) each C-read returns the value written by the immediately
preceding P-write operation, and (4) it has an equal number of P-write and
C-read operations.4

Programs: There are two programs: the producer repeatedly ‘P-writes’ the
SPC object, and the consumer repeatedly ‘C-reads’ it, for a specified (possibly
infinite) number of rounds.
SPC System: The SPC multiprocessor system consists of one SPC object X
and a multiprogram of one producer and one consumer. The memory consistency
model is sequential consistency[17].

3.2 Proving Relationships Between Multiprocessor Systems

Given a multiprocessor system with multiprogram P , objects J , and a memory
consistency model M , we call (P, J) a multiprocess and when J consists entirely
of atomic variables and registers, we call (J,M) an M platform.

The specified SPC multiprocess (P, J) gives rise to a set of allowable (spec-
ification) computations, C in Figure 7, under sequential consistency. We model
the execution of the specified multiprocess on the target Itanium architecture, as
a transformation, τ . This transformation replaces the specified objects, opera-
tions, and memory consistency model respectively with target (Itanium) objects,
instructions, and memory consistency model. Specifically, an operation on a spec-
ified object is transformed to the target objects by providing a subroutine for the
operation’s invocation where this subroutine uses only instruction invocations
on the target objects, Ĵ . If the specified operation returns an output, then the
subroutine must return a value of the same type as this output. An object in J is
3 A general producer-consumer system definition may allow several producers and con-

sumers and more complex shared objects such as queues, where producers enqueue
items and consumers dequeue them. This very restricted definition (two programs
and a queue of size one) suffices for this section. Furthermore, without exploiting
additional Itanium synchronization mechanisms, such as fences, acquires, or releases,
a solution for the general case is not possible.

4 Note that strict alternation between P-write and C-read operations is not nec-
essary at lower levels. This specification-level requirement can be satisfied at an
implementation-level as long as operations appear as if they do alternate.
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Specified SPC

multiprocess

(P, J)

�

Transformation τ

Target SPC

multiprocess

(τ (P ), J)

�sequential consistency

��
��

C ��
��

C′

�Itanium consistency

��
��

C

�

Interpretation

Fig. 7. Program transformation and computation interpretation. If C′ ⊆ C, then the
transformation is an implementation.

transformed to the target object(s) in Ĵ by transforming each of its operations. A
transformation of each of the objects of a specified multiprocess to objects of the
target multiprocess can be naturally extended to a program transformation by
replacing each operation invocation in the specified multiprogram with the sub-
routine for that operation invocation. The transformed multiprogram together
with the target objects (τ(P ), Ĵ) comprise the transformed multiprocess.

Hence, each P-write and C-read operations will be transformed to subroutines
that only make use of Itanium instructions. The transformed multiprocess gives
rise under Itanium consistency to an allowable set of computations, Ĉ. Any com-
putation in Ĉ can be interpreted as a computation of the specified multiprogram
by attaching to each operation invocation of the specified multiprogram the value
returned by the corresponding subroutine. Thus, the set Ĉ of computations of
the target system provides a set of interpreted computations C′ of the specified
multiprocess.

A transformation of a specified multiprocess is called an implementation of the
specified system, if, informally, (in Figure 7) the set C′ of computations produced
by traveling the long way around is a non-empty subset of the computations C
allowed by the specified multiprocessor system. The formal details, including
stronger (than ‘implementations’) relations between systems, are elsewhere [5].

3.3 In the Presence of Dependence

Use p and c to refer to the producer and consumer programs, respectively.
For the transformation of the SPC multiprocess given in Figure 8, consider
the last load in two consecutive iterations of p. We use dependence order and
validity to prove that at least one copy of c’s store at line 10 occurs in p’s se-

quence (I(C)|p ∪ I(C)|w, Sp−→ ) between these two loads. Also consider the last
load in two consecutive iterations of c. We use dependence order and validity
to prove that at least one copy of p’s store at line 4 occurs in c’s sequence
(I(C)|c ∪ I(C)|w, Sc−→ ) between these loads. Orderable order and the same
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Produce
Pseudo Code τ((P−write(X, item)):

0 mov r2=Q ; r2 contains the address of Q
while (Q �= 0) wait; 1 L: ld8 r1=[r2] ; load r1 with Q

2 cmp.neq p1,p0 = r1,r0 ; is r1 == 0?
3 (p1) br L: ; If not, go back to L

Q ←− item 4 st8 [r2]= item ; store item into Q

Consume
Pseudo Code τ((C − read(X))) returns item in r3:

5 mov r2=Q ; r2 contains the address of Q
while (Q = 0) wait; 6 M: ld8 r1=[r2] ; load r1 with Q

7 cmp.eq p1,p0 = r1, r0 ; is r1 == 0?
8 (p1) br M: ; If so, go back to M

item ←− Q 9 ld8 r1=[r2] ; load r1 with Q
Q ←− 0 10 st8 [r2]=r0 ; store 0 into Q

11 mov r3, r1 ; put consumed item into r3

Fig. 8. A transformation of the specified SPC object, X, on Itanium, using the target
objects {Q, r1p, r2p, p1p, r1c, r2c, r3c, p1c}

memory agreement property force the stores to strictly alternate in each se-
quence, ensuring that the c loads every produced value. The proof of the follow-
ing theorem is long and tedious and is elsewhere [6].

Theorem 1. Transformation τ in Figure 8 is an implementation of the SPC
system on an Itanium platform.

3.4 In the Absence of Dependence

While the SPC system has an implementation on an Itanium platform, we show
in this section that such an implementation does not exist on an Itanium-Dep
platform.

First of all, we show how any transformation respecting the pseudo code in
Figure 8 fails under only Itanium-Dep. Specifically, in the C-read pseudo code,
the Orderable order does not always require program order between two load
instructions, even if they access the same atomic variable (Q in this case). The
consumption load (load of Q in ‘item← Q’) may be ordered in Sc before any load
instruction resulting from the spin-loop, including the load that writes a value
that consequently ends the loop. This load signals to the consumer to proceed
with consumption. However under Itanium-Dep, the consumer can proceed to
consumption before even performing any loads or checking the condition in the
spin-loop. That is, a consumer may consume a never-produced or a previously
consumed item. This ‘early’ load decides the value to be returned in the inter-
pretation by the corresponding C-read. Any attempt to construct a valid total
order for the producer-consumer object X will fail. The failure of this algorithm
is general as we argue next.

Theorem 2. There does not exist an implementation of the SPC system on an
Itanium-Dep platform.

Proof: Assume there exists an implementation β of the SPC system on
an Itanium-Dep platform. Then the interpretation of any computation of the
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transformed SPC multiprocess will be valid for the SPC object X . By this va-
lidity requirement, the β(C-read(X)) subroutine does not return before it finds
a new produced and never consumed before item. Hence, c must wait in β(C-
read(X)) until a new produced item is available for consumption. In Itanium-
Dep, the only way by which c waits for p is through the use of a spin-loop. The
spin-loop has at least one load instruction, spin-load.

Furthermore, there has to be a load instruction after which the value to be re-
turned by β(C-read(X)) will be decided and does not change until β(C-read(X))
returns. Call this load the consumption load. Obviously, the consumption load
must follow in program order some of the spin-loads. We argue that Itanium-
Dep can give rise to a computation that behaves as if the consumption load is
completed before the spin-loop starts.

If between a spin-load and the following (in program order) consumption
load there are any stores, then these stores cannot be to the same variable that
the consumption load is accessing, otherwise the communicated produced item
may be changed by the consumer and lost. A store that deterministically leaves
the value of an atomic variable, say v, unchanged does not necessarily write the
same value back to v in Itanium-Dep. Writing the same value stored in v back
to v (something of the form: v←v) requires a load that precedes in program
order the store. What we have now in prog-seqβ(c) is:

ld8 r1=[r] ; begin spin-loads, register r has the address of v
ld8 r2=[r]
· · ·
ld8 rk=[r] ; another spin-load (not necessarily the last of the loads in the loop)

ld8 rk+1=[r] ; load resulting from writing v to v
st8 [r]=rk+1 ; writing v back to v
· · ·
ld8 rk+i=[r]; the consumption load

Itanium-Dep is insufficient to enforce any ordering between ld8 rk+1=[r] and
any of the k spin-loads in (I(C)|c ∪ I(C)|w, Sc−→ ). Hence, it is always possible for
rk+1 to be assigned a never-produced (the item is not the result of β(P-write(X ,
ι))) item or an item that has already been consumed.

Finally, any store to a different variable between (in program order) the k
spin-loads and the consumption load cannot restore the lost program order in
Sc between the k spin-loads and the consumption load. That is, consumption can
happen earlier than it should be, and we can end up with an invalid sequence
of P-write and C-read operations. Hence, the transformation β cannot be an
implementation, since in Figure 8, there is at least one computation in C′ that
cannot be in C.
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Abstract. In a software transactional memory (STM) system, conflict detection
is the problem of determining when two transactions cannot both safely commit.
Validation is the related problem of ensuring that a transaction never views in-
consistent data, which might potentially cause a doomed transaction to exhibit
irreversible, externally visible side effects. Existing mechanisms for conflict de-
tection vary greatly in their degree of speculation and their relative treatment of
read-write and write-write conflicts. Validation, for its part, appears to be a dom-
inant factor—perhaps the dominant factor—in the cost of complex transactions.

We present the most comprehensive study to date of conflict detection strate-
gies, characterizing the tradeoffs among them and identifying the ones that per-
form the best for various types of workload. In the process we introduce a light-
weight heuristic mechanism—the global commit counter—that can greatly re-
duce the cost of validation and of single-threaded execution. The heuristic also
allows us to experiment with mixed invalidation, a more opportunistic interleav-
ing of reading and writing transactions. Experimental results on a 16-processor
SunFire machine running our RSTM system indicate that the choice of conflict
detection strategy can have a dramatic impact on performance, and that the best
choice is workload dependent. In workloads whose transactions rarely conflict,
the commit counter does little to help (and can even hurt) performance. For less
scalable applications, however—those in which STM performance has tradition-
ally been most problematic—it can improve transaction throughput many fold.

1 Introduction

Thirty years of improvement in the speed of CMOS uniprocessors have recently come
to an end. In the face of untenable heat dissipation and waning gains in ILP, hardware
vendors are turning to multicore, multithreaded chips for future speed improvements.
As a result, concurrent programming is suddenly on the critical path of every major
software vendor, and traditional lock-based programming methodologies are looking
decidedly unattractive. A growing consensus views transactional memory (TM) [12],
implemented in hardware or software, as the most promising near-term technology to
simplify the construction of correct multithreaded applications. Transactions eliminate
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the semantic problems of deadlock and priority inversion. They also address the per-
formance problems of convoying and of preemption or page faults in critical sections.
Perhaps most important, they eliminate the need to choose between the conceptual sim-
plicity of coarse grain locks and the concurrency of fine grain locks.

Unfortunately, hardware implementations of transactional memory have yet to reach
the market, and the performance of current software transactional memory (STM) sys-
tems leaves much to be desired. In recent work we introduced a comparatively light-
weight system, RSTM, and carefully analyzed its costs [19]. In addition to copying
overhead, which appears to be unavoidable in a nonblocking STM system, we found
the two principal sources of overhead to be bookkeeping and incremental validation.
Bookkeeping serves largely to implement conflict detection—that is, to identify pairs
of concurrent transactions which, if permitted to commit, would not be linearizable [13].
Validation serves to ensure that transactions never see or make decisions based on in-
consistent data; we use the term “incremental” to indicate strategies in which the over-
head of validation is proportional to the number of objects previously accessed.

Two concurrent transactions are said to conflict if they access the same object and
at least one of them modifies that object. When an STM system identifies a conflict,
it typically allows one transaction to continue, and delays or aborts the other. If the
system is nonblocking, the choice may be based on a built-in policy (as, for example, in
the lock-free OSTM [3]), or it may be deferred to a separate contention manager (as, for
example, in the obstruction-free DSTM [11]). The design of contention managers has
received considerable attention in recent years [4, 5, 6, 22, 23, 24]. Conflict detection
and validation have not been as thoroughly or systematically studied.

Conflict detection. An STM system may notice potential conflicts early in the life of
the conflicting transactions, or it may delay such notice until one of the transactions
attempts to commit. The choice may depend on whether the conflict is between two
writers or between a reader and a writer. In the latter case, it may further depend on
whether the reader or the writer accesses the object first. If transactionsS and T conflict,
aborting S early may avoid fruitless further computation. In general, however, there is
no way to tell whether T will ever commit; if it doesn’t, then S might have been able to
do so if it had been permitted to continue.

We have recently studied the semantics of several alternative strategies for conflict
detection, and have identified existing systems that implement these strategies [25]. In
this study we suggested that it might make sense to detect write-write conflicts early
(since at most one of the conflicting transactions can ever commit), but read-write con-
flicts late (since both may commit if the reader does so first). We refer to this hybrid
strategy as mixed invalidation; to the best of our knowledge, it has not been explored in
any prior TM system.

Validation. Since a transaction that commits successfully has no visible side effects
prior to the commit, it is tempting to assume that an aborted transaction will have no
visible effects whatsoever. Problems arise, however, in the presence of transaction con-
flicts. Suppose, for example, that f() is a virtual method of class A, from which are
derived subclasses B and C. Suppose further that while B.f() can safely be called in
transactional code, C.f() cannot (perhaps it performs I/O, acquires a lock, or mod-



Conflict Detection and Validation Strategies for STM 181

ifies global data under the assumption that some lock is already held). Now suppose
that transaction T reads objects x and y. Object y contains a reference to an object
of class A. Object x contains information implying that the reference in y points to a
transaction-safe B object. Unfortunately, after T reads x but before it reads y, another
transaction modifies both objects, putting a C reference into y and recording this fact
in x. Because x has been modified, T is doomed to abort. If it does not notice this fact
right away, however, T may read the C reference in y and call its unsafe method f().

While this example is admittedly contrived, it illustrates a fundamental problem:
even in a typesafe, managed language, a transaction that is about to perform a poten-
tially unsafe operation must verify the continued validity of any previously read objects
on which that operation has a control or data dependence. Unfortunately, straightfor-
ward incremental validation—checking all previously read objects on each new object
reference—leads to O(n2) total cost when opening n objects, an extraordinary bur-
den for transactions that access many objects. Similarly, visible readers—which allow
a writer to identify and explicitly abort the transactions with which it conflicts—incur
very heavy bookkeeping and cache eviction penalties; in our experiments, for all but
the largest transactions, these penalties, though linear, are worse than the quadratic cost
of incremental validation.

Static analysis of data flow and safety may allow a compiler-based STM system to
avoid validation in many important cases, but library-based STM has traditionally been
stuck with one of two alternatives: (1) require the programmer to validate manually
wherever necessary, or (2) accept the quadratic cost of incremental validation. Option
(1), we believe, is unacceptable: identifying the places that require validation is too
much to expect of the typical programmer. We prefer instead to find ways to avoid or
reduce the cost of incremental validation.

Contributions. This paper makes two principal contributions. First, we present the most
thorough evaluation to date of strategies for conflict detection, all in the context of a
single STM system. We consider lazy acquire, in which conflicts are noticed only at
commit time; eager acquire, in which conflicts are noticed as soon as two transactions
attempt to use an object in incompatible ways; and mixed invalidation, in which con-
flicts are noticed early, but not acted upon until commit time in the read-write case. We
also consider both visible and invisible readers. Invisible readers require less bookkeep-
ing and induce fewer cache misses, but require that read-write conflicts be noticed by
the reader. Visible readers allow such conflicts to be noticed by writers as well.

Second, we introduce a lightweight heuristic mechanism—the global commit
counter—that eliminates much of the overhead of incremental validation. Specifically,
we validate incrementally only if some other transaction has committed writes since the
previous validation. In multithreaded experiments, the savings ranges from negligible in
very short transactions to enormous in long-running applications (95% reduction in val-
idation overhead for our RandomGraph “torture test”). Because it allows us to overlook
the fact that a previously read object is being written by an as-yet-uncommitted trans-
action, the commit counter provides a natural approximation of mixed invalidation. It
also allows us to notice when a transaction is running in isolation, and to safely elide
bookkeeping, validation, and contention management calls. This elision dramatically
reduces the cost of STM in the single-threaded case.
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Section 2 provides an overview of our RSTM system, including a description of ea-
ger and lazy acquire, visible and invisible readers, and mixed invalidation. Section 3
then presents the global commit counter heuristic. Performance results appear in Sec-
tion 4, related work in Section 5, and conclusions in Section 6.

2 Overview of RSTM

The Rochester Software Transactional Memory System (RSTM) is a fast, nonblocking
C++ library that seeks to maximize throughput, provide a simple programming inter-
face, and facilitate experimentation. To first approximation, its metadata organization
(Figure 1) resembles that of DSTM [11], but with what the latter calls a “Locator”
merged into the newest copy of the data. Detailed description can be found in a previ-
ous paper [19]; we survey the highlights here.

Transaction
Descriptor

Data Object –
new version

Status

New Data Owner

Visible Readers Old Data

Object Header

Data Object –
old version

Clean Bit

Fig. 1. RSTM metadata. Visible Readers are implemented as a bitmap index into a global table.
Up to 32 concurrent transactions can read visibly, together with an unlimited number of invisible
readers. The Clean Bit, when set, indicates that the new Data Object is valid; the Transaction
Descriptor need not be inspected.

As in most other nonblocking STMs, an object is accessed through an object header,
which allows transactions to identify the last committed version of the object and, when
appropriate, the current speculative version. The metadata layout is optimized for read-
heavy workloads; in the common case, the header points directly to the current version
of the object. When an object is being written, one additional level of indirection is
needed to reach the last committed version.

Each thread maintains a transaction descriptor that indicates the status (active /
committed / aborted) of the thread’s most recent transaction, together with lists of ob-
jects opened (accessed) for reading and for writing. To minimize memory management
overhead, descriptors are allocated statically and reused in the thread’s next transaction.
RSTM currently supports nested transactions only via subsumption in the parent.

Data object versions are dynamically allocated from a special per-thread heap with
lazy generational reclamation. As in OSTM [2] or McRT [14], “deleted” objects are not
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reclaimed until every thread is known to have been outside any potentially conflicting
transaction.

Acquisition. A transaction never modifies a data object directly; instead, it clones the
object and makes changes to the copy. At some point between open time (initial access)
and commit time, the transaction must acquire the object by making the object header
point to the new version of the data (which in turn points to the old). Since each new
version points to the transaction’s descriptor, atomically CAS-ing the descriptor’s status
from active to committed has the effect of updating every written object to its new
version simultaneously. Eager (open-time) acquire allows conflicts to be detected early.
As noted in Section 1, the timing of conflict detection enables a tradeoff between, on
the one hand, avoiding fruitless work, and, on the other, avoiding spurious aborts.

Reader visibility. The programmer can specify whether reads should be visible or in-
visible. If reads are visible, the transaction arbitrates for one of 32 visible reader tokens.
Then, when it opens an object for reading, the transaction sets the corresponding bit in
the object’s visible reader bitmap. Thus while the system as a whole may contain an
arbitrary number of threads, at most 32 of them can be visible readers concurrently (the
rest can read invisibly). The bitmap is simpler and a little bit faster than an alternative
mechanism we have described [19] that supports an arbitrary number of visible readers.

Before it can acquire an object for writing, a transaction must obtain permission from
its contention manager to abort all visible readers. It performs these aborts immediately
after acquisition. A transaction that has performed only visible reads is thus guaranteed
that if it has not been aborted, all of its previously read objects are still valid. By contrast,
as described in Section 1, an invisible reader must (absent static analysis) incrementally
validate those objects on every subsequent open operation, at O(n2) aggregate cost.

In practice, visible readers tend to cause a significant increase in memory traffic,
since the write by which a reader announces its presence necessarily evicts the object
header from every other reader’s cache. In several of our microbenchmarks, visible
readers perform worse than invisible readers at all thread counts higher than one.

Mixed invalidation. If two transactions attempt to write the same object, one argu-
ment for allowing both to proceed (as in lazy acquire) holds that any execution history
in which both remain active can, in principle, be extended such that either commits
(aborting the other); there is no a priori way for an implementation to tell which trans-
action “ought” to fail. This is a weak argument, however, since both cannot succeed.
When a reader and a writer conflict, however, there is a stronger argument for allow-
ing them to proceed concurrently: both can succeed if the reader commits first. We
therefore consider a mixed invalidation strategy [25] in which write-write conflicts are
detected eagerly but read-write conflicts are ignored until commit time. The following
section considers the implementation of mixed invalidation and a heuristic that cheaply
approximates its behavior.

3 The Global Commit Counter Heuristic

As noted in Section 1, a transaction must validate its previously-opened objects when-
ever it is about to perform an operation that may be unsafe if the values of those objects
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are mutually inconsistent. We take the position that validation must be automatic—that
it is unreasonable to ask the programmer to determine when it is necessary. In either
case, the question arises: how expensive must validation be?

With visible readers, validation is very inexpensive: a reader need only check to
see whether it has been aborted. With invisible readers and eager acquire, naive (in-
cremental) validation takes time linear in the number of open objects. In a poster at
PODC’04 [15], Lev and Moir suggested a heuristic that could reduce this cost in impor-
tant cases. Specifically, they suggest per-object reader counters coupled with a global
conflict counter. Readers increment and decrement the per-object counters at open and
commit time, respectively. Writers increment the conflict counter whenever they ac-
quire an object whose reader counter is nonzero. When opening a new object, a reader
can skip incremental validation if the global conflict counter has not changed since the
last time the reader checked it.

The conflict counter is a useful improvement over visible readers in systems like
DSTM [11] and SXM [5], where visible readers require the installation of a new Locator
and thus are very expensive. Unfortunately, every update of a reader counter will inval-
idate the counter in every other reader’s cache, leading to cache misses at commit time
even when there are no writers. In the absence of any contention, a transaction T1 read-
ing R objects will skip all validation but must perform 2R atomic increment/decrement
operations. For each object that is also read by T2, T1 will incur at least one cache miss,
regardless of whether the counter is stored with the object metadata or in a separate cache
line.

We observe that if one is willing to detect read-write conflicts lazily, a more light-
weight optimization can employ a global commit counter that records only the number
of writer transactions that have attempted to commit. When a transaction acquires an
object, it sets a local flag indicating that it must increment the counter before attempting
to commit. Now when opening a new object, a reader can skip incremental validation if
the global commit counter has not changed since the last time the reader checked it. If
the counter has changed, the reader performs incremental validation.

In comparison to the Lev and Moir counter, this heuristic requires no atomic oper-
ations by readers, and the same amount of bookkeeping. A transaction T1 that reads
R objects will validate by checking the global counter R times. Reading the counter
will only be a cache miss if a writing transaction commits during the execution of
T1, in which case an incremental validation is necessary. For a successful transaction
T1, the cost of validation with the global commit counter is a function of four vari-
ables: the number of objects read by T1 (R), the number of writer transactions that
commit during the execution of T1 (||{Tw}|| = W ), the cost of validating a single ob-
ject (a cache hit and a single word comparison Cv , which we also use as the cost of
detecting that the counter has not changed), and the cost of a cache miss (Cmiss). As-
suming that all R objects fit in T1’s cache, the baseline cost of incremental validation
without the commit counter is Cv

∑R
i=1 i = Cv

R(R+1)
2 . Assuming a uniform distri-

bution of writer commits across the duration of T1, the cost of validation is the cost
of W successful validations of R/2 objects, W cache misses, and R − W success-
ful checks of the global counter. For workload and machine configurations in which
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Cv(R−W ) +W (Cmiss + CvR
2 ) < Cv

R(R+1)
2 , we expect the commit counter to offer

an advantage.

Mixed invalidation. The global commit counter gets us partway to mixed invalidation:
readers will notice conflicting writes only if (a) the writer acquires the object before the
reader opens it, or (b) some transaction (not necessarily the writer) commits after the
writer acquires and before the reader attempts to commit.

For comparison purposes, we have also built a full implementation of mixed inval-
idation. This implementation permits a transaction T to read the old version of object
O even if O has been acquired by transaction S, so long as S has not committed. To
correctly permit this “read through” operation, we augmented RSTM with a two-stage
commit, similar to that employed by OSTM [3]. A writer transaction S that is ready
to commit first CAS-es its status from active to finishing. S then attempts to CAS the
global commit counter to one more than the value S saw when it last validated. If the
increment fails, S revalidates its read set and re-attempts the increment. If the increment
succeeds, S attempts to CAS its status from finishing to committed.

If transaction T reads O, then when S increments the counter, we are certain that T
will validate before accessing any new state; this preserves consistency. Furthermore,
although T can validate O against the old version when acquirer S is active, once S
changes its status to finishing and increments the counter, T will fail validation. To
preserve non-blocking properties, any transaction can (with permission from the con-
tention manager) abort S even if it is finishing. In particular, if T ’s validation fails and
T restarts, it will have the opportunity to abort S if it tries to open O.

Single thread optimization. A transaction can easily count the number of times that
it commits a writing transaction without ever needing incremental validation. If this
occurs many times in succession, the thread can assume that it is running in isolation
and skip all bookkeeping and contention management calls (it must still increment the
counter at the end of each write transaction). Should the global counter change due to
activity in another thread, such an opportunistic transaction will have to abort and retry.

Using this optimization, transactions with large read and write sets can skip the O(n)
time and space overhead of bookkeeping, resulting in significant speedup for single-
threaded transactional code.

4 Experimental Evaluation of Conflict Detection and Validation
Strategies

In this section we evaluate the effectiveness of six different conflict detection strategies.
For comparison, we also plot results for coarse-grained locks and for the Lev and Moir
conflict counter. We consider different lookup / insert / remove ratios for benchmarks
that include a lookup operation, and show that as the read ratio increases, so does the
relative benefit of the global commit counter. Thus while no single conflict detection
strategy offers consistently superior performance, we believe that our approximation
of mixed invalidation constitutes an important new point in the design space. We also
show that due to the cost of atomic operations on the critical path of every read, the
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Lev and Moir heuristic performs roughly at the level of visible readers in RSTM, rarely
outperforming even the baseline RSTM system with invisible reads and eager acquire.

We performed all experiments on a 16-processor SunFire 6800, a cache-coherent
multiprocessor with 1.2GHz UltraSPARC III CPUs. All code was compiled with GCC
v3.4.4 using –O3 optimizations. For each benchmark and lookup / insert / remove mix,
we averaged the throughput of three 10-second executions. For RSTM benchmarks, we
used the Polka contention manager [23].

4.1 Strategies Considered

RSTM supports both visible and invisible readers, and both eager and lazy acquire. We
examine every combination other than visible reading with lazy acquire, which offers
poor performance for our benchmarks and has comparatively weak motivation: while
visibility allows readers to avoid incremental validation even when (unrelated) writers
have committed, the effort they expend making themselves visible to writers is largely
ignored, since writers delay conflict detection until commit time.

Visible readers with eager acquire (Vis-Eager) provides early detection of all con-
flicts without incremental validation. Invisible readers with eager acquire (Invis-Eager)
also results in eager detection of all conflicts. Since reads are invisible, however, an
acquiring transaction cannot detect that an object is being read; consequently, the ac-
quirer cannot perform contention management but instead acquires the object oblivi-
ously, thereby implicitly dooming any extant invisible readers. To ensure consistency,
transactions must incrementally validate their read set on every API call.

Invisible reads with lazy acquire (Invis-Lazy) results in lazy detection of all con-
flicts. This permits a high degree of concurrency between readers and writers, but re-
quires incremental validation.

We also evaluate three heuristic validation methods, all based on a global commit
counter.

In Invis-Eager + Heuristic, a transaction T validates incrementally only if some
writer transaction W has committed since the last time T validated. In addition to re-
ducing the frequency of incremental validations, this permits some lazy detection of
read-write conflicts. If T reads O and then W acquires O, T may still complete if no
other writing transaction commits between when W acquires O and when T commits.

Invis-lazy + Heuristic detects all conflicts lazily (at commit time). However, the
heuristic permits a reduction in the overhead of validation: rather than incrementally
validating on every API call, a transaction can validate trivially when no writer transac-
tion W has committed since the last time T validated.

In Mixed Invalidation, read-write conflicts are detected lazily while write-write
conflicts are detected eagerly. In contrast to Invis-Eager + Heuristic, Mixed Invalida-
tion has precise conflict detection. For example, if T reads O, then S acquires O, then
W acquires some other object P and commits, T will not fail its validation; it will
detect that S has not committed, and that its version of O is valid.

4.2 Benchmarks

We tested our conflict detection strategies against six microbenchmarks: a web cache
simulation using least-frequently-used page replacement (LFUCache [22]), an
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adjacency list-based undirected graph (RandomGraph), and four variants of an integer
set.

The LFUCache benchmark uses a large array-based index and a small priority queue
to track frequently accessed pages in a simulated web cache. When the queue is re-
heapified, we introduce hysteresis by swapping value-one nodes with value-one chil-
dren. This helps more pages to accumulate hits. A Zipf distribution determines the
likelihood that a page is accessed, with probability of an access to page i given as
pc(i) ∝

∑
0≤j≤i j

−2.
In the RandomGraph benchmark, there is an even mix of inserts and deletes. When

a node is inserted, it is given four randomly chosen neighbors. As nodes insert and
leave the graph, the vertex set changes, as does the degree of each node. The graph is
implemented as a sorted list of nodes, with each node owning a sorted list of neigh-
bors. Every transaction entails traversal of multiple lists; transactions tend to be quite
complex. Transactions also tend to overlap significantly; it is rare to have an empty
intersection of one transaction’s read set with another transaction’s write set.

In the integer set benchmarks, we consider an equal ratio, consisting of one-third
each of lookup, insert, and remove operations, and a read-heavy mix with 80% lookups
and 10% each inserts and removes.

The integer set benchmarks are a red-black tree, a hash table, and two sorted linked
lists. Transactions in the hash table insert or remove one of 256 keys from a 256 bucket
hash table with overflow chains. This implementation affords high concurrency with
very rare conflicts. The red-black tree is a balanced binary tree of values in the range
0..65535. The linked lists hold values from 0..255; one list uses early release [11] to
avoid false conflicts; the other does not.

4.3 Discussion of Results

In LFUCache (Figure 2), transactions usually do only a small amount of work, access-
ing one or two objects. Furthermore, the work done by all transactions tends to be on the
same object or small set of objects. As a result, there is no significant parallelism in the
benchmark. Lazy acquire performs best in this setting, because it shrinks the window
of contention between two transactions, decreasing the chance that a transaction that
successfully acquires an object will be aborted. Furthermore, since the read and write
sets are small, the global commit counter saves little validation effort. The only benefit
of our heuristic is slightly better performance in the single-threaded case.

RandomGraph (Figure 3), by contrast, benefits greatly from a global commit counter.
Its transactions’ read sets typically contain hundreds of objects. Avoiding incremental
validation consequently enables orders of magnitude improvement. We observe real
scalability with all three heuristic policies. This scalability is directly related to relaxing
the detection of read-write conflicts: reading and acquiring are heavily interleaved in the
benchmark, and detecting read-write conflicts early leads to near-livelock, as shown by
the Invis/Eager line. Mixed invalidation, moreover, outperforms the best lazy conflict
detection strategy. This is a direct consequence of avoiding concurrent execution of
two transactions that want to modify the same object, a scenario we have previously
identified as dangerous. In the interest of full disclosure, we note that the lack of true
concurrency still gives coarse-grain locks a dramatic performance advantage, ranging
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Fig. 11. Hash Table – 80% lookup, 10% insert,
10% remove

from more than two orders of magnitude at low thread counts to a factor of almost 3
with 28 active threads.

The LinkedList benchmarks (Figures 4–7) show a tremendous benefit from the
global commit counter when early release is not used, and a small constant improve-
ment with early release. The difference stems from the fact that without early release
this benchmark is largely serial: the average reader opens 64 nodes to reach the middle
of the list; any concurrent transaction that modifies an early node will force the reader
to abort. With early release the programmer effectively certifies that modifications to
early nodes are irrelevant once the reader has moved past them. No transaction keeps
more than 3 nodes open at any given time, greatly increasing potential concurrency.
Since transactions that modify the list do so with an acquire at the end of their transac-
tion, there is little benefit to a relaxation of read-write conflict detection. The commit
counter effectively reduces the frequency of incremental validation, however, and also
significantly improves the single-threaded case.
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In the RBTree benchmark (Figures 8–9), transactions tend to be small (fewer than 16
objects in the read set), with limited conflict. As a result, decreasing the cost of valida-
tion does not significantly improve performance, nor does relaxing read-write conflict
detection. However, the heuristic significantly improves the single-threaded case. The
value of the heuristic also increases noticeably with the fraction of read-only transac-
tions, as the cost of validation becomes a larger portion of overall execution time.

Unlike the other benchmarks, HashTable (Figures 10–11) is hurt by the global com-
mit counter. Since the table is only 50% loaded on average, the likelihood of two trans-
actions conflicting is negligible. Furthermore, non-conflicting transactions do not read
any common data objects. As a result, the benchmark is “embarrassingly concurrent.”
The introduction of a global counter serializes all acquiring transactions at a single
memory location, and thus decreases opportunities for parallelism. Some of this cost is
regained with mixed invalidation, especially when there is a high percentage of read-
only transactions.

5 Related Work

In previous work, we reviewed several STM systems [16, 18] and ultimately designed
both ASTM [17] and RSTM [19] to decrease overhead on the critical path of transac-
tions. In ASTM, we adaptively switch from DSTM-style eager acquire [11] to OSTM-
style lazy acquire [2, 3]. This permits some dynamic determination of how and when
transactions should validate, but it is not as nuanced as mixed invalidation and does not
avoid unnecessary validation.

In RSTM, we add the ability to switch between visible and invisible readers on a
per-object basis, though we have not yet implemented automatic adaptation. RSTM
thus subsumes the flexibility of Herlihy’s SXM [5], which uses a factory to set visibil-
ity for entire classes of objects. While visible readers offer potential gains in fairness
by allowing contention management for writes following uncommitted reads, we have
found the cost in terms of reduced cache line sharing and reduced scalability to be un-
acceptably high; visible readers generally scale far worse than invisible readers when
more than 4 threads are active.

Intel’s McRT-STM [21] uses locks to avoid the need for object cloning, thereby im-
proving performance. The McRT compiler inserts periodic validation checks in transac-
tions with internal loops, to avoid the performance risk of long-running doomed trans-
actions. As in OSTM, the programmer must insert any validation checks that are needed
for correctness.

Recent proposals from Microsoft Research [9, 10] focus on word-based STM using
Haskell and C#. The C# STM uses aggressive compiler optimization to reduce over-
heads, while the Haskell TM focuses on rich semantics for composability. Like previ-
ous word-based STMs [2, 8, 26], these systems avoid the cost of copying unmodified
portions of objects, but incur bookkeeping costs on every load and store (or at least on
every one that the compiler cannot prove is redundant). These differences complicate di-
rect comparisons between word-based and object-based STM systems. Nonetheless, we
believe that our heuristic mixed invalidation would be a useful addition to word-based
STM, and might assist developers in further reducing the overheads of those systems.
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Several proposals [1, 7, 12, 20] seek to leverage cache coherence protocols to achieve
lightweight hardware transactions. However, these hardware TMs generally fix the con-
flict detection policy at design time, with eager read-write conflict detection more com-
mon than lazy [20]. We have recently proposed hardware assists to improve STM per-
formance [27]. We believe this approach is more pragmatic: software dictates conflict
detection and resolution policies, but special hardware instructions and cache states
permit the small transactions in the common case to run as fast as coarse-grained locks.

The only other heuristic validation proposal we are aware of is the Lev and Moir
conflict counter described in Section 3 [15]. While this heuristic removes unnecessary
validation, it does not delay the detection of read-write conflicts. Inserting atomic op-
erations into the critical path of every read shares lower-bound complexity with our
visible reader implementation; we have shown that this strategy suffers the same costs
(less cache line sharing, more processor stalls) as our visible reader implementation,
and thus does not scale as well as invisible readers.

6 Conclusions

We have presented a comprehensive and detailed analysis of conflict detection strategies
in RSTM. We assess existing policies for managing read-write and write-write conflicts
using reader visibility and acquire time, and discuss the utility of mixed invalidation in
avoiding conservative aborts of transactions that may be able to succeed.

We approximate mixed invalidation in RSTM using a global commit counter heuris-
tic. Our implementation demonstrates that the resulting gain in concurrency can lead to
significant performance improvements in workloads with long, highly contended trans-
actions. We also demonstrate that a global commit counter can be used to detect the case
when a system contains only one transactional thread, which can then opportunistically
avoid the overhead of bookkeeping and contention management.

Our heuristics are still insufficient to close the performance gap between STM and
locks in all cases. In fact, the global commit counter serves to decrease performance in
highly concurrent workloads (such as hash tables) by forcing all transactions to serialize
on a single memory location when they otherwise would access disjoint memory sets.
Nonetheless, mixed invalidation appears to be a valuable step toward maximizing STM
performance.

The fact that no one conflict detection or validation mechanism performs best across
all workloads—and that the differences between mechanisms are both large and bidi-
rectional—suggests that a production quality STM system should adapt its policy to
match the offered workload. Our ASTM system [17] adapted in some cases between
eager and lazy acquire; further forms of adaptation are the subject of future work.
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Abstract. The transactional memory programming paradigm is gain-
ing momentum as the approach of choice for replacing locks in concurrent
programming. This paper introduces the transactional locking II (TL2)
algorithm, a software transactional memory (STM) algorithm based on
a combination of commit-time locking and a novel global version-clock
based validation technique. TL2 improves on state-of-the-art STMs in
the following ways: (1) unlike all other STMs it fits seamlessly with any
systems memory life-cycle, including those using malloc/free (2) unlike
all other lock-based STMs it efficiently avoids periods of unsafe execution,
that is, using its novel version-clock validation, user code is guaranteed to
operate only on consistent memory states, and (3) in a sequence of high
performance benchmarks, while providing these new properties, it deliv-
ered overall performance comparable to (and in many cases better than)
that of all former STM algorithms, both lock-based and non-blocking.
Perhaps more importantly, on various benchmarks, TL2 delivers perfor-
mance that is competitive with the best hand-crafted fine-grained con-
current structures. Specifically, it is ten-fold faster than a single lock.
We believe these characteristics make TL2 a viable candidate for deploy-
ment of transactional memory today, long before hardware transactional
support is available.

1 Introduction

A goal of current multiprocessor software design is to introduce parallelism into
software applications by allowing operations that do not conflict in accessing
memory to proceed concurrently. The key tool in designing concurrent data
structures has been the use of locks. Coarse-grained locking is easy to program,
but unfortunately provides very poor performance because of limited parallelism.
Fine-grained lock-based concurrent data structures perform exceptionally well,
but designing them has long been recognized as a difficult task better left to ex-
perts. If concurrent programming is to become ubiquitous, researchers agree that
alternative approaches that simplify code design and verification must be devel-
oped. This paper is interested in “mechanical” methods for transforming sequen-
tial code or coarse-grained lock-based code into concurrent code. By mechanical
we mean that the transformation, whether done by hand, by a preprocessor,
or by a compiler, does not require any program specific information (such as
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the programmer’s understanding of the data flow relationships). Moreover, we
wish to focus on techniques that can be deployed to deliver reasonable perfor-
mance across a wide range of systems today, yet combine easily with specialized
hardware support as it becomes available.

1.1 Transactional Programming

The transactional memory programming paradigm of Herlihy and Moss [1] is
gaining momentum as the approach of choice for replacing locks in concurrent
programming. Combining sequences of concurrent operations into atomic trans-
actions seems to promise a great reduction in the complexity of both program-
ming and verification – by making parts of the code appear to be sequential
without the need to program fine-grained locks. Transactions will hopefully re-
move from the programmer the burden of figuring out the interaction among
concurrent operations that happen to conflict with each other. Non-conflicting
Transactions will run uninterrupted in parallel, and those that do will be aborted
and retried without the programmer having to worry about issues such as dead-
lock. There are currently proposals for hardware implementations of transac-
tional memory (HTM) [1,2,3,4], purely software based ones, i.e. software trans-
actional memories (STM) [5,6,7,8,9,10,11,12,13], and hybrid schemes (HyTM)
that combine hardware and software [14,10].1

The dominant trend among transactional memory designs seems to be that
the transactions provided to the programmer, in either hardware or software,
should be “large scale”, that is, unbounded, and dynamic. Unbounded means
that there is no limit on the number of locations accessed by the transaction.
Dynamic (as opposed to static) means that the set of locations accessed by the
transaction is not known in advance and is determined during its execution.

Providing large scale transactions in hardware tends to introduce large degrees
of complexity into the design [1,2,3,4]. Providing them efficiently in software is a
difficult task, and there seem to be numerous design parameters and approaches
in the literature [5,6,7,8,9,10,11]. as well as requirements to combine well with
hardware transactions once those become available [14,10].

1.2 Lock-Based Software Transactional Memory

STM design has come a long way since the first STM algorithm by Shavit and
Touitou [12], which provided a non-blocking implementation of static transac-
tions (see [5,6,7,8,15,9,10,11,12,13]). A recent paper by Ennals [5] suggested that
on modern operating systems deadlock prevention is the only compelling reason
for making transactions non-blocking, and that there is no reason to provide
it for transactions at the user level. We second this claim, noting that mecha-
nisms already exist whereby threads might yield their quanta to other threads
and that Solaris’ schedctl allows threads to transiently defer preemption while
holding locks. Ennals [5] proposed an all-software lock-based implementation

1 A broad survey of prior art can be found in [6,15,16].
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of software transactional memory using the object-based approach of [17]. His
idea was to run through the transaction possibly operating on an inconsistent
memory state, acquiring write locks as locations to be written are encountered,
writing the new values in place and having pointers to an undo set that is not
shared with other threads. The use of locks eliminates the need for indirection
and shared transaction records as in the non-blocking STMs, it still requires
however a closed memory system. Deadlocks and livelocks are dealt with using
timeouts and the ability of transactions to request other transactions to abort.

Another recent paper by Saha et al. [11], uses a version of Ennals’ lock-
based algorithm within a run-time system. The scheme described by Saha et al.
acquires locks as they are encountered, but also keeps shared undo sets to allow
transactions to actively abort others.

A workshop presentation by two of the authors [18] shows that lock-based
STMs tend to outperform non-blocking ones due to simpler algorithms that
result in lower overheads. However, two limitations remain, limitations that must
be overcome if STMs are to be commercially deployed:

Closed Memory Systems. Memory used transactionally must be recyclable
to be used non-transactionally and vice versa. This is relatively easy in
garbage collected languages, but must also be supported in languages like C
with standard malloc() and free() operations. Unfortunately, all non-blocking
STM designs require closed memory systems, and the lock-based STMs [5,11]
either use closed systems or require specialized malloc() and free() opera-
tions.

Specialized Managed Runtime Environments. Current efficient STMs
[5,11] require special environments capable of containing irregular effects in
order to avoid unsafe behavior resulting from their operating on inconsistent
states.

The TL2 algorithm presented in this paper is the first STM that overcomes
both of these limitations: it works with an open memory system, essentially with
any type of malloc() and free(), and it runs user code only on consistent states,
eliminating the need for specialized managed runtime environments2.

1.3 Vulnerabilities of STMs

Let us explain the above vulnerabilities in more detail. Current efficient STM
implementations [18,17,5,11] require closed memory systems as well as managed
runtime environments capable of containing irregular effects. These closed sys-
tems and managed environments are necessary for efficient execution. Within
these environments, they allow the execution of “zombies”: transactions that
have observed an inconsistent read-set but have yet to abort. The reliance on
an accumulated read-set that is not a valid snapshot [19] of the shared memory
locations accessed can cause unexpected behavior such as infinite loops, illegal
memory accesses, and other run-time misbehavior.
2 The TL algorithm [18], a precursor of TL2, works with an open memory system but

runs on inconsistent states.
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The specialized runtime environment absorbs traps, converting them to trans-
action retries. Handling infinite loops in zombies is usually done by validating
transactions while in progress. Validating the read-set on every transactional
load would guarantee safety, but would also significantly impact performance.
Another option is to perform periodic validations, for example, once every num-
ber of transactional loads or when looping in the user code [11]. Ennals [5] at-
tempts to detect infinite loops by having every n-th transactional object “open”
operation validate part of the accumulated read-set. Unfortunately, this pol-
icy admits infinite loops (as it is possible for a transaction to read less than
n inconsistent memory locations and cause the thread to enter an infinite loop
containing no subsequent transactional loads). In general, infinite loop detection
mechanisms require extending the compiler or translator to insert validation
checks into potential loops.

The second issue with existing STM implementations is their need for a closed
memory allocation system. For type-safe garbage collected managed runtime en-
vironments such as that of the Java programming language, the collector assures
that transactionally accessed memory will only be released once no references
remain to the object. However, in C or C++, an object may be freed and depart
the transactional space while concurrently executing threads continue to access
it. The object’s associated lock, if used properly, can offer a way around this
problem, allowing memory to be recycled using standard malloc/free style op-
erations. The recycled locations might still be read by a concurrent transaction,
but will never be written by one.

1.4 Our New Results

This paper introduces the transactional locking II (TL2) algorithm. TL2 over-
comes the drawbacks of all state-of-the-art lock-based algorithms, including our
earlier TL algorithm [18]. The new idea in our new TL2 algorithm is to have,
perhaps counter-intuitively, a global version-clock that is incremented once by
each transaction that writes to memory, and is read by all transactions. We
show how this shared clock can be constructed so that for all but the shortest
transactions, the effects of contention are minimal. We note that the technique
of time-stamping transactions is well known in the database community [20]. A
global-clock based STM is also proposed by Riegel et al. [21]. Our global-clock
based algorithm differs from the database work in that it is tailored to be highly
efficient as required by small STM transactions as opposed to large database
ones. It differs from the “snapshot isolation” algorithm of Riegel et al. as TL2
is lock-based and very simple, while Riegel et al. is non-blocking but costly as it
uses time-stamps to choose between multiple concurrent copies of a transaction
based on their associated execution intervals.

In TL2, all memory locations are augmented with a lock that contains a
version number. Transactions start by reading the global version-clock and val-
idating every location read against this clock. As we prove, this allows us to
guarantee at a very low cost that only consistent memory views are ever read.
Writing transactions need to collect a read-set but read-only ones do not. Once
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read- and write-sets are collected, transactions acquire locks on locations to be
written, increment the global version-clock and attempt to commit by validating
the read-set. Once committed, transactions update the memory locations with
the new global version-clock value and release the associated locks.

We believe TL2 is revolutionary in that it overcomes most of the safety and
performance issues that have plagued high-performance lock-based STM imple-
mentations:

– Unlike all former lock-based STMs it efficiently avoids vulnerabilities related
to reading inconsistent memory states, not to mention the fact that former
lock-based STMs must use compiler assist or manual programmer interven-
tion to perform validity tests in user code to try and avoid as many of these
zombie behaviors as possible. The need to overcome these safety vulnerabili-
ties will be a major factor when going from experimental algorithms to actual
production quality STMs. Moreover, as Saha et al. [11] explain, validation
introduced to limit the effects of these safety issues can have a significant
impact on overall STM performance.

– Unlike any former STM, TL2 allows transactional memory to be recycled into
non-transactional memory and back using malloc and free style operations.
This is done seamlessly and with no added complexity.

– As we show in Section 3, rather encouragingly, concurrent red-black trees
derived in a mechanical fashion from sequential code using the TL2 algo-
rithm and providing the above software engineering benefits, tend to per-
form as well as prior algorithms, exhibiting performance comparable to that
of hand-crafted fine-grained lock-based algorithms. Overall TL2 is an order
of magnitude faster than sequential code made concurrent using a single
lock.

In summary, TL2’s superior performance together with the fact that it com-
bines seamlessly with hardware transactions and with any system’s memory
life-cycle, make it an ideal candidate for multi-language deployment today, long
before hardware transactional support becomes commonly available.

2 Transactional Locking II

The TL2 algorithm we describe here is a global version-clock based variant of
the transactional locking algorithm of Dice and Shavit (TL) [18]. As we will
explain, based on this global versioning approach, and in contrast with prior
local versioning approaches, we are able to eliminate several key safety issues
afflicting other lock-based STM systems and simplify the process of mechanical
code transformation. In addition, the use of global versioning will hopefully
improve the performance of read-only transactions.

Our TL2 algorithm is a two-phase locking scheme that employs commit-time
lock acquisition mode like the TL algorithm, differing from encounter-time al-
gorithms such as those by Ennals [5] and Saha et al. [11].

For each implemented transactional system (i.e. per application or data struc-
ture) we have a shared global version-clock variable. We describe it below using
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an implementation in which the counter is incremented using an increment-and-
fetch implemented with a compare-and-swap (CAS) operation. Alternative im-
plementation exist however that offer improved performance. The global version-
clock will be read and incremented by each writing transaction and will be read
by every read-only transaction.

We associate a special versioned write-lock with every transacted memory
location. In its simplest form, the versioned write-lock is a single word spinlock
that uses a CAS operation to acquire the lock and a store to release it. Since
one only needs a single bit to indicate that the lock is taken, we use the rest
of the lock word to hold a version number. This number is advanced by every
successful lock-release. Unlike the TL algorithm or Ennals [5] and Saha et al.
[11], in TL2 the new value written into each versioned write-lock location will
be a property which will provide us with several performance and correctness
benefits.

To implement a given data structure we allocate a collection of versioned
write-locks. We can use various schemes for associating locks with shared data:
per object (PO), where a lock is assigned per shared object, or per stripe (PS),
where we allocate a separate large array of locks and memory is striped (parti-
tioned) using some hash function to map each transactable location to a stripe.
Other mappings between transactional shared variables and locks are possible.
The PO scheme requires either manual or compiler-assisted automatic inser-
tion of lock fields whereas PS can be used with unmodified data structures. PO
might be implemented, for instance, by leveraging the header words of objects
in the Java programming language [22,23]. A single PS stripe-lock array may be
shared and used for different TL2 data structures within a single address-space.
For instance an application with two distinct TL2 red-black trees and three TL2
hash-tables could use a single PS array for all TL2 locks. As our default mapping
we chose an array of 220 entries of 32-bit lock words with the mapping function
masking the variable address with “0x3FFFFC” and then adding in the base
address of the lock array to derive the lock address.

In the following we describe the PS version of the TL2 algorithm although
most of the details carry through verbatim for PO as well. We maintain thread lo-
cal read- and write-sets as linked lists. Each read-set entries contains the address
of the lock that “covers” the variable being read, and unlike former algorithms,
does not need to contain the observed version number of the lock. The write-set
entries contain the address of the variable, the value to be written to the vari-
able, and the address of its associated lock. In many cases the lock and location
address are related and so we need to keep only one of them in the read-set. The
write-set is kept in chronological order to avoid write-after-write hazards.

2.1 The Basic TL2 Algorithm

We now describe how TL2 executes a sequential code fragment that was placed
within a TL2 transaction. As we explain, TL2 does not require traps or the in-
sertion of validation tests within user code, and in this mode does not require



200 D. Dice, O. Shalev, and N. Shavit

type-stable garbage collection, working seamlessly with the memory life-cycle of
languages like C and C++.

Write Transactions. The following sequence of operations is performed by a
writing transaction, one that performs writes to the shared memory. We will
assume that a transaction is a writing transaction. If it is a read-only transac-
tion this can be denoted by the programmer, determined at compile time or
heuristically at runtime.

1. Sample global version-clock: Load the current value of the global version
clock and store it in a thread local variable called the read-version number
(rv). This value is later used for detection of recent changes to data fields
by comparing it to the version fields of their versioned write-locks.

2. Run through a speculative execution: Execute the transaction code
(load and store instructions are mechanically augmented and replaced so
that speculative execution does not change the shared memory’s state, hence
the term “speculative”.) Locally maintain a read-set of addresses loaded and
a write-set address/value pairs stored. This logging functionality is imple-
mented by augmenting loads with instructions that record the read address
and replacing stores with code recording the address and value to-be-written.
The transactional load first checks (using a Bloom filter [24]) to see if the
load address already appears in the write-set. If so, the transactional load
returns the last value written to the address. This provides the illusion of
processor consistency and avoids read-after-write hazards.
A load instruction sampling the associated lock is inserted before each orig-
inal load, which is then followed by post-validation code checking that the
location’s versioned write-lock is free and has not changed. Additionally, we
make sure that the lock’s version field is ≤ rv and the lock bit is clear. If it
is greater than rv it suggests that the memory location has been modified
after the current thread performed step 1, and the transaction is aborted.

3. Lock the write-set: Acquire the locks in any convenient order using boun-
ded spinning to avoid indefinite deadlock. In case not all of these locks are
successfully acquired, the transaction fails.

4. Increment global version-clock: Upon successful completion of lock ac-
quisition of all locks in the write-set perform an increment-and-fetch (using
a CAS operation for example) of the global version-clock recording the re-
turned value in a local write-version number variable wv.

5. Validate the read-set: validate for each location in the read-set that the
version number associated with the versioned-write-lock is ≤ rv. We also
verify that these memory locations have not been locked by other threads.
In case the validation fails, the transaction is aborted. By re-validating the
read-set, we guarantee that its memory locations have not been modified
while steps 3 and 4 were being executed. In the special case where rv + 1 =
wv it is not necessary to validate the read-set, as it is guaranteed that no
concurrently executing transaction could have modified it.
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6. Commit and release the locks: For each location in the write-set, store
to the location the new value from the write-set and release the locations
lock by setting the version value to the write-version wv and clearing the
write-lock bit (this is done using a simple store).

A few things to note. The write-locks have been held for a brief time when
attempting to commit the transaction. This helps improve performance under
high contention. The Bloom filter allows us to determine if a value is not in the
write-set and need not be searched for by reading the single filter word. Though
locks could have been acquired in ascending address order to avoid deadlock, we
found that sorting the addresses in the write-set was not worth the effort.

Low-Cost Read-Only Transactions. One of the goals of the proposed metho-
dology’s design is an efficient execution of read-only transactions, as they domi-
nate usage patterns in many applications. To execute a read-only transaction:

1. Sample the global version-clock: Load the current value of the global
version-clock and store it in a local variable called read-version (rv).

2. Run through a speculative execution: Execute the transaction code.
Each load instruction is post-validated by checking that the location’s ver-
sioned write-lock is free and making sure that the lock’s version field is ≤
rv. If it is greater than rv the transaction is aborted, otherwise commits.

As can be seen, the read-only implementation is highly efficient because it
does not construct or validate a read-set. Detection of read-only behavior can
be done at the level of of each specific transaction site (e.g., method or atomic
block). This can be done at compile time or by simply running all methods first
as read-only, and upon detecting the first transactional write, abort and set a
flag to indicate that this method should henceforth be executed in write mode.

2.2 A Low Contention Global Version-Clock Implementation

There are various ways in which one could implement the global version-clock
used in the algorithm. The key difficulty with the global clock implementation
is that it may introduce increased contention and costly cache coherent sharing.
One approach to reducing this overhead is based on splitting the global version-
clock variable so it includes a version number and a thread id. Based on this
split, a thread will not need to change the version number if it is different than
the version number it used when it last wrote. In such a case all it will need to do
is write its own version number in any given memory location. This can lead to
an overall reduction by a factor of n in the number of version clock increments.

1. Each version number will include the thread id of the thread that last mod-
ified it.

2. Each thread, when performing the load/CAS to increment the global version-
clock, checks after the load to see if the global version-clock differs from
the thread’s previous wv (note that if it fails on the CAS and retries the
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load/CAS then it knows the number was changed). If it differs, then the
thread does not perform the CAS, and writes the version number it loaded
and its id into all locations it modifies. If the global version number has not
changed, the thread must CAS a new global version number greater by one
and its id into the global version and use this in each location.

3. To read, a thread loads the global version-clock, and any location with a
version number > rv or = rv and having an id different than that of the
transaction who last changed the global version will cause a transaction
failure.

This has the potential to cut the number of CAS operations on the global
version-clock by a linear factor. It does however introduce the possibility of “false
positive” failures. In the simple global version-clock which is always incremented,
a read of some location that saw, say, value v + n, would not fail on things
less than v + n, but with the new scheme, it could be that threads 1..n-1 all
perform non-modifying increments by changing only the id part of a version-
clock, leaving the value unchanged at v, and the reader also reads v for the
version-clock (instead of v + n as he would have in the regular scheme). It can
thus fail on account of each of the writes even though in the regular scheme it
would have seen most of them with values v...v + n− 1.

2.3 Mixed Transactional and Non-transactional Memory
Management

The current implementation of TL2 views memory as being clearly divided into
transactional and non-transactional (heap) space where mixed-mode transac-
tional and non-transactional accesses are proscribed. As long as a memory lo-
cation can be accessed by transactional load or store operations it must not be
accessible to non-transactional load and store operations and vice versa. We do
however wish to allow memory recycled from one space to be reusable in the
other. For type-safe garbage collected managed runtime environments such as
that of the Java programming language, any of the TL2 lock-mapping policies
(PS or PO) provide this property as the GC assures that memory will only be
released once no references remain to an object. However, in languages such as C
or C++ that provide the programmer with explicit memory management opera-
tions such as malloc and free, we must take care never to free objects while they
are accessible. The pitfalls of finding a solution for such languages are explained
in detail in [18].

There is a simple solution for the per-stripe (PS) variation of TL2 (and in
the the earlier TL [18] scheme) that works with any malloc/free or similar style
pair of operations. In the transactional space, a thread executing a transaction
can only reach an object by following a sequence of references that are included
in the transaction’s read-set. By validating the transaction before writing the
locations we can make sure that the read set is consistent, guaranteeing that the
object is accessible and has not been reclaimed. Transacted memory locations
are modified after the transaction is validated and before their associated locks
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are released. This leaves a short period in which the objects in the transaction’s
write-set must not be freed. To prevent objects from being freed in that period,
threads let objects quiesce before freeing them. By quiescing we mean letting
any activity on the transactional locations complete by making sure that all
locks on an object’s associated memory locations are released by their owners
before. Once an object is quiesced it can be freed. This scheme works because
any transaction that may acquire the lock and reach the disconnected location
will fail its read-set validation.

Unfortunately, we have not found an efficient scheme for using the PO mode
of TL2 in C or C++ because locks reside inside the object header, and the act
of acquiring a lock cannot guaranteed to take place while the object is alive. As
can be seen in the performance section, on the benchmarks/machine we tested
there is a penalty, though not an unbearable one, for using PS mode instead of
PO.

In STMs that use encounter-time lock acquisition and undo-logs [5,11] it is
significantly harder to protect objects from being modified after they are re-
claimed, as memory locations are modified one at a time, replacing old values
with the new values written by the transaction. Even with quiescing, to protect
from illegal memory modifications, one would have to repeatedly validate the
entire transaction before updating each location in the write-set. This repeated
validation is inefficient in its simplest form and complex (if at all possible) if one
attempts to use the compiler to eliminate unnecessary validations.

2.4 Mechanical Transformation of Sequential Code

As we discussed earlier, the algorithm we describe can be added to code in
a mechanical fashion, that is, without understanding anything about how the
code works or what the program itself does. In our benchmarks, we performed
the transformation by hand. We do however believe that it may be feasible to
automate this process and allow a compiler to perform the transformation given
a few rather simple limitations on the code structure within a transaction.

We note that hand-crafted data structures can always have an advantage
over TL2, as TL2 has no way of knowing that prior loads executed within a
transaction might no longer have any bearing on results produced by transaction.

2.5 Software-Hardware Interoperability

Though we have described TL2 as a software based scheme, it can be made
inter-operable with HTM systems. On a machine supporting dynamic hardware
transactions, transactions need only verify for each location read or written that
the associated versioned write-lock is free. There is no need for the hardware
transaction to store an intermediate locked state into the lock word(s). For every
write they also need to update the version number of the associated lock upon
completion. This suffices to provide interoperability between hardware and soft-
ware transactions. Any software read will detect concurrent modifications of
locations by a hardware writes because the version number of the associated
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lock will have changed. Any hardware transaction will fail if a concurrent soft-
ware transaction is holding the lock to write. Software transactions attempting
to write will also fail in acquiring a lock on a location since lock acquisition is
done using an atomic hardware synchronization operation (such as CAS or a
single location transaction) which will fail if the version number of the location
was modified by the hardware transaction.

3 Empirical Performance Evaluation

We present here a set of microbenchmarks that have become standard in the
community [25], comparing a sequential red-black tree made concurrent using
various algorithms representing state-of-the-art non-blocking [6] and lock-based
[5,18] STMs. For lack of space we can only present the red-black tree data struc-
ture and only four performance graphs.

The sequential red-black tree made concurrent using our transactional locking
algorithm was derived from the java.util.TreeMap implementation found in
the Java programming language JDK 6.0. That implementation was written by
Doug Lea and Josh Bloch. In turn, parts of the Java TreeMap were derived
from the Cormen et al. [26]. We would have preferred to use the exact Fraser-
Harris red-black tree [6] but that code was written to their specific transactional
interface and could not readily be converted to a simple form.

The sequential red-black tree implementation exposes a key-value pair inter-
face of put, delete, and get operations. The put operation installs a key-value
pair. If the key is not present in the data structure put will insert a new el-
ement describing the key-value pair. If the key is already present in the data
structure put will simply update the value associated with the existing key. The
get operation queries the value for a given key, returning an indication if the
key was present in the data structure. Finally, delete removes a key from the
data structure, returning an indication if the key was found to be present in the
data structure. The benchmark harness calls put, get and delete to operate on
the underlying data structure. The harness allows for the proportion of put, get
and delete operations to be varied by way of command line arguments, as well
as the number of threads, trial duration, initial number of key-value pairs to be
installed in the data structure, and the key-range. The key range describes the
maximum possible size (capacity) of the data structure.

For our experiments we used a 16-processor Sun FireTM V890 which is a
cache coherent multiprocessor with 1.35Ghz UltraSPARC-IV R© processors run-
ning SolarisTM 10. As claimed in the introduction, modern operating systems
handle locking well, even when the number of threads is larger than the number
of CPUs. In our benchmarks, our of STMs used the Solaris schedctl mecha-
nism to allow threads to request short-term preemption deferral by storing to a
thread-specific location which is read by the kernel-level scheduler. Preemption
deferral is advisory - the kernel will try to avoid preempting a thread that has
requested deferral. We note that unfortunately we could not introduce the use
of schedctl-based preemption deferral into the hand crafted lock-based hanke
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code, the lock-based stm ennals code described below, or stm fraser. This af-
fected their relative performance beyond 16 threads but not in the range below
16 threads.

Our benchmarked algorithms included:

Mutex. We used the Solaris POSIX threads library mutex as a coarse-grained
locking mechanism.

stm fraser. This is the state-of-the-art non-blocking STM of Harris and Fraser
[6]. We use the name originally given to the program by its authors. It
has a special record per object with a pointer to a transaction record. The
transformation of sequential to transactional code is not mechanical: the
programmer specifies when objects are transactionally opened and closed to
improve performance.

stm ennals. This is the lock-based encounter-time object-based STM algo-
rithm of Ennals taken from [5] and provided in LibLTX [6]. Note that Li-
bLTX includes the original Fraser and Harris lockfree-lib package. It uses a
lock per object and a non-mechanical object-based interface of [6]. Though
we did not have access to code for the Saha et al. algorithm [11], we believe
the Ennals algorithm to be a good representative this class of algorithms,
with the possible benefit that the Ennals structures were written using the
non-mechanical object-based interface of [6] and because unlike Saha et al.,
Ennals write-set is not shared among threads.

TL/PO. A version of our algorithm [18] which does not use a global version
clock, instead it collects read and write-sets and validates the read-set after
acquiring the locks on the memory locations. Unlike TL2, it thus requires a
safe running environment. We bring here the per-object locking variation of
the TL algorithm.

hanke. This is the hand-crafted lock-based concurrent relaxed red-black tree
implementation of Hanke [27] as coded by Fraser [6]. The idea of relaxed
balancing is to uncouple the re-balancing from the updating in order to
speed up the update operations and to allow a high degree of concurrency.

TL2. Our new transactional locking algorithm. We use the notation TL2/PO
and TL2/PS to denote the per-object and per-stripe variations. The PO
variation consistently performed better than PS, but PS is compatible with
open memory systems.

In Figure 1 we present four red-black tree benchmarks performed using two
different key ranges and two set operation distributions. The key range of
[100, 200] generates a small size tree while the range [10000, 20000] creates a
larger tree, imposing larger transaction size for the set operations. The different
operation distributions represent two type of workloads, one dominated by reads
(5% puts, 5% deletes, and 90% gets) and the other (30% puts, 30% deletes, and
40% gets) dominated by writes.

In all four graphs, all algorithms scale quite well to 16 processors, with the
exception of the mutual exclusion based one. Ennals’s algorithm performs badly
on the contended write-dominated benchmark, apparently suffering from fre-
quent transaction collisions, which are more likely to occur in encounter-time
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Fig. 1. Throughput of Red-Black Tree with 5% puts and 5% deletes and 30% puts,
30% deletes

locking based solutions. Beyond 16 threads, the Hanke and Ennals algorithms
deteriorate because we could not introduce the schedctl mechanism to allow
threads to request short-term preemption deferral. It is interesting to note that
the Fraser-Harris STM continues to perform well beyond 16 threads even without
this mechanism because it is non-blocking. As expected, object based algorithms
(PO) do better than stripe-based (PS) ones because of the improved locality in
accessing the locks and the data.

The performance of all the STM implementations usually differs by a constant
factor, most of which we associate with the overheads of the algorithmic mecha-
nisms employed (as seen in the single thread performance). The hand-crafted al-
gorithm of Hanke provides the highest throughput in most cases because its single
thread performance (a measure of overhead) is superior to all STM algorithms.
On the smaller data structures TL/PO (or TL/PS) performs better than TL2/PO
(respectively TL2/PS) because of lower overheads,part of which can be associated
with invalidation traffic caused by updates of the version clock (this is not traffic
caused by CAS operations on the shared location. It is due to the fact that the loca-
tion is being updated). This is reversed and TL2 becomes superior when the data
structure is large because the read-set is larger and read-only transactions incur
less overhead in TL2. The TL and TL2 algorithms are in most cases superior to
Ennals’s STM and Fraser and Harris’s STM. In all benchmarks they are an order
of magnitude faster than the single lock Mutex implementation.
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4 Conclusion

The TL2 algorithm presented in this paper provides a safe and easy to integrate
STM implementation with reasonable performance, providing a programming
environment similar to that attained using global locks, but with a ten-fold im-
provement in performance. TL2 will easily combine with hardware transactional
mechanisms once these become available. It provides a strong indication that we
should continue to devise lock-based STMs.

There is however still much work to be done to improve TL2’s performance.
A lot of these improvements may require hardware support, for example, in
implementing the global version clock and in speeding up the collection of the
read-set. The full TL2 code will be publicly available shortly.
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Abstract. What characteristics of an object determine its consensus
number? Here we analyze how the consensus power of various objects
changes without changing their functionality, but by placing certain re-
strictions on the object usage. For example it is shown that the consensus
number of either a bounded-use queue or stack is 3 while the consensus
number of the long-lived bounded-size and unbounded-size versions of
either is 2. Similarly we show that the consensus number of restricted
versions of Fetch&Add, Swap and Set are infinite (n) while for the
unrestricted counterparts it is 2. This paper thus underlines the fact that
the consensus number of an object reflects the amount of coordination
required in the object implementation and not by its capacity. That is,
the more corners, broken edges, and other hard limitations placed on an
object, the higher its consensus number tends to be.

Keywords: Consensus hierarchy, Common2, Wait-free, Queues, Stacks,
Bounded-use, Bounded-size, Long-lived, Fetch&Add, Swap, Set.

1 Introduction

As defined by Herlihy [2], an object has consensus number k if any number
of copies of this object and of read/write registers can be used to implement
a wait-free k-consensus protocol, but cannot be used to implement a wait-free
k + 1-consensus protocol (in a shared memory multi processor system). Thus
objects with higher consensus number are not deterministically implementable
from objects with lower consensus numbers.

Most of the objects analyzed in [2] are unbounded in their size and are un-
restricted in the number of operations that may be applied on them. While in
[10,11] it has been shown that the more values a single compare-and-swap object
can hold, the higher its consensus number, herein we analyze what was believed
to be the case, that for most objects with consensus number 2, their consensus
number increases when various restrictions are placed on the object usage, i.e.,
on the number of operations of a certain type that may be successfully applied
on the object, or on its size.
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We use the term f -bounded-use to describe an object that limits the number of
times (f times) a certain operation from its set of operations may be successfully
applied (further invocations of that operation respond with a fail indication, or
with no indication). We use the term bounded-size to describe an object whose
space (memory) is finite. Mostly we consider restricting operations that change
the object state.

While it is known that placing restrictions on shared memory objects is likely
to increase their consensus number, here we systematically and thoroughly ana-
lyze the effect of restricting the number of operations that can be applied to an
object. Specifically we show that when restricting the total number of success-
ful enqueue operations on a queue, its consensus number increases from 2 to 3.
Similarly, bounding the total number of successful push operations on a stack,
its consensus number increases from 2 to 3. These results are surprising when
compared to the following; When limiting the number of successful Fetch&Add
(Swap) operations on a F&A (Swap) object that supports read operations, its
consensus number increases to n.

In addition we prove that bounded-sizeSet ’s consensus number is n, whereas
in [2] Herlihy shows that unbounded size set ’s consensus number is 2; Most of
the proofs in this paper use the standard valency arguments as in [2,7].

In the next section we present the definitions and model used inhere. Related
work is presented in Sect. 3. In Sect. 4 we prove that f-bounded-useQ ’s consen-
sus number is exactly 3 then we claim (proof eliminated) that bounded-sizeQ ’s
consensus number is 2. The proofs of the same results for f-bounded-useStack
and bounded-sizeStack are similar to those of queue and are eliminated from this
paper. In Sect. 5 we show that both f-bounded-useF&A and f-bounded-useSwap
have consensus number n. In Sect. 6 we discuss the consensus gap that might
exist between bounded-size and unbounded objects; we use bounded-sizeSet as
an example. In Sect.7 we show an implementation of an f-bounded-useQ using
1-bounded-useSwap registers. A concluding discussion is given in Sect. 8.

2 Definitions and Model

Our model follows [2]. The system consists of a number of asynchronous se-
quential threads of execution called processes, which communicate only by using
shared objects. Each object is manipulated by a set of operation types. All ob-
jects are wait-free and linearizable (as defined in [5,6]). Our proof techniques are
mostly standard FLP arguments as in [2,7].

2.1 Bounded-Use Objects

Definition 1. An f-bounded-use object is an object that one of its operation
types, Op, is restricted, that is only the first f executions of Op are com-
pleted successfully. Once the f th execution of Op completed, the object becomes
exhausted, and any further application of Op on the object fails (by either re-
turning a fail signal, or not, both variations are studied). Operations other than
Op execute correctly regardless to whether the object is exhausted or not.
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Definition 2. An f-bounded-useQ, is a queue in which only the first f en-
queue operations execute successfully. If the f-bounded-useQ is not empty, a de-
queue operation returns the oldest element residing in the queue and removes it
from the queue; otherwise it returns empty.

Definition 3. An f-bounded-useStack, is a stack in which only the first f
push operations execute successfully. If the f-bounded-useStack is not empty, a
pop operation returns the youngest element residing in the stack and removes it
from the stack; otherwise it returns empty.

Definition 4. An f-bounded-useF&A, is a fetch&add object in which only the
first f fetch&add operations successfully execute. In any state, a read operation
returns the f-bounded-useF&A’s value.

Definition 5. An f-bounded-useSwap, is a swap object in which only the first
f swap operations successfully execute. In any state, a read operation returns the
f-bounded-useSwap’s value.

An object with a bounded space (memory) is a bounded-size object. Note
that in many bounded-size objects, after enough operations that add data to
such an object, the operations may return failure. Note that some bounded-use
objects are also bounded-size. For example an f-bounded-useQ is bounded to f
elements.

3 Related Work

In [10,11] it is shown that when restricting the range of values a compare&swap
register may have, its consensus number is decreased; moreover it is conjectured
that their result might be extended to any read-modify-write object. The different
values a register may hold is related to its size, thus the register size might
change the consensus number of the register. The result presented in [10,11]
impacts strong synchronization objects such as read-modify-write objects that
have infinite consensus number (when their size is unbounded), but this result
does not apply to lower consensus number objects. Restricting the size of objects
such as Swap, F&A and Test&Set , does not impact their consensus number,
which is 2. In contrast the results presented in this paper apply mostly to such
objects, whose consensus number is 2.

In [12] Plotkin presented the Sticky-bit, which is essentially a read/write
atomic bit in which only one write is allowed. In Plotkin’s definition the Sticky-
bit returns true the first time its value is updated (using the JAM operation),
or when if the JAM operation does not change its value, otherwise the opera-
tion fails. The Sticky-bit supports a read operation. The consensus number of
the sticky-bit is 2, which is greater than an ordinary read/write bit’s consensus
number. The consensus number of any sticky n-value read/write register is n.

The question whether the queue object is in common2 class of objects as
defined in [1], was addressed by some researches over the years but remains
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open. Li [3] had shown an implementation for a wait-free linearizable queue
where the number of dequeuers was limited to be 2. The implementation was
based on an helping mechanism. David [4] gave an implementation using a single
enqueuer with unbounded number of dequeuers. Both Li and David as well as
[9] conjecture that wait-free linearizable queue is not in common2.

Jayanti and Toueg in [8] presented the f − bounded peek queue that supports
up to f enqueue operations and no dequeue operation. The f + 1th enqueue
operation in [8] fails and the queue becomes faulty, which means any operation
of any kind fails. This specification although vastly different than the f-bounded-
useQ has some resemblance to it. In [8] it is shown that f − bounded queue can
solve consensus between at most f processes. While the consensus number of a
long-lived version of a queue that supports a peek operation is n.

4 Bounded-Use Queue’s and Stack’s Consensus Numbers

Theorem 6. f-bounded-useQ’s consensus number is at least 3.

Proof. Let p1, p2, p3 be three processes. The protocol given in algorithm 1.
solves three process consensus.

Algorithm 1. Decide method of process i (3-process consensus using f-bounded-useQ)
shared objects
Q : f-bounded-useQ. Initialized1 with f-1⊥ elements
R : 3 swmr registers array. R[i] keeps the input of process i
loser[1− 3] : swmr registers initialized to false

local variables
winner : register initialized to i

decidei(v : inputvalue)
d1: R[i] = v;
d2: if (Q.enqueue(i) == fail)
d3: loser[i]=true;
d4: do
d5: winner = Q.Dequeue();
d6: until ((winner == empty) OR (winner 
= ⊥));
d7: if (winner == empty)
d8: winner = (process whose loser[·] == false);
d7e: fi;
d2e: fi;
d9: return R[winner];
end;
1. initialization is done using f-1 enqueue operations

Wait Freedom. The Q object is wait-free, thus all operations applied on Q
are wait-free. There is a single loop in the algorithm in which the only operation
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applied on Q is dequeue. There is at most one successful enqueue applied on Q,
thus it is guaranteed that the loop in d4 ends within a finite number of iterations.

Validity. Let p1, p2, p3 be three processes executing the protocol. Clearly exactly
one process successfully enqueues and after this enqueue the queue is exhausted.
Without loss of generality let p1 succeeds in enqueueing, thus p1 is the winner. A
process that fails to enqueue declares itself loser and finds out who the winner is
by repeatedly dequeuing from the queue until either getting empty or dequeuing
a non ⊥ value. Clearly only one of the two losers dequeues the winner id in line
d5. Moreover, at the time that the winner id has been dequeued the dequeuing
process has already declared itself loser. Thus when a process fails to dequeue a
non ⊥ value, it knows who the winner is by watching which other process has
declared itself loser. ��
Corollary 7. f-bounded-useQ is not in common2.

While algorithm 1. uses an initialized f-bounded-useQ , a generalization of this
algorithm results in an algorithm in which no initialization of the f-bounded-
useQ is required. The following algorithm was given by Israel Nir from Tel-Aviv
Univ.: Every process enqueues its id until it fails. Then it records the number
of successful enqueues it made to a register that is initialized to −1. Next the
process dequeues until it dequeues empty. The lowest process id that was ever
enqueued is the elected winner. To determine the winner the following procedure
is used; either a process dequeues all f elements (f is known), and can easily
deduce the winner, or at least one other process has successfully dequeued. Such
other process announced the number of times it successfully enqueued before its
first dequeue. Thus a process that dequeued empty knows the number of elements
it enqueued (if any), and the number of elements another process enqueued, from
which it deduces the number of elements the third process has enqueued; and
thus it can choose the winner.

Theorem 8. f-bounded-useQ’s consensus number is exactly 3.

Proof. In Sect. A.1 we prove that f-bounded-useQ can not solve 4-process con-
sensus. Along with theorem 6 the proof follows. ��
Theorem 9. bounded-sizeQ’s consensus number is at least 2.

Proof. Follows from [2]. ��
Theorem 10. bounded-sizeQ’s consensus number is exactly 2.

Proof follows standard arguments as in [2], thus omitted.

A similar 3-process consensus protocol exists for f-bounded-useStack . With minor
changes the above theorems are proved for f-bounded-useStack ’s and bounded-
sizeStack . We summarize here the theorems.

Theorem 11. f-bounded-useStack’s consensus number is exactly 3.

Theorem 12. bounded-sizeStack’s consensus number is exactly 2.
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5 f -Bounded-Use F&A’s & Swap’s Consensus Number

5.1 f-bounded-useF&A

Theorem 13. f-bounded-useF&A’s consensus number is n.

Binary consensus among n processes is easy using one or two instances of f-
bounded-useF&A. For example if the f-bounded-useF&A object supports failure
notifications, we let each process fetch&add its own input (0 or 1) until it fails,
then it reads the f-bounded-useF&A’s value; if the value is 0 it decides 0, otherwise
it decides 1. This algorithm can be twisted to work also if f is unknown, and
requires no special initialization, as follows; Use two fetch&add registers, so that
every process fetch&add its input to the first register then fetch&add 1 to the
second, the process repeats updating the two registers until the value of the
second fetch&add register stops changing, at which point the the fetch&add
register is exhausted, and hence also the first fetch&add register is exhausted.
The winner is then decided as above.

We present here an n-process n-value consensus protocol that does not use
the protocols we described above. The algorithm (Algorithm 2.) demonstrates
the essence of the bounded-use property of the f-bounded-useF&A object.

Algorithm 2. Decide method of process i (n-process consensus using uninitialized

f-bounded-useF&A)
shared objects
F : f-bounded-useF&A. Initialized to 0
R : n swmr registers array. R[i] keeps the input of process i

local variables
winner : register

decidei(v : inputvalue)
d1: R[i] = v;
d2: do f times
d3: F.Fetch&Add((f + 1)i);
d2e: od;
d4: winner = process with minimal id

in coefficients of F.Read();
d5: return R[winner];
end;

Proof. (of Theorem 13) Let p1, p2...pn be n processes. Algorithm 2. solves n-
process consensus.

Wait Freedom. Follows immediately from the fact that f is finite and the loop
is executed at most f times.
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Validity. In algorithm 2. there is no special initialization using fetch&add opera-
tions on the f-bounded-useF&A. All processes share an instance of an f-bounded-
useF&A, named F . Every process applies f fetch&add ((f + 1)i) operations on
F , followed by a read of F . The fact that we add different powers of (f + 1) (we
assume f > 0 thus f + 1 > 1) by different processes, assures us that there is
exactly one combination of total of f F&A operations, that leads to each possi-
ble value of F . That is, after a total of f fetch&add operations, F is exhausted,
and F =

∑n
i=1 ai(f +1)i, ai denoting the number of times process i successfully

increments F . Notice that
∑n

i=1 ai = f , thus there is a single combination of ai

values that results in the value of F .1 Since F is exhausted all processes read the
same value of F once each of them performed f fetch&add operations. Every
process calculates the coefficients (ai) combination and decides the process with
the lowest id ever succeeded incrementing F as the winner. Notice that the com-
putation of F ′s coefficients is finite since finite domain of process ids is assumed
(if this was not the case we can always create pseudo-ids using simple F&A
register that provides each process an id to be used in the protocol instead of its
original id). ��

f-bounded-useF&A, Unknown f and no Failure Response. Algorithm 2.
assumes f is known. In case f is unknown we can use a single instance of shared
f-bounded-useF&A (call it Fc, initialized to 0). Before performing the loop in d2,
every process repeatedly performs fetch&add on Fc until it notices no change in
Fc’s value (Fc is exhausted). Then it reads Fc’s value and use it in d2 and d3 (to
represent f).

Claim. If the f-bounded-useF&A returns normally when exhausted (i.e. the reg-
ister’s value is returned instead of failure notification), its consensus number
remains n.

Proof. Algorithm 2. ignores any result value in d3. It is easy to see that when
f is unknown and we use Fc, a process can detect when Fc stops changing by
reading its value prior and after the fetch&add is applied. ��

5.2 f-bounded-useSwap

Protocols and proofs similar to the above are used (not all repeated herein) to
show that f-bounded-useSwap’s consensus number is n. There is no need to know
f in advance in order to perform special initialization prior execution of the pro-
tocol, nor is there a need for the f-bounded-useSwap to return failure notification
to a swap operation when exhausted. Algorithm 3. is an example to an n-process
consensus protocol using uninitialized f-bounded-useSwap registers that return
failure notifications in case swap is applied on when exhausted. Theorem 14
follows.
1 For any i, j such that j > i, for pi to add the same value to F as pj , pi must perform

at at least f fetch&add operations, but then F becomes exhausted.
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Theorem 14. f-bounded-useSwap’s consensus number is n.

Algorithm 3. Decide method of process i (n-process consensus using uninitialized

f-bounded-useSwap)
shared objects
Swp : f-bounded-useSwap. Initialized to 0
R : n swmr registers array. R[i] keeps the input of process i

local variables
winner : register

decidei(v : inputvalue)
d1: R[i] = v;
d2: while(Swp.Swap(i)
=fail);
d3: winner = Swp.Read();
d4: return R[winner];
end;

6 bounded-sizeSet

In the previous sections we claimed that there might be a difference between a
bounded-size and unbounded versions of the same object. The bounded-sizeSet
is an example for such a case. The unbounded set’s consensus number is 2
as claimed in [2]; we show here that bounded-sizeSet ’s consensus number
is n.

A set is a data structure to which one can execute either: insert, delete, find,
min, member. Other operations that involve more than one set are: union, merge,
intersection, equal, assign, etc. all can be found in the literature.

The basic set operations however, are: insert, delete and find. We use only this
subset of operations to show the consensus number of a bounded-sizeSet . Notice
that in a bounded-sizeSet an insert might fail due to the fact that the set is fully
occupied.

Theorem 15. bounded-sizeSet’s consensus number is n.

Proof. Let p1, p2...pn be n processes. The protocol given in algorithm 4. solves n
process consensus. We prove correctness by showing wait-freedom and validity.

Wait Freedom. Follows immediately since the loop iterates over a finite number
of processes, and all object are considered wait free.

Validity. A winner is a process that succeeds on the insert operation(d2). First
observe that the insertions are done by the id of the processes, thus no collisions
of values are possible, and the reason for an insert operation to fail has only
to do with the fact that the size of the set is bounded. Moreover notice that
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Algorithm 4. Decide method of process i (n-process consensus using bounded-sizeSet)
shared objects
S : bounded-sizeSet of size f. Initialized with ⊥1...⊥f−1

R : n swmr registers array. R[i] keeps the input of process i
local variables
winner : register initialized to i

decidei(v : inputvalue)
d1: R[i] = v;
d2: if (S.insert(i) == fail)
d3: for each process p do
d4: if (S.find(p)) then winner = p;
d3e: rof;
d2e: fi;
d6: return R[winner];
end;

S is already initialized2 with f − 1 different elements(⊥1...⊥f−1), hence there
is only one free place left in S. Thus there is exactly one process that might
succeed inserting its id into S. Without loss of generality let this process be p1.
Since p1 succeeds in its insert it returns its own value. Now by negation assume
there is another winner, without loss of generality let it be p2. If p2 is a winner
then p2’s insert succeeds. However notice that there is no use of delete in the
protocol, thus either p1 failed on its insert(leaving the single free place free) or
the set object is incorrect. But neither of these is the case, since we assumed p1’s
insert succeeded, and we assume that the set object is implemented correctly.
Hence only p1 is the winner. It is left to show that other processes return p1’s
value. As it was shown every process other than p1 fails to insert. Without loss of
generality let p2 be such a process. Notice that S contains exactly one process id
(p1’s id), thus once p2 executes the loop in d3− d3e, all find(p) operations where
p 
= p1 fail but for p = p1 the operation succeeds; thus eventually p2 returns
the value of p1. Notice that p1’s id must already be in S, since otherwise the set
object is incorrect (if p′1s id is not in S, then another process must succeed on
its insert). Hence there is exactly one winner. ��

Notice that this result has to do with the fact the we only use a subset of the
bounded-sizeSet operations (insert and find), that imposes a bounded-use set be-

2 Notice that the initialization of the set S can be avoided, simply by causing the value
inserted to the set to be unique among the processes. i.e. every process inserts at most
f distinct values, that are constructed from its id and a local counter (pid1..pidf);
thus all values inserted to the set by all processes are guaranteed to be distinct. A
process fails to insert a value to the set, only when the set is full (and not due to
duplicated values). Once failed to insert, a process goes over all initial values possibly
inserted by the processes(i.e. pid1 for all processes) and chooses the winner to be the
process with the lowest id, that succeeded inserting at least a single value to the set.
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havior; since if no one deletes a value from the set, then the number of insert
operations is in fact limited.

7 f-bounded-useQ’s Implementation Using 1-bounded-useSwap

In this section we show that one can implement an f-bounded-useQ using 1-
bounded-useSwap registers. This result is interesting, since it implies that the
functionality of a queue,3 for any finite number of enqueuers and dequeuers,
is implementable using bounded-use objects whose long-lived counterparts are
members of the common2. This result should not be surprising, since the 1-
bounded-useSwap object has higher consensus number than the f-bounded-useQ ;
nevertheless it implies that the problem of implementing a queue out of common2
members, or proving that such an implementation does not exist, might not rely
only on the core FIFO functionality, even though in [9] it is shown that LIFO
(stack) is in common2.

An implementation of f-bounded-useQ based on Test&Set4 objects and 1-
bounded-useSwap registers, is given in Algorithm 5.. We prove its correctness in
Sect. A.2.

Algorithm 5. f-bounded-useQ ’s implementation
shared objects
s : array of f, ⊥ initialized, 1-bounded-useSwap registers
t : array of f Test&Set registers

local variables
j : loop integer, local for each function

Dequeue() : outputvalue
d1: for j = 0 to f-1 do
d2: if (s[j].Read() 
=⊥)1

d3: if (t[j].Test&Set())2

d4: return s[j].Read();
d3e: fi;
d2i: else
d5: return empty;
d2e: fi;
d1e: rof;
d6: return empty;
end;
1. did someone enqueue to this place

2. did someone return or plan to return

the value in s[j]

Enqueue(v : inputvalue)
e1: for j = 0 to f-1 do
e2: if (s[j].Swap(v)==⊥)1

e3: return true;
e2e: fi;
e1e: rof;
e4: return fail;
end;

1. first to enqueue to this place

3 i.e. enabling removal of elements in the order of their entrance.
4 Interestingly Test&Set are bounded-use by definition.
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8 Concluding Remarks

This paper presents the bounded-use property that when imposed on some ob-
jects with consensus number 2, increases their consensus number. We pointed
out that the consensus number of bounded-size objects might also be higher
than their unbounded counterparts; we relate this result with the bounded-use
property. These observations underline additional properties which impact the
consensus number of objects. Moreover these observations emphasize the fact
that complex object behavior sometimes has higher consensus number, as it is
for the well known relation between Compare&Swap and Swap.

In Sect. 7 we provided a simple implementation of an f-bounded-useQ using
Test&Set and 1-bounded-useSwap registers. The existence of such implementa-
tion should not be surprising. Nevertheless its simplicity and existence prove that
queue’s FIFO behavior, is implementable using swap functionality registers, thus
an impossibility proof for showing that queue is not in common2, might not rely
on the core FIFO functionality, despite of the fact that in [9] it is shown that
LIFO (stack) is in common2.
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A Appendix

A.1 f-bounded-useQ Can Not Solve 4-Process Consensus

In this section we show that the f-bounded-useQ can not solve 4-process consen-
sus. We follow the proof technique used in [2].

Notations. We use s to indicate a critical state as part of a consensus protocol,
s′ or s′i to indicate x-valent states, and s′′ or s′′i indicate y-valent states, x 
= y.
In addition the following notations are used:

– dv
i , d

ep
i , ddc

i - indicate a dequeue operation by process pi that returns either
v or empty or we don’t care what its output is, respectively.

– e(v)ok
i , e(v)fd

i - indicate an enqueue operation by process pi that respectively
either succeeds or fails to enqueue the value v.

Example: Let s be a critical state then s′ = s e(v)fd
1 ddc

2 - indicates that
a state s′ is reached from state s in case operations are done in the following
order: p1 fails to enqueue a value v, then p2 dequeues an element.

The Proof. Let p1, p2, p3, p4 be four processes that execute a binary consensus
protocol. By [2] and [7] for any consensus algorithm there is a bivalent initial
state, from which a critical state s is reachable. Following [2], the pending steps of
all the processes in the critical state s can only be applied on the same f-bounded-
useQ object (otherwise one can easily show that s is not a critical state). By
manipulating the scheduler we bring the system into a critical state s, and we
focus on the case in which the next step by any of the processes is on the same
f-bounded-useQ object. Let Q be the f-bounded-useQ accessed by the pending
operations. Several cases must be considered: whether Q is exhausted or not,
and the different combinations of the pending steps. Let us examine two pending
operations each leads to a different valent state, without loss of generality these
operations are done by processes p1 and p2. The rest is case analysis.

Case 1: The pending operation of both p1 and p2 is a dequeue

Case 2: p1’s pending operation is enqueue, and p2’s pending operation
is dequeue
Both these cases follow standard arguments shown in [2],5 thus are omitted from
this paper.
5 Showing that a third process can not decide different values depending on the order

of execution.
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Case 3: The pending operation of both p1 and p2 is an enqueue
3.a: Q is exhausted. Let s′ = s e(v)fd

1 and s′′ = s e(w)fd
2 each a uni-

valent state with a different decision value. Notice that in both s′ and s′′ the
enqueue has no effect on Q’s state. Let β be a p4 only schedule from either s′

or s′′. Since s′ and s′′ are indistinguishable by p4, the same decision value is
reached by p4 in s′β and s′′β, a contradiction.

3.b: Q is not exhausted. In this case Q might have either one or more free

places at state s. Let s′1 = s e(v)ok
1 and s′′1 = s e(w)ok

2 each a univalent state
with a different decision value. Notice that in case that Q has only one free place
at state s, as soon as the first successful enqueue had taken place by either of the
processes, Q becomes exhausted. However this happens in both s′1 and s′′1 , thus
the exhaustion state of Q does not help either p3 or p4 to distinguish between s′1
and s′′1 . If p3 was to run solo from either s′1 or s′′1 then in order for p3 to be able
to distinguish between s′1 and s′′1 , p3 must eventually perform a dequeue that
returns either v or w. Let ξx

3 be a p3 only schedule from either s′1 or s′′1 , such
that the last step executed by p3 in ξx

3 is a dequeue that results in x (either v
or w). Since s′1 and s′′1 are indistinguishable by p3, it issues the same operations
on the same objects, during the run segments ξv

3 and ξw
3 . We now stop p3 from

executing any other operation on any object. Let s′2 = s′1 ξv
3 and s′′2 = s′′1 ξw

3

each a univalent state with a different decision value. Notice that in both states,
s′2 and s′′2 , Q’s exhaustion state is the same (either exhausted or not) and Q
contains the same elements (if any). Let β be a p4 only schedule from either s′2
or s′′2 . Since s′2 and s′′2 are indistinguishable by p4, the same decision value is
reached by p4 in s′2β and s′′2β, a contradiction.

We have finished the case analysis, and provided a contradiction to the different
valency, hence to the fact that s is a critical state in all cases. ��

A.2 f-bounded-useQ’s Implementation Using 1-bounded-useSwap

Algorithm 5.’s proof of correctness
For the implementation to be correct it has to be wait-free, linearizable and
valid, that is perform as a f-bounded-useQ , i.e., preserving a FIFO order among
at most f successful enqueue operations; each element might be dequeued at
most once. We use the notations from Sect. A.1. In addition we use Op1 → Op2
to denote that Op1 precedes Op2.

Linearizability & Validity. When successful, an enqueue operation is lin-
earized at e2, otherwise it is linearized at e4. The dequeue operation is linearized
at d3 when returning a value, otherwise it is linearized at either d5 or d6. The
following lemmas prove validity and linearizability.

Lemma 16. Algorithm 5. implements a FIFO order.
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Proof. Notice that the place at which a new value is stored is determined ac-
cording to the first 1-bounded-useSwap register the enqueuer succeeds swapping
its value with. Since we use 1-bounded-useSwap registers, it is clear that exactly
one process succeeds to swap to each of s’ registers, thus elements already stored
in a 1-bounded-useSwap are not overridden by later swap operations. The combi-
nation of lemmas 17 and 18 proves that FIFO order is indeed preserved. Proofs
of these lemmas follow immediately from the code, thus omitted. ��

Lemma 17. Elements of non-overlapping enqueue operations are stored in an
incremental order (i.e. first s[0] then s[1] and so on).

Lemma 18. Elements of non-overlapping dequeue operations are removed in a
FIFO order (i.e. first s[0] then s[1] and so on).

Lemma 19. At most f enqueue operations can ever succeed.

Proof. In order for an enqueue executed by a process p to succeed, p has to
succeed in swapping the value into one of s’ 1-bounded-useSwap registers. We
use 1-bounded-useSwap registers that are initialized with ⊥, hence exactly one
process can successfully swap to each of these registers. Since there are only f
such registers, there can be at most f successful enqueues. ��

Lemma 20. An element can be dequeued at most once.

Proof. Assume not. Let b be an element that is dequeued twice once by process p1

and once by process p2, both execute a dequeue operation (operations might be
overlapping). Without loss of generality assume b is stored in s[0]. Notice that db

1

implies that: p1.t[0].T est&Set() = true, but db
2 implies that: p2.t[0].T est&Set()

= true. A contradiction to the Test&Set specification. ��

Lemma 21. A false fail on enqueue scenario does not exist.

Proof. Let p be a process that tries to enqueue a value v and returns fail (thus
the operation is linearized to e4). Notice that p’s search for a storing place is a
brute force search hence in order for it to get to e4 it goes over all f 1-bounded-
useSwap registers in s, and tries to swap them. In case it fails it means that all
are taken, hence the fail result is not false. ��

Lemma 22. A false empty on dequeue scenario does not exist.

Proof. By negation assume there exists a false empty scenario. Let p1 be the
process which dequeues and returns false empty. At the beginning of the dequeue
execution there is at least one element in the queue, assume there are z elements
and that the youngest6 element resides in s[x] (0 ≤ x < f − 1). The dequeue
operation is a brute force search for an element to dequeue. In order for p1 to
return empty, p1 goes over all swap registers including s[x], thus p1 must see
that s[x] is not empty. Next p1 tries to Test&Set t[x]. Since p1 returns empty,

6 Assume that p1 is the slowest process and meanwhile z − 1 elements were dequeued.
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then it failed to Test&Set t[x], however if it failed then some other process, let
it be p2, succeeded (right after p1 started its dequeue otherwise the element is
not considered to be inside the queue in the first place). However if p2 dequeues
the element from s[x] then since s[x] stored the youngest element then the queue
is indeed empty. Thus we are interested in the case in which before p2 removes
the element from s[x] (by successful Test&Set of t[x]), another process, let it be
p3, enqueues a new element, and only then p2 completes its dequeue, thus the
queue is not empty after p2’s dequeue. Notice that the new value is inserted at
s[x+1]. However when p1 reads s[x+1] it must see that it contains a value, and
it tries to Test&Set t[x + 1]. Again if it fails to Test&Set then another process
must have succeeded, and we continue using the previous argument until either
the queue is empty, or until we reach the f th element ever enqueued, meaning
that the queue is exhausted, and no other enqueues could occur, which means
that the queue is indeed empty. ��

Wait Freedom. All operations used by either of the functions are wait free.
The for-loops on both enqueue and dequeue operations are finite. Thus every
invocation of either of these functions is to be ended within a finite number of
steps. Hence the implementation is wait free. ��
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Abstract. While any fault-tolerant asynchronous consensus algorithm
requires two communication steps even in failure-free executions, it is
known that we can construct an algorithm terminating in one step for
some good inputs (e.g. all processes propose a same value). In this pa-
per, we present the necessary and sufficient constraint for the set of
inputs for which we can construct an asynchronous consensus algorithm
terminating in one step. Our investigation is based on the notion of
the condition-based approach: it introduces conditions on input vectors
to specify subsets of all possible input vectors and condition-based al-
gorithms can circumvent some impossibility if the actual input vector
satisfy a particular condition. More interestingly, conditions treated in
this paper are adaptive. That is, we consider hierarchical sequences of
conditions whose k-th condition is the set of input vectors for which the
consensus can be solved in one step if at most k processes crash. The nec-
essary and sufficient constraint we propose in this paper is one for such
condition sequences. In addition, we present an instance of the sufficient
condition sequences. Compared with existing constraints for inputs this
instance is more relaxed.

1 Introduction

The consensus problem is one of fundamental and important problems for design-
ing fault-tolerant distributed systems. In the consensus problem, each process
proposes a value, and all non-faulty processes have to agree on a common value
that is proposed by a process. The uniform consensus, a stronger variant of
the consensus, further requires that faulty processes are disallowed to disagree
(Uniform Agreement). The (uniform) consensus problem has many practical ap-
plications, e.g., atomic broadcast [3,10], shared object [1,11], weak atomic com-
mitment [8] and so on. While it is a very important task to build an efficient
consensus primitive on the system because of such applications, it has no de-
terministic solution in asynchronous systems subject to only a single crash fault
[5]. Thus, to circumvent this impossibility, several approaches, such as eventual
synchrony, unreliable failure detectors, and so on, have been proposed. However,
even using such approach, it is not an easy task to solve the consensus problem
“efficiently”. One of commonly used measurements to evaluate efficiency of algo-
rithms is communication steps, one of which is an execution period where each
pair of processes can concurrently exchange messages at most once. In asynchro-
nous systems with some assumptions to solve the consensus problem, it is proved
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that any fault-tolerant consensus algorithm requires at least two communication
steps for decisions even in the run where no crash fault occurs [13].

To circumvent this two-step lower bound, some papers investigate consensus
algorithms that achieve one-step decision in some good input cases. The first
result of such investigations is published by Brasileiro et al. [2]. On the assump-
tion of the underlying non-one-step consensus primitive, this paper proposes a
simple algorithm that correctly solves the consensus problem for any input and
that especially achieves the one-step decision if all processes propose a same
value. In other results [4][9], the one-step decision scheme is also considered in
the context of efficient combination with other schemes such as randomization
and failure detectors. However, these results leave an interesting and important
question as follows: for what input can the consensus problem be solved in one
step?

In this paper, we address this question based on the notion of the condition-
based approach. The principle of the condition-based approach is to restrict in-
puts so that the generally-unsolvable problem can become solvable. A condition
represents some restriction to inputs. In the case of the consensus problem, it is
defined as a subset of all possible input vectors whose entries correspond to the
proposal of each process. The first result of the condition-based approach clarifies
the conditions for which the uniform consensus can be solved in asynchronous
systems subject to crash faults [14]. More precisely, this result presented a class
of conditions, called d-legal conditions, and proved that the d-legal conditions
are the class of necessary and sufficient conditions that make the (uniform) con-
sensus solvable in asynchronous systems where at most d processes can crash.
In previous results, the condition-based approach is used to overcome several
impossibility results in distributed agreement problems [6,12,15,16,17,18,19,20].
We also use the notion of the condition-based approach to overcome the two-
step lower bound of asynchronous consensus. In the same way as [2], this paper
assumes the underlying non-one-step consensus primitive. On this assumption,
the main objective of our study is to clarify the class of conditions such that we
can construct the algorithm that terminates in one step for the inputs belonging
to the condition and that even terminates (but not in one step) for any input
out of the condition.

The contribution of this paper is to characterize such class of the necessary
and sufficient conditions that make the uniform consensus terminate in one step.
More interestingly, the condition we consider in this paper is adaptive in the sense
of our previous result [12]. In the adaptive condition-based approach, a restric-
tion for inputs is not represented by a single subset of all possible inputs, but
represented by a hierarchical sequence of conditions called condition sequence.
An adaptive condition-based algorithm is instantiated by a condition sequence,
and guarantees some property according to the rank of the input vector in the
hierarchy of the given condition sequence. For example, the first result for the
adaptive condition-based approach [12] considers time complexity lower bound
in synchronous consensus. In this result, all input vectors are classified into some
hierarchical condition sequence whose k-th condition is the set of input vectors
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that reduce the worst-case time complexity of synchronous consensus by k, and
we construct the algorithm achieving time reduction according to the rank of
the actual input vector in the hierarchy. This paper considers the consensus al-
gorithm instantiated by an one-step condition sequence, whose k-th condition
is the set of input vectors for which the algorithm can terminate in one-step
even if at most k processes crash. We present a property of condition sequences
called one-step legality, and prove that a condition sequence can become the
one-step condition sequence of some algorithm if and only if it is one-step legal.
We introduce root adjacency graphs, which is an analysis tool for specifying the
property of one-step legality. The notion of root adjacency graphs is based on the
idea of graph representation of conditions proposed in [14]. An root adjacency
graph is also a graph representation of a condition sequence, and the one-step
legality property for a condition sequence is defined as the characterization of
its root adjacency graph. Additionally, we also propose an instance of one-step
legal condition sequences. Compared with existing constraints (i.e., all processes
propose a same value), this instance is more relaxed.

The paper is organized as follows: In section 2, we introduce the system model,
the definition of the consensus problem, and other necessary formalizations. Sec-
tions 3 and 4 provide the characterization theorem of one-step consensus solv-
ability and its correctness proof. In Section 5, we present an example of one-step
legal condition sequences. We conclude this paper in Section 6.

2 Preliminaries

2.1 Asynchronous Distributed Systems

A distributed system consists of n processes P = {p0, p1, p2, · · · , pn−1}, in which
any pair of processes can communicate with each other by exchanging messages.
All channels are reliable; neither message creation, alteration, nor loss occurs.
The system is asynchronous in the sense that there is no bound on communica-
tion delay.

Each process can crash. If a process crashes, it prematurely stops its execution
and makes no operation subsequently. Each process can crash at any timing. A
process that does not crash (even in the future) is called a correct process. We
assume that there is some upper bound t on the number of processes that can
crash in the whole system. Every process knows the value of t a priori. The
actual number of crash faults is denoted by f . The value of f is unknown to
each process.

Formally, a process is modeled as a state machine. The communication is de-
fined by two events, Sendi(m, pk), and Receivei(m, pk). The event Sendi(m, pk)
is one that pi sends message m to the process pk. The event Receivei(m, pk) is
one that pi receives the message m from pk. A process crash is also defined as
an event. An event Crashi means the crash of process pi. We also assume that
algorithms we consider in this paper are deterministic, i.e., the state after a tran-
sition is uniquely determined by the triggering event and the state immediately
before the transition.
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2.2 Uniform Consensus

A (uniform) consensus algorithm provides each process pi with two events,
Proposei(v) and Decidei(v), as the interface to the upper application layer. In
a consensus algorithm, each correct process pi initially proposes a value v by
Proposei(v) , and eventually chooses a decision value v′ by Decidei(v′). Then,
the decision value must be chosen from the values proposed by processes so
that all processes decide a same value. More precisely, the consensus problem is
specified by the following three properties:

Termination: Every process pi eventually invokes Decidei(v) unless it crashes.
Uniform Agreement: If two events Decidei(v1) and Decidej(v2) are invoked, v1 =

v2 holds.
Validity: If Decidei(v) is invoked, then Proposej(v) is invoked by some process

pj .

We define V as the set of all possible proposal values. Throughout this paper,
we assume that V is a finite ordered set. An input to consensus algorithms is
represented by a vector whose i-th entry is the value of pi’s proposal value. We
call it an input vector.

2.3 Uniform Consensus Primitive

This paper investigates the inputs for which consensus algorithms can decide in
one step. However, it is well-known that the consensus problem cannot be solved
in asynchronous systems subject to only one crash fault. Thus, we need some
assumption to guarantee correct termination for arbitrary inputs. In this paper,
same as the previous result [2], we assume that a uniform consensus primitive
is equipped to the system. This assumption can be regarded as an higher ab-
straction of other standard assumptions, such as unreliable failure detector or
eventual synchrony, which are sufficient ones to solve the consensus problem.
On this assumption, our aim is to provide an algorithm that decides in one step
for good inputs and that solves consensus (but not in one step) for any input
with support of the underlying uniform consensus primitive. In the following
discussion, two events, UC propose(v) and UC decide(w), are provided by the
underlying consensus, which mean the proposal of value v and the decision with
value w respectively.

2.4 Configurations and Executions

A system configuration c is represented by all processes’ states and the set of
messages under transmission. An execution of a distributed system is an al-
ternative sequence of configurations and events E = c0, e0, c1, e1, c2 · · ·. In this
paper, we deal with admissible executions, where occurrences of send, receive,
propose and decide of the underlying consensus, and crash events satisfy those
semantics.
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2.5 Nonessential Assumptions

The asynchronous system model introduced in this section is the standard one
as defined in [3]. In this subsection, for ease of presentation, we introduce some
additional assumptions into the model. Notice that the introduced assumptions
do not essentially differentiate our model from standard ones. Throughout this
paper, we assume the followings:

– There exists a discrete global clock, and that each event has one time when
it occurs. This global clock is a fictional device. That is, each process does
not have access to the global clock (thus, it adds no additional power to the
model).

– Local processing delay is negligible (i.e., any local computation is instanta-
neously processed).

– Each process pi invokes Proposei(v) at time zero unless it initially crashes.
– Any message has at least one time unit delay.

2.6 One-Step Decision of Consensus Problem

In this subsection, we introduce the definition of one-step decision in the con-
sensus problem.

An initial message is one that is sent at time zero. Intuitively, an initial
message sent by a process pi is one whose sending event is triggered by pi’s
activation of the consensus algorithm. We say that a message m is over at time
u if the receiver of m has received m or crashed at u. Let ot(E) be the minimum
time when all initial messages are over in execution E. Then, the prefix of the
execution E by time ot(E) (including transitions occurring at time ot(E)) is
called the one-step prefix of E, and is denoted by pref(E). We also define E(A, I)
as the set of all admissible executions of a consensus algorithm A whose input
vectors are I.

Using the above definitions, we define one-step decision as follows:

Definition 1 (One-step Decision). A consensus algorithm A decides in one
step for an input vector I if for any execution E ∈ E(A, I) all processes decide
or crash in pref(E).

3 Characterization of One-Step Consensus Solvability

3.1 Notations

For an input vector I, we define a view J of I to be a vector in (V∪{⊥})n obtained
by replacing several entries in I by ⊥ (⊥ is a default value such that ⊥
∈ V). Let
⊥n be the view such that all entries are ⊥. For views J1 and J2, the containment
relation J1 ≤ J2 is defined as ∀k(0 ≤ k ≤ n− 1) : J1[k] 
=⊥ ⇒ J1[k] = J2[k]. We
also describe J1 < J2 if J1 ≤ J2 and J1 
= J2 hold. For a view J (∈ (V ∪ {⊥})n)
and a value a(∈ V ∪{⊥}), #a(J) denotes the number of entries of value a in the
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view J , that is, #a(J) = |{k ∈ {0, 1, · · · , n− 1}|J [k] = a}|. For a view J and a
value a, we often describe a ∈ J if there exists a value k such that J [k] = a. For
an input vector I ∈ Vn, For two views J1 and J2, let dist(J1, J2) be the Hamming
distance between J1 and J2, that is dist(J1, J2) = |{k ∈ {0, 1, · · · , n− 1}|J1[k] 
=
J2[k]}|. A condition is a subset of all possible input vectors Vn.

Let [V n]k be the set of all possible views where ⊥ appears at most k times.

3.2 One-Step Condition Sequence

The objective of this paper is not only to clarify the static conditions that enable
the consensus problem to terminate in one step, but also to provide such condi-
tions in an adaptive fashion: the content of a condition varies according to the
number of actual faults. To handle such adaptiveness, we introduce condition
sequences. Formally, a condition sequence S is a hierarchical sequence of t + 1
conditions (C0, C1, C2, · · · , Ct) satisfying Ck ⊇ Ck+1 for any k(0 ≤ k ≤ t − 1).
Then, we define one-step condition sequences as follows.

Definition 2 (One-Step Condition Sequence). The one-step condition se-
quence of a consensus algorithmA is the condition sequence whose k-th condition
(0 ≤ k ≤ t) is the set of input vectors for which the algorithm A decides in one
step when at most k processes crash.

The one-step condition sequence of an algorithm A is denoted by SolA.

3.3 Characterization Theorem

This subsection presents the characterization theorem for one-step consensus
solvability. The key idea of the characterization theorem derives from the notion
of legality in [14]: we consider a graph representation of condition sequences, and
the characterization is given as a property of such graphs. To provide the theo-
rem, we first introduce root adjacency graphs and their legality. Root adjacency
graphs are a variant of the graph representation of legal conditions proposed in
[14] so that it can handle the one-step solvability and condition sequences.

Definition 3 (Decidable/Undecidable views). For a condition sequence
S = (C0, C1, · · · , Ct), the decidable views DV (S) and undecidable views UV (S)
are respectively the set of views defined as follows:

DV (S) =
t⋃

k=1

{J |dist(J, I) ≤ k, I ∈ Ck}

UV (S) =
⋃

J∈DV (S)

{J ′|J ′ ∈ [V n]t, J ′ ≤ J}

Notice that DV (S) ⊆ UV (S) holds.

Definition 4 (Root Adjacency Graphs). Given a condition sequence S, its
root adjacency graph RAG(S) is the graph such that
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– The vertex set consists of all views in UV (S).
– The two views J1 and J2 are connected if J1 ≤ J2 holds and J2 belongs to

DV (S).

The legality of root adjacency graphs is defined as follows:

Definition 5 (Legality). A root adjacency graph G is legal if, for each con-
nected component Com of G, at least one common value appears at all views
belonging to Com.

We say a condition sequence S is one-step legal if RAG(S) is legal. Using the
above definitions, we state the characterization theorem.

Theorem 1 (One-step Consensus Solvability Theorem). There exists a
consensus algorithm whose one-step condition sequence is S if and only if S is
one-step legal.

The intuitive meaning of root adjacency graphs is explained as follows: In gen-
eral, the information that a process can gathers in one-step prefixes can be
represented by a view because the information each process can send in one-step
prefixes is only its proposal. In this sense, the decidable views can be interpreted
as the set of views J such that if a process gathers the information corresponding
J in one step , it can immediately decides (i.e., one-step decision). The undecid-
able views can also be interpreted as the set of views J such that if a process
gathers the information corresponding J in one step, it must consider the possi-
bility that other processes may decide in one step (but it does not have to decide
immediately). Then, a root adjacency graph can be regarded as one obtained by
connecting two views J1 and J2 such that if two processes gathers J1 and J2 re-
spectively, they must reach a same decision. Thus, the sentence “root adjacency
graphs is legal” implies that there exists at least one possible decision value.

For any view J ∈ DV (S), there exists an input vector I satisfying dist(J, I) ≤
k and I ∈ Ck for some k. In such vectors, we call one that maximizes k the
master vector of J (if two or more vectors maximize k, one chosen by some
(arbitrary) deterministic rule is the master vector of J). Then, we also call the
value of k legality level of the master vector. For any view J ∈ DV (S) and its
master vector I with legality level k, there exists a view J ′ satisfying J ′ ≤ J and
J ≤ I. The view J ′ minimizing #⊥(J ′) is called the root view of J , and denoted
by Rv(J). Notice that Rv(J) ∈ DV (S) and #⊥(J ′) ≤ k necessarily hold because
of I ∈ CK and dist(J, I) ≤ k.

4 Proof of the Characterization Theorem

4.1 Proof of Sufficiency

This subsection presents the sufficiency proof of the theorem, i.e., we propose a
generic one-step consensus algorithm for any one-step legal condition sequence
S and prove its correctness.
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Figure 1 presents the pseudo-code description of a generic consensus algo-
rithm OneStep that is instantiated by any one-step legal condition sequence S.
In the description, we use the function h, that is the mapping from a view in
UV (S) to a value in V . The mapped value h(J) for a view J is one that appears
in common at any view in the connected component to which J belongs (such
value necessarily exists from the fact that S is one-step legal). If two or more
values appear in common, the largest one is chosen. The algorithmic principle
of OneStep is as follows: first, each process pi exchanges its proposal with each
other, and constructs a view Ji. The view Ji is maintained incrementally. That
is, it is updated on each reception of a message. When at least n − t messages
are received by pi, process pi tests whether Ji belongs to the undecidable views
UV (S) or not. If it belongs to UV (S), process pi activates the underlying con-
sensus with proposal h(Ji). Otherwise, pi activates the underlying consensus
with proposal Ji[i]. In addition, when the view Ji is updated, each process pi

tests whether its view Ji belongs to the decidable views DV (S) or not. If Ji

belongs to DV (S), process pi immediately decides h(Ji), that is, it decides in
one step. When the underlying consensus reaches decision, each process simply
borrows the decision of the underlying consensus unless it has already decided
in one step. Intuitively, the correctness of the algorithm OneStep relies on two
facts: one is that if two processes pi and pj decide in one-step, the views Ji and
Jj at the time of their decisions are necessarily connected in RAG(S), and an-
other one is that if a process pi decides v in one-step, each process pj activates
the underlying consensus with the proposal value v. From the former fact, we
can show that two processes pi and pj , both of which decide in one step, have a
same decision. The latter fact implies that if a process pi decides v in one step,
any other process pj (that may not decide in one step) propose v. The detailed
explanation of correctness is given in the following proof.

Correctness. We prove the correctness of the algorithm Onestep. In the fol-
lowing proofs, let vector Jpro

i and Jdec
i be the the value of Ji at the time when

pi execute the lines 13 and 10 respectively (Notice that both values are uniquely
defined because lines 13 and 10 are respectively executed at most once). If pi

does not execute line 13 (10), Jpro
i (Jdec

i ) is undefined.

Lemma 1 (Termination). Each process pi eventually decides unless it crashes.

Proof. Since at most t processes can crash, each process pi receives at least n−t
messages. Then, pi necessarily activates the underlying consensus, and thus the
decision of underlying consensus eventually occurs on pi unless pi crashes. This
implies that pi eventually decides unless it crashes. �

Lemma 2 (Uniform Agreement). No two processes decide differently.

Proof. Let pi and pj be the processes that decide, and vi and vj be the decision
values of pi and pj respectively. The input vector is denoted by I. Then, we
prove vi = vj . We consider the following three cases.
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Algorithm OneStep for one-step legal condition sequence S
Code for pi:

1: variable:
2: proposedi, decidedi : FALSE
3: Ji : init ⊥n

4: Upon Proposei(vi) do:
5: Ji[i] ← vi

6: Send vi to all processes (excluding pi);

7: Upon Receivei(v) from pj do:
8: Ji[j] ← v
9: if Ji ∈ DV (S) and decidedi �= TRUE then
10: decidedi ← TRUE ; Decidei(h(Ji))
11: endif
12: if #⊥(Ji) ≤ t and proposedi = FALSE then
13: if Ji ∈ UV (S) then UC proposei(h(Ji)) /∗ Starting the Underlying Consensus ∗/
14: else UC propose(Ji[i]) endif
15: proposedi ← TRUE
16: endif

17: Upon UC decidei(v) do: /∗ Decision of the Underlying Consensus ∗/
18: if decidedi �= TRUE then
19: decidedi ← TRUE ; Decidei(v)
20: endif

Fig. 1. Algorithm Onestep: An One-Step Consensus Algorithm for a One-Step Legal
Condition Sequence S

– (Case1) When both pi and pj decide at line 10: For short, let g = #⊥(Jdec
i ).

Both Jdec
i and Jdec

j appear in DV (S). Let I ′ be the master vector of Jdec
i ,

and k be its legality level. Then, for any vector I ′′ that is obtained from
Jdec

i by replacing ⊥ by any value, dist(I ′, I ′′) ≤ k holds. Thus, letting I
be the input vector, dist(I ′, I) ≤ k holds, and thus we obtain I ∈ DV (S).
In addition, since Jdec

i ≤ I, and Jdec
j ≤ I holds, I and Jdec

i , and I and
Jdec

j are respectively adjacent to each other in RAG(S). This implies that
vi = h(Jdec

i ) = h(Jdec
j ) = vj holds.

– (Case2) When pi and pj respectively decide at lines 10 and 19: Since pj ’s
decision is borrowed from the decision of the underlying consensus primitive,
it is a value proposed by some process at line 13 or 14. Thus, it is sufficient to
show that every process pk proposes vi at line 13 or 14 unless it crashes. Let
vk be pk’s proposal. Jdec

i appears in DV (S). Then, by the same argument
as Case 1, we can show I ∈ DV (S). Since Jpro

k ≤ I and Jdec
i ≤ I holds, we

can conclude Jpro
k ∈ UV (S), that is, pk propose the value h(Jpro

k ) at line 13.
Since Jpro

k and Jdec
i is connected in RAG(S), vk = h(Jpro

k ) = h(Jpro
i ) = vi

holds. It follows that every process pk proposes vi.
– (Case3) When both pi and pj decide at line 19: Then, from the uniform

agreement property of the underlying consensus, vi = vj clearly holds.

Consequently, the lemma holds. �

Lemma 3 (Validity). If a process decides a value v, then, v is a value proposed
by a process.



One-Step Consensus Solvability 233

Proof. If a process pi decides at line 15, its decision value is h(Jdec
i ), which is

a value in Jdec
i . On the other hand, if a process pi decides at line 19, then, its

decision value is a proposal of the underlying consensus. That is, the decision
value is h(Jpro

k ) or Jpro
k [k] for some pk, which is also a value in Jpro

k . In both
cases, the decision value is one of proposals, and thus the validity holds. �

Lemma 4 (One-Step decision). The algorithm OneStep decides in one step
for any input vector I belonging to Sk(k ≥ f) if at most k processes crash.

Proof. Since each process pi receives the messages from all correct processes
unless it crashes, #⊥(Ji) ≤ k holds eventually. Then, Ji is included in [Sk]k.
This implies that pi decides in one step. �

From Lemma 1, 2, 3, and 4, we can show the following lemma that implies the
sufficiency of the characterization theorem.

Lemma 5. For any one-step legal condition sequence S, there exists one-step
consensus algorithm whose one-step condition sequence is S.

4.2 Proof of Necessity

This subsection presents the necessity proof of the characterization theorem. In
the proof we consider a subclass of admissible executions called P -block synchro-
nous executions, which are defined as follows:

Definition 6 (P -Block Synchronous Executions). For a set of processes
P , P -block synchronous executions are defined as ones satisfying the following
properties:

1. No UC decidei(v′) occurs at time zero or one.
2. All message transferred between two processes in P have one time unit delay,

and others have two time unit delay.

For a view, J , let P (J) be a set of processes pi such that J [i] 
=⊥ holds. For a
consensus algorithm A, a view J , and a set of processe P , let ESync(A, J, P ) be
the set of all possible P -block synchronous executions where process pi ∈ P (J)
proposes J [i] and never crashes, and pi 
∈ P (J) initially crashes. Here, we define
representative executions of a view J as follows:

Definition 7 (Representative Executions). For a consensus algorithm A
and a view J , its representative executions ERep(A, J) is a set of executions
defined as follows:

ERep(A, J) =
{
ESync(A, J,P) if J 
∈ DV (SolA)
ESync(A, J, P (Rv(J))) if J ∈ DV (SolA)

For a consensus algorithm A and a view J , let val(A, J) be the set of all decision
values that appear at executions in ERep(A, J).

Using the above notations, we prove the following lemma that implies the
necessity of the characterization theorem (for lack of space, we only give a part
of all proofs).
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Lemma 6. Let A be an consensus algorithm, and J be a view in DV (SolA).
Then, in any execution E ∈ ERep(A, J), each process in P (Rv(J)) decides in
one step.

Proof. Let I be the master vector of J , and k be its legality level. From the
definition of root views, Rv(J) ≤ I holds. Since #⊥(Rv(J)) ≤ k holds, in any
execution E ∈ ERep(A, J), at most k processes crash. Thus, any execution E ∈
ERep(A, J) can be regarded as one where input vector is I ∈ Ck and the number
of crash processes is at most k. This implies that each process achieves one-step
decision in E.

Lemma 7. Let A be an consensus algorithm. Then, RAG(SolA) is one-step
legal.

Proof. Clearly for any view J , all values in val(J) must be appeared in J from
the validity property of the consensus problem. Thus, we prove this lemma by
showing val(J1) = val(J2) for any two different views J1 and J2 that are adjacent
to each other in RAG(SolA). Then, a value in val(J) appears in any view of the
connected component to which J belongs, i.e. each connected component has a
common value.

Suppose for contradiction that val(J1) 
= val(J2) holds for two different views
J1 and J2 that are adjacent to each other. Without loss of generality, we assume
J2 < J1. Then, from the definition of the RAG(SolA), J1 belongs to DV (SolA).
Since we assume val(J1) 
= val(J2), there exist two synchronous executions E1 ∈
ERep(A, J1) and E2 ∈ ERep(A, J2) where processes reach different decisions v1

and v2 respectively. In execution E2, all correct processes eventually reach to the
decision. Let Δ be the time when all correct processes decides in E2. From the
fact of J2 < J1 and J1 ≤ Rv(J1), there exists at least one process in P (Rv(J1))
that does not crash in E1 but crashes in E2. Let P1 be the set of such processes.
We also define P2 as P − P1. Then, we consider the execution E3 obtained by
modifying the execution E2 as follows:

– The behavior of each process in P2 by time Δ is identical to E2.
– Each process pi in P1 proposes a value J1[i].
– All messages transferred from a process in P1 to one in P2 have Δ+ 1 time

unit delay, and all other messages have exactly one time unit delay.

The construction of the execution E3 is illustrated in Figure 2. Since each
process in P1 does not affect ones in P2 by time Delta + 1, the execution E3

is possible admissible execution of the algorithm A. In execution E3, each non-
faulty process in P2 decides v2 at Δ or earlier because it cannot distinguish the
execution E3 from E2 by time Δ + 1. In both E1 and E3, each process in P1

receives a same set of initial messages at time one because initial messages sent
by a process pi is uniquely determined by pi’s proposal. This implies that each
process in P1 cannot distinguish E3 from E1 by time two. Thus, by Lemma 6, in
E3 each process in P1 decides v1 at time one. However, since we assume v1 
= v2,
the execution E3 has two different decision values (processes in P1 decides v,
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Fig. 2. Executions E1, E2 and E3

and others decides v2). It contradicts the uniform agreement property of the
consensus. �

5 An Example of One-Step Legal Condition Sequence

In this section, we propose an example of one-step legal condition sequences.
First, we introduce a condition that are basis of the example.

Definition 8 (Frequency-Based Condition Cfreq
d ). Let 1st(J) be the non-⊥

value that appears most often in view J (if two more values appears most often,
the largest one is chosen), and Ĵ be the vector obtained from J by replacing
1st(J) by ⊥. Letting 2nd(J) = 1st(Ĵ), the frequency-based condition Cfreq

d is
defined as follows:

Cfreq
d = {I ∈ Vn|#1st(I)(I)−#2nd(I)(I) > d}

It is known that Cfreq
d belongs to d-legal conditions, which is the class of condi-

tions that are necessary and sufficient to solve the consensus problem in failure-
prone asynchronous systems where at most d processes can crash.

Using this condition, we can construct a one-step condition sequence.

Theorem 2. Letting 3t < n, a condition sequence, Safreq =
(Cfreq

t , Cfreq
t+2 , · · · , C

freq
t+2k, · · · , C

freq
3t ) is one-step legal.

Proof. We prove the one-step legality of Safreq by showing that 1st(J1) =
1st(J2) holds for any two views J1 and J2 that are adjacent to each other in
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RAG(Sa freq). Suppose 1st(J1) 
= 1st(J2) for contradiction. Since either J1 or J2

belongs to DV (Sa freq), we assume J1 ∈ DV (Sa freq) without loss of generality.
Let I1 be the master vector of J1, and k be its legality level. From the definition
of Cfreq

t+2k, #1st(I1)(I1) −#v(I1) > t + 2k holds for any value v 
= 1st(I1). Then,
since dist(J1, I1) ≤ k holds, #1st(I1)(J1)−#v(J1) > t also holds for any value v.
This implies 1st(I1) = 1st(J1), and thus we obtain #1st(J1)(J1)−#v(J1) > t for
any v. It follows that #1st(J1)(J2) −#1st(J2)(I1) > 0 holds because of J1 ≥ J2

and #⊥(J2) ≤ t. However, it contradicts to the fact that 1st(J2) is the most
often value in J2. Thus, 1st(J2) = 1st(J1) holds and the lemma is proved. �

Notice that the assumption 3t < n is necessary is to achieve one-step decision
[2]. That is, if 3t ≥ n, no condition sequence is one-step legal.

Compared with existing constraints (e.g., one that all processes propose a
same value), the adaptive condition sequence Sa freq is more relaxed. Thus, the
algorithm OneStep instantiated by Safreq is a strict improvement of existing
one-step consensus algorithms.

6 Concluding Remarks

This paper investigated the one-step solvability of consensus problem. While any
consensus algorithm require at least two steps even in failure-free executions, we
can construct an algorithm that terminates in one step for several good inputs.
In this paper, we proposed the necessary and sufficient condition sequences for
which we can construct one-step consensus algorithms. We also presented an
instance of sufficient condition sequences. Compared with existing constraints
for inputs (e.g., all processes propose a same value), this instance is more relaxed.
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In this paper, we describe a modeling framework that extends Segala’s Prob-
abilistic I/O Automata (PIOA) framework [Seg95, SL95] and supports descrip-
tion of security-related features. Our extension, which we call the Time-Bounded
Task-PIOA framework, directly models probabilistic and nondeterministic be-
havior, partial-information adversarial scheduling, and time-bounded compu-
tation. We define an approximate implementation relation for Time-Bounded
Task-PIOAs,≤neg,pt, which captures the notion of computational indistinguisha-
bility—the idea that a polynomial-time-bounded observer cannot, with non-
negligible probability, distinguish the behavior of one automaton from that of
another. We prove that ≤neg,pt is transitive and compositional, and we define a
type of probabilistic simulation relation that can be used to prove ≤neg,pt. We
believe that these features are adequate to support formal modeling and verifi-
cation of typical security protocols, using methods that are compatible with the
informal approaches used in the computational cryptography research commu-
nity.

We illustrate the use of our framework by outlining a proof of functional
correctness and security properties for the Oblivious Transfer (OT) protocol
of [EGL85, GMW87]. Together, these properties are expressed by a statement,
formulated using ≤neg,pt, that every possible behavior of the OT protocol can
also be realized by an abstract system representing the required functionality.
The protocol model consists of the protocol parties, plus an adversary that acts
as a message delivery system and hence has access to dynamic information such
as ciphertexts. The abstract system includes an ideal functionality, i.e., a trusted
third party whose security is assumed, together with a simulator.

Between the protocol and abstract system, we define intermediate systems
at different levels of abstraction, and prove that each consecutive pair of levels
satisfies ≤neg,pt. This decomposes the security proof into several stages, each
of which addresses some particular aspect of the protocol. In particular, com-
putational reasoning is isolated to a single stage in the proof, where a system
using hard-core bits of trap-door functions is shown to implement a system using
random bits. For this interesting step, we reformulate the notion of hard-core
bits using ≤neg,pt, and prove that our reformulation is equivalent to a standard
definition in the literature. The proof of ≤neg,pt for this stage is essentially a
reduction to the security of hard-core bits, but the reduction is reformulated in
terms of ≤neg,pt and composition results for Time-Bounded Task-PIOAs. Other
stages are proved using probabilistic simulation relations.

Background and Prior Work: Traditionally, security protocols have been
analyzed using one of two approaches: formal or computational. In the formal
approach, cryptographic operations are modeled purely symbolically, and secu-
rity of a protocol is expressed in terms of absolute guarantees when the protocol
is run against a Dolev-Yao adversary [DY83], which is incapable of breaking the
cryptographic primitives. This approach lends itself to rigorous proofs using fa-
miliar methods; however, it neglects important computational issues that could
render protocols invalid in practice. In contrast, in the computational approach,
cryptographic operations are modeled as algorithms operating on bit strings,
and security is expressed in terms of probabilistic guarantees when protocols are
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run against resource-bounded adversaries. This approach treats computational
issues realistically, but it does not easily support rigorous proofs. For example,
resource-bounded protocol components are often modeled as Interactive Turing
Machines (ITMs) [GMR89, Can01]. But rigorous proofs in terms of ITMs are
infeasible, because they represent components at too fine a level of detail.

A recent trend in security verification is to combine formal and computational
analysis in one framework [LMMS98, PW00, BPW04, BCT04, RMST04, Bla05],
by defining computational restrictions for abstract machines. This work provides
formal syntax for specifying probabilistic polynomial-time (PPT) processes, and
formulates computational security requirements in terms of semantic properties
of these processes. Our work follows the same general approach, though with its
own unique set of modeling choices.

Our starting point was the Probabilistic I/O Automata (PIOA) modeling
framework [Seg95, SL95], which is based on abstract machines that allow both
probabilistic and nondeterministic choices. In order to resolve nondeterministic
choices (a prerequisite for stating probabilistic properties), PIOAs are combined
with perfect-information schedulers, which can use full knowledge about the
past execution in selecting the next action. This scheduling mechanism is too
powerful for analyzing security protocols; e.g., a scheduler’s choice of the next
action may depend on “secret” information hidden in the states of honest pro-
tocol participants, and thus may reveal information about secrets to dishonest
participants. Therefore, we augmented the PIOA framework to obtain the Task-
PIOA framework [CCK+06a, CCK+06b], in which nondeterministic choices are
resolved by oblivious task schedules, which schedule sets of actions (tasks) instead
of individual actions. Task-PIOAs support familiar methods of abstraction and
composition. They include an implementation relation, ≤0, between automata,
based on trace distributions, and probabilistic simulation relations that can be
used to prove ≤0.

In this paper, we define Time-Bounded Task-PIOAs by imposing time bounds
on Task-PIOAs, expressed in terms of bit string encodings of automata con-
stituents. This allows us to define polynomial-time Task-PIOAs and our approx-
imate implementation relation ≤neg,pt. We adapt the probabilistic simulation
relations of [CCK+06a, CCK+06b] so that they can be used to prove ≤neg,pt.
Our analysis of Oblivious Transfer follows the style of Universally Composable
(UC) Security [Can01] and universal reactive simulatability [PW01].

In [LMMS98, MMS03, RMST04], a process-algebraic syntax is used to specify
protocols, and security properties are specified using an asymptotic observational
equivalence on process terms. Nondeterministic choices are resolved by several
types of probabilistic schedulers, e.g., special Markov chains or probability dis-
tributions on the set of actions. Various restrictions, such as environment- and
history-independence, are imposed on these schedulers to enable them to sup-
port computational security arguments. In [PW00, PW01, BPW04], protocols
are specified as interrupt-driven state machines that interact via a system of
ports and buffers, and security is specified in terms of reactive simulatability,
which expresses computational indistinguishability between the environment’s
views of the protocol and the abstract functional specification. A distributed
protocol, in which machines activate each other by generating explicit “clock”
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signals, is used for scheduling among the (purely probabilistic) machines. This
mechanism is similar to the ones typically used for ITMs [GMR89, Can01].

Our work differs from that of these two schools in our choice of underlying ma-
chine model and scheduling mechanism. Also, we follow a different modeling and
proof methodology, based on the one typically used for distributed algorithms:
we use nondeterminism extensively as a means of abstraction, and organize our
proofs using invariants, levels of abstraction, and composition.

In other related work, security analysis is sometimes carried out, informally,
in terms of a sequence of games, which are similar to our levels of abstrac-
tion [Sho04, BR04, Bla05, Hal05].

Overview: Sections 2 and 3 review the PIOA and Task-PIOA frameworks,
respectively. Section 4 defines Time-Bounded Task-PIOAs, and the approximate
implementation relation ≤neg,pt. Section 5 presents our definition of hard-core
predicates for trapdoor permutations, in terms of ≤neg,pt. Section 6 explains
how we model cryptographic protocols and their requirements, illustrating this
method with the OT protocol. Section 7 outlines our proofs for OT. Conclusions
follow in Section 8. Complete details appear in [CCK+06c].

2 PIOAs

In this section, we summarize basic definitions and results for PIOAs; full defi-
nitions, results, and proofs appear in [CCK+06a, CCK+06b].

We let R≥0 denote the set of nonnegative reals. We assume that the reader
is comfortable with basic notions of probability, such as σ-fields and discrete
probability measures. For a discrete probability measure μ on a set X , supp(μ)
denotes the support of μ, that is, the set of elements x ∈ X such that μ(x) 
=
0. Given set X and element x ∈ X , the Dirac measure δ(x) is the discrete
probability measure on X that assigns probability 1 to x.

A Probabilistic I/O Automaton (PIOA) P is a tuple (Q, q̄, I, O,H,D), where:
(i) Q is a countable set of states, with start state q̄ ∈ Q; (ii) I, O and H
are countable, pairwise disjoint sets of actions, referred to as input, output and
internal actions, respectively; and (iii) D ⊆ Q × (I ∪ O ∪ H) × Disc(Q) is a
transition relation, where Disc(Q) is the set of discrete probability measures
on Q. An action a is enabled in a state q if (q, a, μ) ∈ D for some μ. The set
A := I ∪O∪H is called the action alphabet of P . If I = ∅, then P is closed. The
set of external actions of P is I ∪ O and the set of locally controlled actions is
O ∪H . We assume that P satisfies:

– Input enabling: For every q ∈ Q and a ∈ I, a is enabled in q.
– Transition determinism: For every q ∈ Q and a ∈ A, there is at most one
μ ∈ Disc(Q) such that (q, a, μ) ∈ D.

An execution fragment of P is a finite or infinite sequence α = q0 a1 q1 a2 . . .
of alternating states and actions, such that (i) if α is finite, it ends with a
state; and (ii) for every non-final i, there is a transition (qi, ai+1, μ) ∈ D with
qi+1 ∈ supp(μ). We write f state(α) for q0, and if α is finite, we write lstate(α)
for its last state. Frags(P) (resp., Frags∗(P)) denotes the set of all (resp., all



242 R. Canetti et al.

finite) execution fragments of P . An execution of P is an execution fragment α
with f state(α) = q̄. Execs(P) (resp., Execs∗(P)) denotes the set of all (resp., all
finite) executions of P . The trace of an execution fragment α, written trace(α),
is the restriction of α to the external actions of P .

A PIOA, together with a scheduler that chooses the sequence of actions to
be performed, gives rise to a unique probabilistic execution, and thereby, to a
unique probability distribution on traces. Traditionally, the schedulers used for
PIOAs have been perfect-information schedulers, which can use full knowledge
about the past execution in selecting the next action.

Two PIOAs Pi = (Qi, q̄i, Ii, Oi, Hi, Di), i ∈ {1, 2}, are said to be compatible if
Ai ∩Hj = Oi ∩Oj = ∅ whenever i 
= j. In that case, we define their composition
P1‖P2 to be the PIOA (Q1 ×Q2, (q̄1, q̄2), (I1 ∪ I2) \ (O1 ∪O2), O1 ∪O2, H1 ∪
H2, D), where D is the set of triples ((q1, q2), a, μ1×μ2) such that (i) a is enabled
in some qi; and (ii) for every i, if a ∈ Ai then (qi, a, μi) ∈ Di, and otherwise μi =
δ(qi). A hiding operator is also available for PIOAs: given P = (Q, q̄, I, O,H,D)
and S ⊆ O, hide(P , S) is defined to be (Q, q̄, I, O′, H ′, D), where O′ = O \ S
and H ′ = H ∪ S.

3 Task-PIOAs

The perfect-information schedulers that have been used to resolve nondetermin-
istic choices in PIOAs are too powerful for computational analysis of security
protocols; e.g., a scheduler’s choice of the next action may depend on “secret”
information hidden in the states of honest protocol participants, and thus may
reveal information about secrets to dishonest participants. To avoid this problem,
we resolve nondeterminism using a more restrictive, oblivious task mechanism.
Again, full definitions, results, and proofs appear in [CCK+06a, CCK+06b].

Basic Definitions: A Task-PIOA T is a pair (P , R), whereP=(Q, q̄, I, O,H,D)
is a PIOA (satisfying transition determinism and input enabling), and R is an
equivalence relation on the locally-controlled actions O ∪ H . The equivalence
classes of R are called tasks. A task T is an output task if T ⊆ O, and similarly
for internal tasks. Unless otherwise stated, we will use terminology inherited
from the PIOA setting. We require the following axiom for task-PIOAs:

– Action determinism: For every state q ∈ Q and every task T ∈ R, there
is at most one action a ∈ T that is enabled in q.

In case some a ∈ T is enabled in q, we say that T is enabled in q. If T is enabled
in every state from a set S, then T is enabled in S.

A task schedule for T = (P , R) is a finite or infinite sequence ρ = T1 T2 . . .
of tasks in R. A task schedule is oblivious, in the sense that it does not de-
pend on dynamic information generated during execution. Because of the action-
determinism assumption for task-PIOAs and the transition-determinism assump-
tion for PIOAs, ρ can be used to generate a unique probabilistic execution, and
hence, a unique trace distribution, of P . One can do this by repeatedly scheduling
tasks, each of which determines at most one transition of P .

Formally, we define an operation apply that “applies” a task schedule to a
finite execution fragment, by applying tasks one at a time. To apply a task T
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Automaton Src(D, μ):
Signature:
Input:

none
Output:

rand(d), d ∈ D

Internal:
chooserand

State:
chosenval ∈ D ∪ {⊥}, initially ⊥

Transitions:
chooserand
Pre: chosenval = ⊥
Eff:

chosenval := choose-random(D, μ)

rand(d)
Pre: d = chosenval �= ⊥
Eff:

none

Tasks: {chooserand}, {rand(∗)}

Fig. 1. Code for Src(D, μ)

to an execution fragment α: (i) if T is not enabled in lstate(α), then the result
is α itself; (ii) otherwise, due to action- and transition-determinism, there is a
unique transition from lstate(α) with a label in T , and the result is α extended
with that transition. We generalize this construction from a single fragment α
to a discrete probability measure η on execution fragments.

Now consider η of the form δ(q̄). For every task schedule ρ, apply(δ(q̄), ρ),
the results of applying ρ to q̄, is said to be a probabilistic execution of T . This
can be viewed as a probabilistic tree generated by running P from its start
state, resolving nondeterministic choices according to ρ. The trace distribution
induced by ρ, tdist(ρ), is the image measure of apply(δ(q̄), ρ) under the measur-
able function trace. A trace distribution of T is tdist(ρ) for any ρ, and we define
tdists(T ) := {tdist(ρ) | ρ is a task schedule for T }.

Figure 1 contains a specification of a random source task-PIOA Src(D,μ),
which we use in our OT models. Src draws an element d from the distribution μ
using the action chooserand and outputs that element using the action rand(d).
It has two tasks: internal task {chooserand} and output task {rand(d) | d ∈ D}.
Notice, since all rand(d) actions are grouped into a single task, a task scheduler
decides whether or not to output the random element without “knowing” which
element has been drawn.

Given compatible task-PIOAs Ti = (Pi, Ri), i ∈ {1, 2}, we define their com-
position T1‖T2 to be the task-PIOA (P1‖P2, R1 ∪R2). Note that R1 ∪R2 is an
equivalence relation because compatibility requires sets of locally controlled ac-
tions to be disjoint. It is also easy to check that action determinism is preserved
under composition. The hiding operation for task-PIOAs hides all actions in the
specified tasks: given task-PIOA T = (P , R) and a set U ⊆ R of output tasks,
hide(T , U) is defined to be (hide(P ,

⋃
U), R).

Implementation: An implementation relation expresses the idea that every
behavior of one automaton is also a behavior of a second automaton. In that
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case, it is “safe” to replace the second automaton with the first in a larger system.
This notion mades sense only if the two automata interact with the environment
via the same interface: thus, two task-PIOAs T1 and T2 are comparable if I1 = I2
and O1 = O2.

If T and E are task-PIOAs, then E is said to be an environment for T if T and
E are compatible and T ‖E is closed. If T1 and T2 are comparable task-PIOAs,
then T1 implements T2, written T1 ≤0 T2, if tdists(T1‖E) ⊆ tdists(T2‖E) for
every environment E for both T1 and T2. Equivalently, given any task schedule
ρ1 for T1‖E , there is a task schedule ρ2 for T2‖E such that tdist(ρ1) = tdist(ρ2).
Since we require equality of corresponding trace distributions, this is also referred
to as perfect implementation. Transitivity of ≤0 is trivial and compositionality
is proved in [CCK+06a, CCK+06b].

Simulation Relations: In [CCK+06a, CCK+06b], we define a new type of
probabilistic simulation relation for task-PIOAs, and prove that such simulation
relations are sound for proving ≤0. Here we outline the definition. Let T1 =
(P1, R1) and T2 = (P2, R2) be two comparable closed task-PIOAs. A simulation
from T1 to T2 is a relation R from discrete probability measures on Frags∗(P1) to
discrete probability measures on Frags∗(P2) satisfying a number of conditions:
(i) If (η1, η2) ∈R, then η1 and η2 induce the same trace distribution; (ii) The
Dirac measures δ(q̄1) and δ(q̄2) are related by R; and (iii) There is a function
corr : (R1

∗ × R1) → R2
∗ such that, given (η1, η2) ∈R, a task schedule ρ for

T1 and a task T of T1, the measures apply(η1, T ) and apply(η2, corr(ρ, T )) are
related by the expansion of R. (Expansion is a standard operation on relations
between discrete measures (cf. [CCK+06b]).) That is, given a task schedule ρ
for T1 that has already been matched in T2, and a new task T , corr matches T
with a finite sequence of tasks of T2, and the result of scheduling T after η1 is
again related to the result of scheduling the sequence corr(ρ, T ) after η2.

Adversarial Scheduling: The standard scheduling mechanism in the security
protocol community is an adversarial scheduler—a resource-bounded algorith-
mic entity that determines the next move adaptively, based on its own view
of the computation so far. Our oblivious task schedules do not directly cap-
ture the adaptivity of adversarial schedulers. To address this issue, we separate
scheduling concerns into two parts: We model the adaptive adversarial scheduler
as a system component, e.g., a message delivery service that can eavesdrop on
the communications and control the order of message delivery. Such a service
has access to partial information about the execution: it sees information that
other components communicate to it during execution, but not “secret informa-
tion” that these components hide. Its choices may be essential to the analysis
of the protocol. On the other hand, basic scheduling choices are resolved by a
task schedule sequence, chosen nondeterministically in advance. These choices
are less important; for example, in the OT protocol, both the transmitter and
receiver make random choices, but it is inconsequential which does so first.

4 Time-Bounded Task-PIOAs
A key assumption of computational cryptography is that certain problems can-
not be solved with non-negligible probability by resource-bounded entities. In
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particular, adversaries are assumed to be resource-bounded. To express such
bounds formally, we introduce the notion of a time-bounded task-PIOA, which
assumes bit-string representations of automata constituents and imposes time
bounds on Turing machines that decode the representations and compute the
next action and next state. Complete details appear in [CCK+06c].

Basic Definitions: We assume a standard bit-string representation for actions
and tasks of task-PIOAs. A task-PIOA T is said to be b-time-bounded, where b ∈
R≥0, provided: (i) every state and transition has a bit-string representation, and
the length of the representation of every automaton part is at most b; (ii) there
is a deterministic Turing machine that decides whether a given representation of
a candidate automaton part is indeed such an automaton part, and this machine
runs in time at most b; (iii) there is a deterministic Turing machine that, given
a state and a task of T , determines the next action (or indicates “no action”),
in time at most b; and (iv) there is a probabilistic Turing machine that, given
a state and an action of T , determines the next state of T , in time at most b.
Furthermore, each of these Turing machines can be described using a bit string
of length at most b, according to some standard encoding of Turing machines.

Composing two compatible time-bounded task-PIOAs yields a time-bounded
task-PIOA with a bound that is linear in the sum of the original bounds. Simi-
larly, hiding changes the time bound by a linear factor. We say that task schedule
ρ is b-bounded if |ρ| ≤ b, that is, ρ is finite and contains at most b tasks.

Task-PIOA Families: Typically, a computational hardness assumption states
that, as the size of a problem grows, the success probability of a resource-bounded
entity trying to solve the problem diminishes quickly. The size of a problem is
expressed in terms of a security parameter k ∈ N, e.g., the key length for an
encryption scheme. Accordingly, we define families of task-PIOAs indexed by a
security parameter: a task-PIOA family T is an indexed set {Tk}k∈N of task-
PIOAs. The notion of time bound is also expressed in terms of the security
parameter; namely, given b : N → R≥0, we say that T is b-time-bounded if
every Tk is b(k) time-bounded. Task-PIOA family T is said to be polynomial-
time-bounded provided that T is p-time-bounded for some polynomial p. Com-
patibility and parallel composition for task-PIOA families are defined pointwise.
Results for composition and hiding carry over easily from those for time-bounded
task-PIOAs.

Approximate Implementation: Our notion of approximate implementation
allows errors in the emulation and takes into account time bounds of various
automata involved. Let T be a closed task-PIOA with a special output action
accept and let ρ be a task schedule for T . The acceptance probability with respect
to T and ρ is defined to be:

Paccept(T , ρ) := Pr[β ← tdist(T , ρ) : β contains accept],

where β ← tdist(T , ρ) means β is drawn randomly from tdist(T , ρ).
From now on, we assume that every environment has accept as an output. Let

T1 and T2 be comparable task-PIOAs, ε, b ∈ R≥0, and b1, b2 ∈ N. Then we define
T1 ≤ε,b,b1,b2 T2 as follows: Given any b-time-bounded environment E for both T1
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and T2, and any b1-bounded task schedule ρ1 for T1‖E , there is a b2-bounded task
schedule ρ2 for T2‖E such that |Paccept(T1‖E , ρ1) − Paccept(T2‖E , ρ2)| ≤ ε. In
other words, from the perspective of a b-time-bounded environment, T1 and T2

“look almost the same” in the sense that T2 can use at most b2 steps to emulate
at most b1 steps of T1. The relation ≤ε,b,b1,b2 is transitive and preserved under
composition and hiding, with certain adjustments to errors and time bounds.

We extend the relation≤ε,b,b1,b2 to task-PIOA families in the obvious way: Let
T 1 = {(T1)k}k∈N and T 2 = {(T2)k}k∈N be (pointwise) comparable task-PIOA
families, ε, b : N → R≥0, and b1, b2 : N → N. Then we say that T 1 ≤ε,b,b1,b2 T 2

provided that (T1)k ≤ε(k),b(k),b1(k),b2(k) (T2)k for every k.
Restricting attention to negligible error and polynomial time bounds, we ob-

tain a generic version of approximate implementation, ≤neg,pt; we will used this
relation throughout our analysis to express computational security properties. A
function ε : N → R≥0 is said to be negligible if, for every constant c ∈ R≥0, there
exists k0 ∈ N such that ε(k) < 1

kc for all k ≥ k0. (In other words, ε diminishes
more quickly than the reciprocal of any polynomial.) We say that T 1 ≤neg,pt T 2

if, for all polynomials p and p1, there is a polynomial p2 and a negligible function
ε such that T 1 ≤ε,p,p1,p2 T 2. We show that ≤neg,pt is transitive and preserved
under composition; for composition, we need to assume polynomial time bounds
for one of the task-PIOA families.

Theorem 1. Suppose T 1, T 2 and T 3 are three comparable task-PIOA families
such that T 1 ≤neg,pt T 2 and T 2 ≤neg,pt T 3. Then T 1 ≤neg,pt T 3.

Theorem 2. Suppose T 1, T 2 are comparable families of task-PIOAs such that
T 1 ≤neg,pt T 2, and suppose T 3 is a polynomial time-bounded task-PIOA family,
compatible with both T 1 and T 2. Then T 1‖T 3 ≤neg,pt T 2‖T 3.

Simulation Relations: In order to use simulation relations in a setting with
time bounds, we impose an additional assumption on the length of matching task
schedules: Given c ∈ N, a simulation R is said to be c-bounded if |corr(ρ1, T )| ≤ c
for all ρ1 and T . We have the following theorem:

Theorem 3. Let T 1 and T 2 be comparable task-PIOA families, c ∈ N. Suppose
that for every polynomial p, every k, and every p(k)-bounded environment Ek

for (T 1)k and (T 2)k, there exists a c-bounded simulation Rk from (T 1)k‖Ek to
(T 2)k‖Ek. Then T 1 ≤neg,pt T 2.

Proof. In [CCK+06b], soundness of simulation is proved as follows: Given
a simulation R between closed task-PIOAs T1 and T2, and a task schedule
ρ1 = T1, T2, . . . for T1, we construct a task schedule ρ2 for T2 by concatenat-
ing sequences returned by corr: ρ2 := corr(λ, T1) . . . corr(T1 . . . Tn, Tn+1) . . . (λ
denotes the empty sequence.) We then prove that tdist(ρ1) = tdist(ρ2). Note
that, if R is c-bounded, then the length of ρ2 is at most c · |ρ1|.

Now let polynomials p and p1 be given as in the definition of ≤neg,pt. Let p2

be c · p1 and ε be the constant-0 function. Using the proof outlined above, it is
easy to check that p2 and ε satisfy the requirements for ≤neg,pt. �
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5 Hard-Core Predicates
In this section, we reformulate the standard definition of hard-core predicates
using our approximate implementation relation ≤neg,pt. This is an important
step towards a fully formalized computational analysis of the OT protocol, since
the security of OT relies on properties of hard-core predicates.1 For the rest
of the paper, we fix a family D = {Dk}k∈N of finite domains and a family
Tdp = {Tdpk}k∈N of sets of trap-door permutations such that Dk is the domain
of every f ∈ Tdpk.

In the traditional definition, a function B :
⋃

k∈N Dk → {0, 1} is said to be a
hard-core predicate for Tdp if, whenever f and z are chosen randomly from Tdpk

and Dk, respectively, the bit B(f−1(z)) “appears random” to a probabilistic-
polynomial-time observer, even if f and z are given to the observer as inputs.
This captures the idea that f−1(z) cannot be computed efficiently from f and
z. More precisely, a hard-core predicate is defined by the following slight refor-
mulation of Definition 2.5.1 of [Gol01]:

Definition 1. A hard-core predicate for D and Tdp is a predicate B :
⋃

k∈N
Dk → {0, 1} such that (i) B is polynomial-time computable; and (ii) for every
probabilistic polynomial-time predicate G = {Gk}k∈N

2, there is a negligible func-
tion ε such that, for all k,

Pr[ f ← Tdpk;
z ← Dk;
b← B(f−1(z)) :
Gk(f, z, b) = 1 ]

−
Pr[ f ← Tdpk;

z ← Dk;
b← {0, 1} :
Gk(f, z, b) = 1 ]

≤ ε(k).

Note that, when A is a finite set, the notation x ← A means that x is selected
randomly (according to the uniform distribution) from A.

Our new definition uses ≤neg,pt to express the idea that B(f−1(z)) “appears
random”. We define two task-PIOA families, SH and SHR. The former outputs
random elements f and z from Tdpk and Dk, and the bit B(f−1(z)). The latter
does the same except B(f−1(z)) is replaced by a random element from {0, 1}.
Then B is said to be a hard-core predicate for D and Tdp if SH ≤neg,pt SHR.

Definition 2. B is said to be a hard-core predicate for D and Tdp if SH ≤neg,pt

SHR, where SH and SHR are defined as follows. For each k ∈ N, let μk and
μ′

k denote the uniform distributions on Tdpk and Dk, respectively. Let μ′′ be the
uniform distribution on {0, 1}.
SH is defined to be hide(Srctdp‖Srcyval‖H, {randyval(∗)}), where (i) Srctdp =

{Srctdp(Tdpk, μk)}k∈N; (ii) Srcyval = {Srcyval(Dk, μ
′
k)}k∈N; and (iii) each Hk

obtains f from Srctdp(Tdpk, μk) and y from Srcyval(Dk, μ
′
k), and outputs z :=

f(y) via action randzval and b := B(y) via action randbval (cf. Figure 2). Since
f is a permutation, this is equivalent to choosing z randomly and computing y
as f−1(z).
1 In [MMS03], an OT protocol using hard-core bits is analyzed in a process-algebraic

setting. However, that work does not include a formalization of hard-core predicates.
2 This is defined to be a family of predicates that can be evaluated by a family (Mk)k

of probabilistic polynomial-time Turing machines.
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randzval(∗)

randbval(∗)
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$©

randtdp(∗)

randzval(∗)

randbval(∗)

SH SHR

Fig. 2. SH and SHR

SHR is defined to be Srctdp‖Srczval‖Srcbval, where (i) Srctdp is as in SH; (ii)
Srczval = {Srczval(Dk, μ

′
k)}k∈N; and (iii) Srcbval = {Srcbval({0, 1}, μ′′)k}k∈N.

These two systems are represented in Fig. 2. There, the automata labeled with
$© represent the random source automata. We claim that these two definitions

of hard-core bits are equivalent:

Theorem 4. B is a hard-core predicate for D and Tdp according to Definition 1
if and only if B is a hard-core predicate for D and Tdp according to Definition 2.

To illustrate how our new definition of hard-core predicates can be exploited in
analyzing protocols, we show that a hard-core predicate can be applied twice,
and a probabilistic polynomial-time environment still cannot distinguish the
outputs from random values. We use this fact in our OT proof, in a situation
where the transmitter applies the hard-core predicate to both f−1(zval(0)) and
f−1(zval(1)), where f is the chosen trap-door function.

We show, if B is a hard-core predicate, then no probabilistic polynomial-time
environment can distinguish distribution (f, z(0), z(1), B(f−1(z(0))), B(f−1

(z(1)))) from distribution (f, z(0), z(1), b(0), b(1)), where f is a randomly-chosen
trap-door permutation, z(0) and z(1) are randomly-chosen elements of Dk, and
b(0) and b(1) are randomly-chosen bits. We do this by defining two task-PIOA
families, SH2 and SHR2, that produce the two distributions, and showing that
SH2 ≤neg,pt SHR2. Task-PIOA family SH2 is defined as

hide(Srctdp‖Srcyval0‖Srcyval1‖H0‖H1, {rand(∗)yval0, rand(∗)yval1}),

where Srctdp is as in the definition of SH, Srcyval0 and Srcyval1 are isomorphic
to Srcyval in SH, and H0 and H1 are two instances of H (with appropriate
renaming of actions). Task-PIOA family SHR2 is defined as

(Srctdp‖Srczval0‖Srczval1‖Srcbval0‖Srcbval1),

where Srctdp is as in SH2, Srczval0 and Srczval1 are isomorphic to Srczval in
SHR, and Srcbval0 and Srcbval1 are isomorphic to Srcbval in SHR.

Theorem 5. If B is a hard-core predicate, then SH2 ≤neg,pt SHR2.

Proof. Theorem 4 implies that SH ≤neg,pt SHR. To prove that SH2 ≤neg,pt

SHR2, we introduce a new task-PIOA family Int, which is intermediate between
SH2 and SHR2. Int is defined as
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hide(Srctdp‖Srcyval0‖H0‖Srczval1‖Srcbval1, {rand(∗)yval0}),

where Srctdp is exactly as in SH2 and SHR2; Srcyval0 and H0 are as in SH2;
and Srczval1 and Srcbval1 are as in SHR2. Thus, Int generates bval0 using the
hard-core predicate B, as in SH2, and generates bval1 randomly, as in SHR2.

To see that SH2 ≤neg,pt Int, note that Definition 1 implies that

hide(Srctdp‖Srcyval1‖H1, {rand(∗)yval1}) ≤neg,pt Srctdp‖Srczval1‖Srcbval1,

because these two systems are simple renamings of SH and SHR. Now let I be
the task-PIOA family hide(Srcyval0‖H0, {rand(∗)yval0}. It is easy to see, from
the code for the two components of I, that I is polynomial-time-bounded. Then
by Theorem 2,

hide(Srctdp‖Srcyval1‖H1, {rand(∗)yval1})‖I ≤neg,pt Srctdp‖Srczval1‖Srcbval1‖I.

Since the left-hand side of this relation is SH2 and the right-hand side is Int,
this implies SH2 ≤neg,pt Int.

Similarly, Int ≤neg,pt SHR2. Since SH2 ≤neg,pt Int and Int ≤neg,pt SHR2,
transitivity of ≤neg,pt (Theorem 1) implies that SH2 ≤neg,pt SHR2. �

6 Computational Security

Here, we explain how we define the security of cryptographic protocols, il-
lustrating with our OT example. Our method follows the general outline
in [PW01, Can01], which in turn follows standard practice in the computational
cryptography community. We first define a task-PIOA specifying the function-
ality the protocol is supposed to realize, then specify task-PIOAs describing the
protocol, and finally, define what it means for a protocol to securely realize its
specification.

The functionality task-PIOA represents a “trusted party” that receives pro-
tocol inputs and returns protocol outputs, at various locations. See the full ver-
sion of [Can01] for many examples of classical cryptographic functionalities. The
functionality we use for Oblivious Transfer is a task-PIOA Funct that behaves
as follows. First, it waits for two bits (x0, x1) representing the inputs for the
protocol’s first party (the transmitter), and one bit i representing the input for
the protocol’s second party (the receiver). Then, it outputs the bit xi to the
receiver, and nothing to the transmitter.

Since the definitions of protocols are typically parameterized by a security
parameter k, we define a protocol as a task-PIOA family π = {πk}k∈N, where πk

is the composition of the task-PIOAs specifying the roles of the different protocol
participants for parameter k. Given families D and Tdp, and a parameter k, the
OT protocol we consider executes as follows. First the transmitter Trans selects
a trapdoor permutation f from Tdpk, together with its inverse f−1, and sends
f to the receiver Rec. Then, using its input bit i and two randomly selected
elements (y0, y1) of Dk, Rec computes the pair (z0, z1) = (f1−i(y0), f i(y1)), and
sends it in a second protocol message to Trans . Finally, using its input bits
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(x0, x1), Trans computes the pair (b0, b1) = (x0 ⊕B(f−1(z0)), x1 ⊕B(f−1(z1)))
and sends it to Rec, who can now recover xi as B(yi)⊕ bi.

In order to define the security of a protocol with respect to a functionality,
we must specify a particular class of adversaries. Depending on the context, ad-
versaries may have different capabilities: they may have passive or active access
to the network, may be able to corrupt parties (either statically or dynami-
cally), may assume partial or full control of the parties, etc. Various scenarios
are discussed in [Can01]. We specify a particular class of adversaries by defin-
ing appropriate restrictions on the signature and transition relation of adversary
task-PIOAs. By composing an adversary task-PIOA Advk with a protocol task-
PIOA πk, we obtain what we call the real system.

For the OT protocol, we consider polynomial-time-bounded families of adver-
saries. The adversaries have passive access to protocol messages: they receive
and deliver messages (possibly delaying, reordering, or losing messages), but do
not compose messages of their own. They may corrupt parties only statically (at
the start of execution). They are “honest-but-curious”: they obtain access to all
internal information of the corrupted parties, but the parties continue to follow
the protocol definition. In this paper, we discuss only one corruption case, in
which only the receiver is corrupted. In this case, the adversary gains access to
the input and output of Rec (that is, i and xi), and to its internal choices (that
is, y0 and y1). However, as we said above, Rec continues to follow the protocol
definition, so we model it as a component distinct from the adversary.

In order to prove that the protocol realizes the functionality, we show that,
for every adversary family Adv of the considered class, there is another task-
PIOA family Sim, called a simulator, that can mimic the behavior of Adv by
interacting with the functionality. This proves that the protocol does not reveal
to the adversary any information it does not need to reveal—that is, anything
not revealed by the functionality itself.

The quality of emulation is evaluated from the viewpoint of one last task-
PIOA, the environment. Thus, security of the protocol says that no environment
can efficiently decide if it is interacting with the real system, or with the compo-
sition of the functionality and the simulator (we call this composition the ideal
system). This indistinguishability condition is formalized as follows:

Theorem 6. Let RS be a real-system family, in which the family Adv of ad-
versary automata is polynomial-time-bounded. Then there exists an ideal-system
family IS , in which the family Sim is polynomial-time-bounded, and such that
RS ≤neg,pt IS .

In the statement of Theorem 6, quantification over environments is encapsulated
within the definition of ≤neg,pt: RS ≤neg,pt IS says, for every polynomial time-
bounded environment family Env and every polynomial-bounded task schedule
for RS‖Env, there is a polynomial-bounded task schedule for IS‖Env such that
the acceptance probabilities in these two systems differ by a negligible amount.

7 Levels-of-Abstraction Proofs
In order to prove that Theorem 6 holds for the OT protocol and the adversaries of
Section 6, we show the existence of an ideal system family IS with RS ≤neg,pt IS .
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To that end, we build a structured simulator family SSim from any adversary
family Adv : for every index k, SSimk is the composition of Advk with an abstract
version of πk based on a task-PIOA TR(Dk, T dpk). TR works as follows. First,
it selects and sends a random element f of Tdpk, as Trans would. Then, when
Advk has delivered f , TR emulates Rec: it chooses a random pair (y0, y1) of
elements of Dk, and sends the second protocol message, computed as the pair
(f1−i(y0), f i(y1)). Next, TR generates the third protocol message using the bit
xi obtained from the Funct, which TR obtains because xi is an output at the
corrupted receiver. Namely, TR computes bi as B(yi)⊕xi and b1−i as a random
bit. Observe that, if Adv is polynomial-time-bounded, then so is SSim. Also, if
we define SIS by SISk = Funct‖SSimk, then SIS is an ideal system family.

In showing that RS ≤neg,pt SIS , we define two intermediate families of sys-
tems, Int1 and Int2 , and decompose the proof into showing three subgoals:
RS ≤neg,pt Int1 , Int1 ≤neg,pt Int2 , and Int2 ≤neg,pt SIS . All arguments in-
volving computational indistinguishability and other cryptographic issues are
isolated to the middle level, namely, Int1 ≤neg,pt Int2 .

The Int1k system is almost the same as SISk, except that TR is replaced by
TR1 , which differs from TR as follows. First, it has an extra input in(x)Trans ,
obtaining the protocol input (x0, x1) intended for the transmitter. Second, it
computes the third protocol message differently: the bit bi is computed as in TR,
but the bit b1−i is computed using the hard-core predicate B, as B(f−1(z1−i))⊕
x1−i. The Int2k system is defined to be the same as SISk except that it includes
a random source automaton Srccval1 that chooses a random bit cval1, and TR
is replaced by TR2 , which is essentially the same as TR1 except that b1−i is
computed as cval1⊕ x1−i.

Our proofs that RS ≤neg,pt Int1 and Int2 ≤neg,pt SIS use simulation rela-
tions. To prove that RS ≤neg,pt Int1 , we show that, for every polynomial p,
for every k, and for every p(k)-bounded environment Envk for RSk and Int1k,
there is a c-bounded simulation relation Rk from RSk‖Envk to Int1k‖Envk,
where c is a constant. Using Theorem 3, we obtain RS ≤neg,pt Int1 . Our proof
of Int2 ≤neg,pt SIS is similar, but with an interesting aspect. Namely, we show
that computing the bit b1−i as a random bit is equivalent to computing it as the
XOR of a random bit and the input bit xi.

Our proof that Int1 ≤neg,pt Int2 uses a computational argument, based on
our definition of a hard-core predicate. The only difference between Int1 and
Int2 is that a use of B(f−1(z1−i)) in Int1 is replaced by a random bit in Int2 .
This is precisely the difference between the SR and SHR systems discussed in
Section 5. In order to exploit the fact that SR ≤neg,pt SHR, we build an interface
task-PIOA family Ifc which represents the common parts of Int1 and Int2 .
Then, we prove: (i) Int1 ≤neg,pt SH‖Ifc‖Adv and SHR‖Ifc‖Adv ≤neg,pt Int2 by
exhibiting simple, constant-bounded simulation relations between these systems,
and (ii) SH‖Ifc‖Adv ≤neg,pt SHR‖Ifc‖Adv by using our definition, Definition 2,
of hard-core predicates, the fact that both Ifc and Adv are polynomial-time-
bounded, and the composition property of ≤neg,pt (Theorem 2). Finally, using
transitivity of ≤neg,pt (Theorem 1), we have RS ≤neg,pt SIS, as needed.
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8 Conclusions

We have introduced time-bounded task-PIOAs and task-PIOA families, building
on the task-PIOA framework of [CCK+06a, CCK+06b]. We have adapted ba-
sic machinery, such as composition and hiding operations, and implementation
and simulation relations, to time-bounded task-PIOAs. We have demonstrated
the use of this framework in formulating and proving computational security
properties for an Oblivious Transfer protocol [EGL85, GMW87]. Our proofs are
decomposed into several stages, each showing an implementation relationship,
≤neg,pt, between two systems. Most of these implementations are proved using
simulation relations to match corresponding events and probabilities in the two
systems. Others are proved using computational arguments involving reduction
to the security of cryptographic primitives. Traditional reduction arguments for
cryptographic primitives are reformulated in terms of ≤neg,pt.

Our framework supports separation of scheduling concerns into two pieces:
high-level scheduling, which is controlled by an algorithmic entity (e.g., the ad-
versary component), and low-level scheduling, which is resolved nondeterminis-
tically by a task schedule. This separation allows inessential ordering of events
to remain as nondeterministic choices in our system models, which increases the
generality and reduces the complexity of the models and proofs.

We believe that the model and techniques presented here provide a suitable
basis for analyzing a wide range of cryptographic protocols, including those
that depend inherently on computational assumptions and achieve only compu-
tational security. Future plans include applying our methods to analyze more
complex protocols, including protocols that use other cryptographic primitives
and protocols that work against more powerful adversaries. We plan to establish
general security protocol composition theorems in the style of [Can01, PW01]
within our framework. We would like to formulate general patterns of adversarial
behavior, in the style of [PW01], within our framework, and use this formulation
to obtain general results about the security of the resulting systems.
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Abstract. In this paper we address the problem of consistency for cryptographic
file systems. A cryptographic file system protects the users’ data from the file
server, which is possibly untrusted and might exhibit Byzantine behavior, by en-
crypting the data before sending it to the server. The consistency of the encrypted
file objects that implement a cryptographic file system relies on the consistency
of the two components used to implement them: the file storage protocol and the
key distribution protocol.

We first define two generic classes of consistency conditions that extend and
generalize existing consistency conditions. We then formally define consistency
for encrypted file objects in a generic way: for any consistency conditions for the
key and file objects belonging to one of the two classes of consistency conditions
considered, we define a corresponding consistency condition for encrypted file
objects. We finally provide, in our main result, necessary and sufficient conditions
for the consistency of the key distribution and file storage protocols under which
the encrypted storage is consistent. Our framework allows the composition of ex-
isting key distribution and file storage protocols to build consistent encrypted file
objects and simplifies complex proofs for showing the consistency of encrypted
storage.

1 Introduction

Consistency for a file system that supports data sharing specifies the semantics of mul-
tiple users accessing files simultaneously. Intuitively, the ideal model of consistency
would respect the real-time ordering of file operations, i.e., a read would return the last
written version of that file. This intuition is captured in the model of consistency known
as linearizability [16], though in practice, such ideal consistency models can have high
performance penalties. It is well known that there is a tradeoff between performance
and consistency. As such, numerous consistency conditions weaker than linearizability,
and that can be implemented more efficiently in various contexts, have been explored.
Sequential consistency [19], causal consistency [4], PRAM consistency [22] and more
recently, fork consistency [24], are several examples.

In this paper we address the problem of consistency for encrypted file objects used to
implement a cryptographic file system. A cryptographic file system protects the users’
data from the file server, which is possibly untrusted and might exhibit Byzantine be-
havior, by encrypting the data before sending it to the server. When a file can be shared,
the decryption key must be made available to authorized readers, and similarly autho-
rized writers of the file must be able to retrieve the encryption key or else create one of
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their own. In this sense, a key is an object that, like a file, is read and/or written in the
course of implementing the abstraction of an encrypted file.

Thus, an encrypted file object is implemented through two main components: the key
object that stores the encryption key, and the file object that stores (encrypted) file con-
tents. We emphasize that the key and file objects may be implemented via completely
different protocols and infrastructures. Our concern is the impact of the consistency of
each on the encrypted file object that they are used to implement. The consistency of the
file object is obviously essential to the consistency of the encrypted data retrieved. At
the same time, the encryption key is used to protect the confidentiality of the data and
to control access to the file. So, if consistency of the key object is violated, this could
interfere with authorized users decrypting the data retrieved from the file object, or it
might result in a stale key being used indefinitely, enabling revoked users to continue
accessing the data. We thus argue that the consistency of both the key and file objects
affects the consistency of the encrypted file object. Knowing the consistency of a key
distribution and a file access protocol, our goal is to find necessary and sufficient con-
ditions that ensure the consistency of the encrypted file that the key object and the file
object are utilized to implement.

The problem that we consider is related to the locality problem. A consistency con-
dition is local if a history of operations on multiple objects satisfies the consistency
condition if the restriction of the history to each object does so. However, locality is a
very restrictive condition and, to our knowledge, only very powerful consistency condi-
tions, such as linearizability, satisfy it. In contrast, the combined history of key and file
operations can satisfy weaker conditions and still yield a consistent encrypted file. We
give a generic definition of consistency (C1,C2)enc for an encrypted file object, start-
ing from any consistency conditions C1 and C2 for the key and file objects that belong
to one of the two classes of generic conditions we define. Intuitively, our consistency
definition requires that the key and file operations seen by each client can be arranged
such that they preserve C1-consistency for the key object and C2-consistency for the
file object, and, in addition, the latest key versions are used to encrypt file contents. The
requirement that the most recent key versions are used for encrypting new file contents
is important for security, as usually the encryption key for a file is changed when some
users are revoked access to the file. We allow the decryption of a file content read with a
previous key version (not necessarily the most recent seen by the client), as this would
not affect security. Thus, a system implementing our definition guarantees both consis-
tency for file contents and security in the sense that revoked users are restricted access
to the encrypted file object.

Rather than investigate consistency for a single implementation of an encrypted file,
we consider a collection of implementations that are all key-monotonic. Intuitively, in
a key-monotonic implementation, there exists a consistent ordering of file operations
such that the written file contents are encrypted with monotonically increasing key ver-
sions. We formally define this property that depends on the consistency of the key and
file objects. We prove in our main result (Theorem 1) that ensuring that an implementa-
tion is key-monotonic is a necessary and sufficient condition for obtaining consistency
for the encrypted file object, given several restrictions on the consistency of the key
and file objects. Our main result provides a framework to analyze the consistency of a
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given implementation of an encrypted file object: if the key object and file object sat-
isfy consistency conditions C1 and C2, respectively, and the given implementation is
key-monotonic with respect to C1 and C2, then the encrypted file object is (C1,C2)enc-
consistent.

In this context, we summarize our contributions as follows:

– We define two generic classes of consistency conditions. The class of orderable
consistency conditions includes and generalizes well-known conditions such as lin-
earizability, causal consistency and PRAM consistency. The class of forking con-
sistency conditions is particularly tailored to systems with untrusted shared storage
and extends fork consistency [24] to other new, unexplored consistency conditions.

– We define consistency for encrypted files: for any consistency conditions C1 and
C2 of the key and file objects that belong to these two classes, we define a corre-
sponding consistency condition (C1,C2)enc for encrypted files. To our knowledge,
our paper is the first to rigorously formalize consistency conditions for encrypted
files.

– Our main result provides necessary and sufficient conditions that enable an en-
crypted file to satisfy our definition of consistency. Given a key object that satisfies
a consistency property C1, and a file object with consistency C2 from one of the
classes we define, our main theorem states that it is enough to ensure the key-
monotonicity property in order to obtain consistency for the encrypted file object.
This result is subject to certain restrictions on the consistency conditions C1 and
C2.

In addition, in the full version of this paper [26], we give an example implementation
of a consistent encrypted file from a sequentially consistent key object and a fork con-
sistent file object. The proof of consistency of the implementation follows immediately
from our main theorem. This demonstrates that complex proofs for showing consistency
of encrypted files are simplified using our framework.

The rest of the paper is organized as follows: we survey related work in Section 2,
and give the basic definitions, notation and system model in Section 3. We define the
two classes of consistency conditions in Section 4 and give the definition of consistency
for encrypted files in Section 5. Our main result, a necessary and sufficient condition
for constructing consistent encrypted files, is presented in Section 6.

2 Related Work

SUNDR [21] is the first file system that provides consistency guarantees (fork consis-
tency [24]) in a model with a Byzantine storage server and benign clients. In SUNDR,
the storage server keeps a signed version structure for each user of the file system. The
version structures are modified at each read or write operation and are totally ordered
as long as the server respects the protocol. A misbehaving server might conceal users’
operations from each other and break the total order among version structures, with the
effect that users get divided into groups that will never see the same system state again.
SUNDR only provides data integrity, but not data confidentiality. In contrast, we are
interested in providing consistency guarantees in encrypted storage systems in which
keys may change, and so we must consider distribution of the encryption keys, as well.
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For obtaining consistency conditions stronger than fork consistency (e.g., lineariz-
ability) in the face of Byzantine servers, one solution is to distribute the file server
across n replicas, and use this replication to mask the behavior of faulty servers. Mod-
ern examples include BFT [9], SINTRA [8] and PASIS [1]. An example of a distributed
encrypting file system that provides strong consistency guarantees for both file data
and meta-data is FARSITE [2]. File meta-data in FARSITE (that also includes the en-
cryption key for the file) is collectively managed by all users that have access to the
file, using a Byzantine fault tolerant protocol. There exist distributed implementations
of storage servers that guarantee weaker semantics than linearizability. Lakshmanan
et al. [18] provide causal consistent implementations for a distributed storage system.
While they discuss encrypted data, they do not treat the impact of encryption on the
consistency of the system.

Several network encrypting file systems, such as SiRiUS [14] and Plutus [17], de-
velop interesting ideas for access control and user revocation, but they both leave the
key distribution problem to be handled by clients through out-of-band communication.
Since the key distribution protocol is not specified, neither of the systems makes any
claims about consistency. Other file systems address key management: e.g., SFS [23]
separates key management from file system security and gives multiple schemes for
key management; Cepheus [12] relies on a trusted server for key distribution; and
SNAD [25] uses separate key and file objects to secure network attached storage. How-
ever, none of these systems addresses consistency. We refer the reader to the survey
by Riedel et al. [27] for an extensive comparison of the security properties of various
encrypting file systems.

Another area related to our work is that of consistency semantics. Different ap-
plications have different consistency and performance requirements. For this reason,
many different consistency conditions for shared objects have been defined and imple-
mented, ranging from strong conditions such as linearizability [16], sequential consis-
tency [19], and timed consistency [28] to loose consistency guarantees such as causal
consistency [4], PRAM [22], coherence [15,13], processor consistency [15,13,3], weak
consistency [10], entry consistency [7], and release consistency [20]. A generic, con-
tinuous consistency model for wide-area replication that generalizes the notion of se-
rializability [6] for transactions on replicated objects has been introduced by Yu and
Vahdat [30]. We construct two generic classes of consistency conditions that include
and extend some of the existing conditions for shared objects.

Different properties of generic consistency conditions for shared objects have been
analyzed in previous work, such as locality [29] and composability [11]. Locality ana-
lyzes for which consistency conditions a history of operations is consistent, given that
the restriction of the history to each individual object satisfies the same consistency
property. Composability refers to the combination of two consistency conditions for a
history into a stronger, more restrictive condition. In contrast, we are interested in the
consistency of the combined history of key and file operations, given that the individ-
ual operations on keys and files satisfy possibly different consistency properties. We
also define generic models of consistency for histories of operations on encrypted file
objects that consist of operations on key and file objects.

Generic consistency conditions for shared objects have been restricted previously
only to conditions that satisfy the eventual propagation property [11]. Intuitively, even-
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tual propagation guarantees that all the write operations are eventually seen by all
processes. This assumption is no longer true when the storage server is potentially faulty
and we relax this requirement for the class of forking consistency conditions we define.

3 Preliminaries
3.1 Basic Definitions and System Model

Most of our definitions are taken from Herlihy and Wing [16]. We consider a system
to be a set of processes p1, . . . , pn that invoke operations on a collection of shared
objects. Each operation o consists of an invocation inv(o) and a response res(o). We
only consider read and write operations on single objects. A write of value v to object
X is denotedX.write(v) and a read of value v from objectX is denoted v ← X.read().

A history H is a sequence of invocations and responses of read and write operations
on the shared objects. We consider only well-formed histories, in which every invo-
cation of an operation in a history has a matching response. We say that an operation
belongs to a history H if its invocation and response are in H . A sequential history
is a history in which every invocation of an operation is immediately followed by the
corresponding response. A serialization S of a history H is a sequential history con-
taining all the operations of H and no others. An important concept for consistency is
the notion of a legal sequential history, defined as a sequential history in which read
operations return the values of the most recent write operations.

Notation. For a history H and a process pi, we denote by H |pi the sequential history
of operations in H done by pi. For a history H and objects X1, . . . , Xn, we denote by
H |(X1, . . . , Xn) the restriction of H to operations on objects X1, . . . , Xn. We denote
by H |w all the write operations in history H and by H |pi +w the operations in H done
by process pi and all the write operations done by all processes in history H .

3.2 Eventual Propagation

A history satisfies eventual propagation [11] if, intuitively, all the write operations done
by the processes in the system are eventually seen by all processes. However, the or-
der in which processes see the operations might be different. More formally, eventual
propagation is defined below:

Definition 1 (Eventual Propagation and Serialization Set). A history H satisfies
eventual propagation if for every process pi, there exists a legal serialization Spi of
H |pi + w. The set of legal serializations for all processes S = {Spi}i is called a
serialization set [11] for history H .

If a history H admits a legal serialization S, then a serialization set {Spi}i with Spi =
S|pi +w can be constructed and it follows immediately that H satisfies eventual prop-
agation.

3.3 Ordering Relations on Operations

There are several natural partial ordering relations that can be defined on the operations
in a history H . Here we describe three of them: the local (or process order), the causal
order and the real-time order.
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Definition 2 (Ordering Relations). Two operations o1 and o2 in a history H are or-
dered by local order (denoted o1

lo−→ o2) if there exists a process pi that executes o1

before o2.
The causal order extends the local order relation. We say that an operation o1 di-

rectly precedes o2 in history H if either o1
lo−→ o2, or o1 is a write operation, o2 is a

read operation and o2 reads the result written by o1. The causal order (denoted
∗−→ )

is the transitive closure of the direct precedence relation.
Two operations o1 and o2 in a history H are ordered by the real-time order (denoted

o1 <H o2) if res(o1) precedes inv(o2) in history H .

A serialization S of a history H induces a total order relation on the operations of H ,
denoted

S−→ . Two operations o1 and o2 in H are ordered by
S−→ if o1 precedes o2 in

the serialization S.
On the other hand, a serialization set S = {Spi}i of a history H induces a partial

order relation on the operations of H , denoted
S−→ . For two operations o1 and o2 in

H , o1
S−→ o2 if and only if (i) o1 and o2 both appear in at least one serialization Spi

and (ii) o1 precedes o2 in all the serializations Spi in which both o1 and o2 appear. If o1

precedes o2 in one serialization, but o2 precedes o1 in a different serialization, then the
operations are concurrent with respect to

S−→ .

4 Classes of Consistency Conditions

The goal of this paper is to analyze the consistency of encrypted file systems generically
and give necessary and sufficient conditions for its realization. A consistency condition
is a set of histories. We say that a history H is C-consistent if H ∈ C (this is also
denoted by C(H)). Given consistency conditions C and C′, C is stronger than C′ if
C ⊆ C′.

As the space of consistency conditions is very large, we need to restrict ourselves
to certain particular and meaningful classes for our analysis. One of the challenges we
faced was to define interesting classes of consistency conditions that include some of
the well known conditions defined in previous work (i.e., linearizability, causal con-
sistency, PRAM consistency). Generic consistency conditions have been analyzed pre-
viously (e.g., [11]), but the class of consistency conditions considered was restricted
to conditions with histories that satisfy eventual propagation. Given our system model
with a potentially faulty shared storage, we cannot impose this restriction on all the
consistency conditions we consider in this work.

We define two classes of consistency conditions, differentiated mainly by the even-
tual propagation property. The histories that belong to conditions from the first class
satisfy eventual propagation and are orderable, a property we define below. The histo-
ries that belong to conditions from the second class do not necessarily satisfy eventual
propagation, but the legal serializations of all processes can be arranged into a fork-
ing tree. This class includes fork consistency [24], and extends that definition to other
new, unexplored consistency conditions. The two classes do not cover all the existing
consistency conditions.
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4.1 Orderable Conditions

Intuitively, a consistency condition C is orderable if it contains only histories for which
there exists a serialization set that respects a certain partial order relation. Consider the
example of causal consistency [4] defined as follows: a history H is causally consistent
if and only if there exists a serialization set S ofH that respects the causal order relation,
i.e.,

∗−→ ⊆ S−→ . We generalize the requirement that the serialization set respects the
causal order to more general partial order relations. A subtle point in this definition is
the specification of the partial order relation. First, it is clear that the partial order needs
to be different for every condition C. But, analyzing carefully the definition of the causal
order relation, we notice that it depends on the history H . We can thus view the causal
order relation as a family of relations, one for each possible history H . Generalizing,
in the definition of an orderable consistency condition C, we require the existence of a
family of partial order relations, indexed by the set of all possible histories, denoted by
{ C,H−→ }H . Additionally, we require that each relation

C,H−→ respects the local order of
operations in H .

Definition 3 (Orderable Consistency Conditions). A consistency condition C is or-
derable if there exists a family of partial order relations { C,H−→}H , indexed by the set of
all possible histories, with

lo−→⊆ C,H−→ for all histories H such that:

H ∈ C⇔ there exists a serialization set S of H with
C,H−→⊆ S−→ .

Given a history H from class C, a serialization set S of H that respects the order
relation

C,H−→ is called a C-consistent serialization set of H .

We define class CO to be the set of all orderable consistency conditions. A subclass of
interest is formed by those consistency conditions in CO that contain only histories for
which there exists a legal serialization of their operations. We denote C+

O this subclass
of CO. For a consistency condition C from class C+

O , a serialization S of a history H that

respects the order relation
C,H−→ , i.e.,

C,H−→⊆ S−→ , is called a C-consistent serialization
of H .

Linearizability [16] and sequential consistency [19] belong to C+
O (with the corre-

sponding ordering relations <H and
lo−→ , respectively), and PRAM [22] and causal

consistency [4] to CO \ C+
O (with the corresponding ordering relations

lo−→ and
∗−→ ,

respectively).

4.2 Forking Conditions

To model encrypted file systems over untrusted storage, we need to consider consistency
conditions that might not satisfy the eventual propagation property. In a model with
potentially faulty storage, it might be the case that a process views only a subset of the
writes of the other processes, besides the operations it performs. For this purpose, we
need to extend the notion of serialization set.

Definition 4 (Extended and Forking Serialization Sets). An extended serialization
set of a history H is a set S = {Spi}i with Spi a legal serialization of a subset of
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operations from H , that includes (at least) all the operations done by process pi. A
forking serialization set of a history H is an extended serialization set S = {Spi}i such
that for all i, j, (i 
= j), any o ∈ Spi ∩ Spj , and any o′ ∈ Spi:

o′
Spi−→ o⇒ (o′ ∈ Spj ∧ o′

Spj−→ o).

A forking serialization set is an extended serialization set with the property that its seri-
alizations can be arranged into a “forking tree”. Intuitively, arranging the serializations
in a tree means that any two serializations might have a common prefix of identical
operations, but once they diverge, they do not contain any of the same operations. Thus,
the operations that belong to a subset of serializations must be ordered the same in all
those serializations. A forking consistency condition includes only histories for which
a forking serialization set can be constructed. Moreover, each serialization Spi in the
forking tree is a C-consistent serialization of the operations seen by pi, for C a consis-
tency condition from C+

O .

Definition 5 (Forking Consistency Conditions). A consistency condition FORK-C is
forking if:

1. C is a consistency condition from C+
O;

2. H ∈ FORK-C if and only if there exists a forking serialization set S = {Spi}i for
history H with the property that each Spi is C-consistent.

We define class CF to be the set of all forking consistency conditions FORK-C. It is
immediate that for consistency conditions C,C1 and C2 in C+

O , (i) C is stronger than
FORK-C, and (ii) if C1 is stronger than C2, then FORK-C1 is stronger than FORK-C2.
CF extends the notion of fork consistency defined by Mazieres and Shasha [24].

5 Definition of Consistency for Encrypted Files

We can construct an encrypted file object using two components, the file object and the
key object whose values are used to encrypt file contents. File and key objects might be
implemented via different protocols and infrastructures. For the purpose of this paper,
we consider each file to be associated with a distinct encryption key. We could easily
extend this model to accommodate different granularity levels for the encryption keys
(e.g., a key for a group of files).

Users perform operations on an encrypted file object that involve operations on both
the file and the key objects. For example, a read of an encrypted file might require
a read of the encryption key first, then a read of the file and finally a decryption of
the file with the key read. We refer to the operations exported by the storage interface
(i.e., operations on encrypted file objects) to its users as “high-level” operations and the
operations on the file and key objects as “low-level” operations.

We model a cryptographic file system as a collection of encrypted files. Different
cryptographic file systems export different interfaces of high-level operations to their
users. We can define consistency for encrypted file objects offering a wide range of
high-level operation interfaces, as long as the high-level operations consist of low-level
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write and read operations on key and file objects. We do assume that a process that
creates an encryption key writes this to the relevant key object before writing any files
encrypted with that key.

The encryption key for a file is changed most probably when some users are revoked
access to the file, and thus, for security reasons, we require that clients use the most
recent key they have seen to write new file contents. However, it is possible to use older
versions of the encryption key to decrypt a file read. For example, in a lazy revocation
model [12,17,5], the re-encryption of a file is not performed immediately when a user is
revoked access to the file and the encryption key for that file is changed, but it is delayed
until the next write to that file. Thus, in the lazy revocation model older versions of the
key might be used to decrypt files, but new file contents are encrypted with the most
recent key. In our model, we can accommodate both the lazy revocation method and
the active revocation method in which a file is immediately re-encrypted with the most
recent encryption key at the moment of revocation.

For completeness, here we give an example of a high-level operation interface for an
encrypted file object ENCF, which is used in the example implementation given in the
full version of this paper [26] :

1. Create a file, denoted as ENCF.create file(f). This operation generates a new en-
cryption key k for the file, writes k to the key object and writes the file content f
encrypted with key k to the file object.

2. Encrypt and write a file, denoted as ENCF.write encfile(f). This operation writes
an encryption of file contents f to the file object, using the most recent encryption
key that the client read.

3. Read and decrypt a file, denoted as f ← ENCF.read encfile(). This operation reads
an encrypted file from the file object and then decrypts it to f .

4. Write an encryption key, denoted as ENCF.write key(k). This operation changes
the encryption key for the file to a new value k. Optionally, it re-encrypts the file
contents with the newly generated encryption key if active revocation is used.

Consider a fixed implementation of high-level operations from low-level read and write
operations. Each execution of a history H of high-level operations naturally induces
a history Hl of low-level operations by replacing each completed high-level operation
with the corresponding sequence of invocations and responses of the low-level opera-
tions. In the following, we define consistency (C1,C2)enc for encrypted file objects, for
any consistency properties C1 and C2 of the key distribution and file access protocols
that belong to classes CO or CF .

Definition 6. (Consistency of Encrypted File Objects) Let H be a history of completed
high-level operations on an encrypted file object ENCF and C1 and C2 two consistency
properties from CO. Let Hl be the corresponding history of low-level operations on key
object KEY and file object FILE induced by an execution of high-level operations. We
say that H is (C1,C2)enc-consistent if there exists a serialization set S = {Spi}i of Hl

such that:

1. S is enc-legal, i.e.: For every file write operation o = FILE.write(c), there is an
operation KEY.write(k) such that: c was generated through encryption with key
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k, KEY.write(k)
Spi−→ o and there is no KEY.write(k′) with KEY.write(k)

Spi−→
KEY.write(k′)

Spi−→ o for all i;
2. S|KEY = {Spi |KEY}i is a C1-consistent serialization set of Hl|KEY;
3. S|FILE = {Spi |FILE}i is a C2-consistent serialization set of Hl|FILE;
4. S respects the local ordering of each process.

Intuitively, our definition requires that there is an arrangement (i.e., serialization set)
of key and file operations such that the most recent key write operation before each
file write operation seen by each client is the write of the key used to encrypt that
file. In addition, the serialization set should respect the desired consistency of the key
distribution and file access protocols.

If both C1 and C2 belong to C+
O , then the definition should be changed to require the

existence of a serialization S of Hl instead of a serialization set. Similarly, if C2 belongs
to CF , we change the definition to require the existence of an extended serialization set
{Spi}i of Hl. In the latter case, the serialization Spi for each process might not contain
all the key write operations, but it has to include all the key operations that write key
values used in subsequent file operations in the same serialization. Conditions (1), (2),
(3) and (4) remain unchanged.

The definition can be immediately generalized to multiple encrypted file objects, as
was done in the full version of this paper [26].

6 A Necessary and Sufficient Condition for the Consistency of
Encrypted File Objects

After defining consistency for encrypted file objects, here we give necessary and suf-
ficient conditions for the realization of the definition. We first outline the dependency
among encryption keys and file objects, and then define a property of histories that en-
sures that file write operations are executed in increasing order of their encryption keys.
Histories that satisfy this property are called key-monotonic. Our main result, Theo-
rem 1, states that, provided that the key distribution and the file access protocols satisfy
some consistency properties C1 and C2 with some restrictions, the key-monotonicity
property of the history of low-level operations is necessary and sufficient to implement
(C1,C2)enc consistency for the encrypted file object.

6.1 Dependency among Values of Key and File Objects

Each write and read low-level operation is associated with a value. The value of a write
operation is its input argument and that of a read operation its returned value. For o a
file operation with value f done by process pi, k the value of the key that encrypts f and
w = KEY.write(k) the operation that writes the key value k, we denote the dependency
among operations w and o by R(w, o) and say that file operation o is associated with
key operation w.

The relation R(w, o) implies a causal order relation in the history of low-level op-
erations between operations w and o. Since process pi uses the key value k to encrypt
the file content f , then either: (1) in process pi there is a read operation r = (k ←
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KEY.read()) such that w
∗−→ r

lo−→ o, which implies w
∗−→ o; or (2) w is done

by process pi, in which case w
lo−→ o, which implies w

∗−→ o. In either case, the file
operation o is causally dependent on the key operation w that writes the value of the
key used in o.

6.2 Key-Monotonic Histories

A history of key and file operations is key-monotonic if, intuitively, it admits a consis-
tent serialization for each process in which the file write operations use monotonically
increasing versions of keys for encryption of their values. Intuitively, if a client uses a
key version to perform a write operation on a file, then all the future write operations
on the file object by all the clients will use this or later versions of the key.

We give an example in Figure 1 of a history that is not key-monotonic for sequential
consistent keys and linearizable files. Here c1 and c2 are file values encrypted with key
values k1 and k2, respectively. k1 is ordered before k2 with respect to the local order.
FILE.write(c1) is after FILE.write(c2) with respect to the real-time ordering, and, thus,
in any linearizable serialization of file operations, c2 is written before c1.

p1 : KEY.write(k1) KEY.write(k2)

p2 : k1←KEY.read() FILE.write(c1)

p3 : k2←KEY.read() FILE.write(c2)

Fig. 1. A history that is not key-monotonic

To define key-monotonicity for a low-level history formally, we would like to find the
minimal conditions for its realization, given that the key operations in the history satisfy
consistency condition C1 and the file operations satisfy consistency condition C2. We
assume that the consistency C1 of the key operations is orderable. Two conditions have
to hold in order for a history to be key-monotonic: (1) the key write operations cannot
be ordered in opposite order of the file write operations that use them; (2) file write
operations that use the same keys are not interleaved with file write operations using a
different key.

Definition 7 (Key-Monotonic History). Consider a history H with two objects, key
KEY and file FILE, such that C1(H |KEY) and C2(H |FILE), where C1 is an orderable
consistency condition and C2 belongs to either CO or CF . H is a key-monotonic his-
tory with respect to C1 and C2, denoted KMC1,C2(H), if there exists a C2-consistent
serialization (or serialization set or forking serialization set) S of H |FILE such that the
following conditions holds:

– (KM1) for any two file write operations f1
S−→ f2 with associated key write

operations k1 and k2 (i.e., R(k1, f1), R(k2, f2)), it cannot happen that k2
C1,H|KEY−→

k1.
– (KM2) for any three file write operations f1

S−→ f2
S−→ f3, and key write

operation k with R(k, f1) and R(k, f3), it follows that R(k, f2).
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The example we gave in Figure 1 violates the first condition. If we consider f2 =
FILE.write(c2), f1 = FILE.write(c1), then f2 is ordered before f1 in any linearizable
serialization and k1 is ordered before k2 with respect to the local order. But condition
(KM1) states that it is not possible to order key write k1 before key write k2.

The first condition (KM1) is enough to guarantee key-monotonicity for a history H

when the key write operations are uniquely ordered by the ordering relation
C1,H|KEY−→ . To

handle concurrent key writes with respect to
C1,H|KEY−→ , we need to enforce the second con-

dition (KM2) for key-monotonicity. Condition (KM2) rules out the case in which uses
of the values written by two concurrent key writes are interleaved in file operations in a
consistent serialization. Consider the example from Figure 2 that is not key-monotonic
for sequential consistent key operations and linearizable file operations. In this exam-
ple c1 and c′1 are encrypted with key value k1, and c2 is encrypted with key value k2.
A linearizable serialization of the file operations is: FILE.write(c1); FILE.write(c2);
FILE.read(c2); FILE.write(c′1), and this is not key-monotonic. k1 and k2 are not or-
dered with respect to the local order, and as such the history does not violate condition
(KM1). However, condition (KM2) is not satisfied by this history.

p1 : KEY.write(k1) FILE.write(c′1)

p2 : KEY.write(k2) c2←FILE.read()

p3 : k1←KEY.read() FILE.write(c1) k2←KEY.read() FILE.write(c2)

Fig. 2. A history that does not satisfy condition (KM2)

In cryptographic file system implementations, keys are usually changed only by one
process, who might be the owner of the file or a trusted entity. For single-writer objects,
it can be proved that sequential consistency, causal consistency and PRAM consistency
are equivalent. Since we require the consistency of key objects to be orderable and all
orderable conditions are at least PRAM consistent (i.e., admit serialization sets that re-
spect the local order), the weakest consistency condition in the class of orderable condi-
tions for single writer objects is equivalent to sequential consistency. If the key distribu-
tion protocol is sequential consistent, the key-monotonicity conditions given in Defini-
tion 7 can be simplified. We present below the simplified condition. The proof of equiva-
lence with the conditions from Definition 7 is given in the full version of this paper [26].

Proposition 1. Let H be a history of operations on the single-writer key object KEY
and file object FILE such that H |KEY is sequential consistent. H is key-monotonic if
and only if the following condition is true:

(SW-KM) There exists a C2-consistent serialization S (or serialization set or forking
serialization set) of H |FILE such that for any two file write operations f1

S−→ f2 with
associated key write operations k1 and k2 (i.e., R(k1, f1), R(k2, f2)), it follows that
k1

lo−→ k2 or k1 = k2.
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6.3 Obtaining Consistency for Encrypted File Objects

We give here the main result of our paper, a necessary and sufficient condition for
implementing consistent encrypted file objects, as defined in Section 5. Given a key
distribution protocol with orderable consistency C1 and a file access protocol that satis-
fies consistency C2 from classes CO or CF , the theorem states that key-monotonicity is
a necessary and sufficient condition to obtain consistency (C1,C2)enc for the encrypted
file object. Some additional restrictions need to be satisfied. The proof of the theorem
is in the full version of this paper [26].

Theorem 1. Consider a fixed implementation of high-level operations from low-level
operations. Let H be a history of operations on an encrypted file object ENCF and Hl

the induced history of low-level operations on key object KEY and file object FILE by
a given execution of high-level operations. Suppose that the following conditions are
satisfied: (1) C1(Hl|KEY); (2) C2(Hl|FILE); (3) C1 is orderable; (4) if C2 belongs to
C+
O , then C1 belongs to C+

O . Then H is (C1,C2)enc-consistent if and only if Hl is a
key-monotonic history, i.e., KMC1,C2(H).

Discussion. Our theorem recommends two main conditions to file system developers
in order to guarantee (C1,C2)enc-consistency of encrypted file objects. First, the con-
sistency of the key distribution protocol needs to satisfy eventual propagation (as it
belongs to class CO) to apply our theorem. This suggests that using the untrusted stor-
age server for the distribution of the keys, as implemented in several cryptographic file
systems, e.g., SNAD [25] and SiRiUS [14], might not meet our consistency definitions.
For eventual propagation, the encryption keys have to be distributed either directly by
file owners or by using a trusted key server. It is an interesting open problem to analyze
the enc-consistency of the history of high-level operations if both the key distribution
and file-access protocols have consistency in class CF . Secondly, the key-monotonicity
property requires, intuitively, that file writes are ordered not to conflict with the con-
sistency of the key operations. To implement this condition, one solution is to modify
the file access protocol to take into account the version of the encryption key used in a
file operation when ordering that file operation. We give an example of modifying the
fork consistent protocol given by Mazieres and Shasha [24] in the full version of this
paper [26].

Moreover, the framework offered by Theorem 1 simplifies complex proofs for show-
ing consistency of encrypted files. In order to apply Definition 6 directly for such proofs,
we need to construct a serialization of the history of low-level operations on both the file
and key objects and prove that the file and key operations are correctly interleaved in this
serialization and respect the appropriate consistency conditions. By Theorem 1, given a
key distribution and file access protocol that is each known to be consistent, verifying
the consistency of the encrypted file object is equivalent to verifying key monotonicity.
To prove that a history of key and file operations is key monotonic, it is enough to con-
struct a serialization of the file operations and prove that it does not violate the ordering
of the key operations. The simple proof of consistency of the example encrypted file
object presented in the full version of this paper [26] demonstrates the usability of our
framework.
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7 Conclusions

We have addressed the problem of consistency in encrypted file systems. An encrypted
file system consists of two main components: a file access protocol and a key distribu-
tion protocol, which might be implemented via different protocols and infrastructures.
We formally define generic consistency in encrypted file systems: for any consistency
conditions C1 and C2 belonging to the classes we consider, we define a corresponding
consistency condition for encrypted file systems, (C1,C2)enc. The main result of our pa-
per states that if each of the two protocols has some consistency guarantees with some
restrictions, then ensuring that the history of low-level operation is key-monotonic is
necessary and sufficient to obtain consistency for an encrypted file object. The applica-
bility of our definitions and main result to other classes of consistency conditions is a
topic of future work.

Another contribution of this paper is to define two classes of consistency conditions
that extend and generalize existing conditions: the first class includes classical con-
sistency conditions such as linearizability and causal consistency, and the second one
extends fork consistency. An interesting problem is to find efficient implementations of
the new forking consistency conditions from the second class and their relation with
existing consistency conditions.
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Abstract. Current techniques for reconciling disconnected changes to
optimistically replicated data often use version vectors or related mech-
anisms to track causal histories. This allows the system to tell whether
the value at one replica dominates another or whether the two replicas
are in conflict. However, current algorithms do not provide entirely sat-
isfactory ways of repairing conflicts. The usual approach is to introduce
fresh events into the causal history, even in situations where the causally
independent values at the two replicas are actually equal. In some sce-
narios these events may later conflict with each other or with further
updates, slowing or even preventing convergence of the whole system.

To address this issue, we enrich the set of possible actions at a replica
to include a notion of explicit conflict resolution between existing events,
where the user at a replica declares that one set of events dominates
another, or that a set of events are equivalent. We precisely specify the
behavior of this refined replication framework from a user’s point of
view and show that, if communication is assumed to be “reciprocal”
(with pairs of replicas exchanging information about their current states),
then this specification can be implemented by an algorithm with the
property that the information stored at any replica and the sizes of the
messages sent between replicas are bounded by a polynomial function of
the number of replicas in the system.

1 Introduction

Some distributed systems maintain consistency by layering on top of a consistent
memory abstraction or ordered communication substrate. Others—particularly
systems with autonomous nodes that can operate while disconnected—must re-
lax consistency requirements to make progress, depending instead on a notion of
causal history of events. If a replica learns of different updates to the same ob-
ject, then the most causally recent update is considered “best” and is preferred
over the others. However, if it happens that the replicas held at two sites are
modified simultaneously, then neither update will appear in the other’s causal
history, and neither these sites nor any others that hear from them will be able
to prefer one update over the other until the conflict has been reconciled.

In standard approaches based on causal histories (e.g. [1,2]), this reconciliation
is itself an event— a new update that causally supersedes all of the conflicting
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ones. Unfortunately, this reconciliation event can create new conflicts. Until it
propagates through the whole system, any update created on another replica
before it hears of the resolution will be causally unrelated to the reconciliation
event and will thus conflict with it. Indeed, as has been noted before [1,3], in
some systems, the very same conflict might be resolved, independently, by in-
serting new reconciliation events at different sites, thus raising new conflicts
even though the reconciled values may be identical. Most existing systems have
found this potential behavior acceptable in practice—conflicts are infrequent
or communication frequent enough to ensure that reconciliation events usually
propagate throughout the system quickly. However, in some settings (described
in detail below), conflicts due to reconciliation events can delay convergence or
force users to manually reconcile the same conflict multiple times.

To improve the convergence behavior of such systems, we propose adding a
new kind of agreement event that labels a set of updates as equivalent, together
with a mechanism for declaring that one existing event dominates another. Our
goals are to reduce the number of user interventions needed to bring conflicting
updates into agreement and to speed global convergence after conflict resolution.

Beyond Causal Histories. Standard causal histories are an attractive way of
prioritizing events in a distributed system, partly because they capture a natural
relationship between updates and partly because their causal relationships can
be represented very efficiently. In particular, it is well known that causal histories
can be efficiently summarized using vector clocks [1]. Each replica Rα maintains
a monotonically increasing counter nα that is incremented at least once per
update event on Rα. Each Rα also maintains a vector (the vector clock), indexed
by replica identifiers β, that indicates the latest update of Rβ that Rα has heard
about (all previous updates of Rβ are also in the causal history of Rα). If each
update is associated with the local vector clock at the time of its creation, then
we can determine the causal relationship between two events: if every entry in
one vector clock c1 is less than or equal to the corresponding entry in another
vector clock c2, then the update v1, corresponding to c1, is in the causal history
of the update v2, corresponding to c2, and v2 may safely overwrite v1.

To record the resolution of a conflict using vector clocks, the local vector clock
must be changed to reflect the fact that all the conflicting updates are now in
the causal past. This can be achieved by first setting the local vector clock to
the pointwise maximum of all the vector clocks associated with the conflicting
updates and then incrementing the local counter [1].

Unfortunately, this technique can give rise to situations where the system
cannot stabilize without further manual intervention—or indeed, in pathological
cases, where it can never stabilize. In particular, if, at any point in time, two
distinct sites resolve a conflict, even in an identical way, the system will consider
the two identical resolutions to be in conflict. Consider the example in Figure 1.
From an initial state where all replicas are holding the same value (ε), replicas
Ra, Rb, and Rc all independently set their value to x at (local) time 1. Although
all replicas “agree” in the sense that they are holding the same value, the system
will only stabilize if every replica communicates its state (perhaps indirectly) to
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Replica Ra Replica Rb Replica Rc

Local Local Local
Event time value (vc) time value (vc) time value (vc)

0 ε (0,0,0) 0 ε (0,0,0) 0 ε (0,0,0)
Local updates 1 x (1,0,0) 1 x (0,1,0) 1 x (0,0,1)
Ra → Rc and Rb → Rc 1 x (1,0,0) 1 x (0,1,0) 2 x (1,1,2)
Ra → Rb 1 x (1,0,0) 2 x (1,2,0) 2 x (1,1,2)

Fig. 1. A case in which vector clocks never converge, although all replicas hold the
correct value

a single site, that site creates a new update event (with a vector clock that is
greater than the pointwise maximum of all 3), and this new event gets commu-
nicated back to all the other sites before anything else happens. In Figure 1,
the replicas do successfully transfer their state to Rc, which creates an event
that could stabilize the system. Unfortunately, Ra also sends its state to Rb.
In response to this badly timed message, Rb creates an event that resolves the
conflict between Ra and Rb but conflicts with the agreement event generated at
Rc. Neither Rc nor Rb’s state now dominates the other’s, and the system cannot
converge until the new conflict between Rc and Rb is repaired.

A natural idea for improving matters is to allow a reconciling site to intro-
duce an agreement event that somehow “merges” two causally unrelated updates
instead of dominating them. Then if Rc declares that the update events at repli-
cas Ra, Rb, and Rc are all equivalent, and later Rb declares that the events at
replicas Ra and Rb are equivalent, the two reconciliations will not conflict.

Agreement events raise issues, however, that cannot be modeled naturally
by causal histories. It may appear that agreements that may be helpful in the
example above might be implemented by simply having the reconciling site not
increment its local timestamp after taking the pointwise max of its vector clock
with that of the other conflicting replicas; then two reconciliations at different
hosts would not conflict. (In the example above, Rc would set its clock to (1, 1, 1)
and Rb would later set its to (1, 1, 0)—i.e., the reconciled state from Rc would
dominate the “partially reconciled” state from Rb.)

However, this scheme is still not satisfactory: if any new updates happen before
the reconciliation event(s) propagate completely through the system, spurious
conflicts will still be created. Figure 2 shows what can happen. The three replicas,
Ra, Rb, and Rc, again begin by all taking on the value x. Later, Ra sends
a message to Rb, which reconciles the conflict between their (identical) values
by merging Ra’s vector clock with its own, yielding (1,1,0). Later, Rb sends a
message to Rc, which similarly recognizes that their conflicting values are equal
and updates its local clock to (1,1,1). If, at this point, Rc were to send its state to
Ra and Rb before anything else happened, all would be well. However, suppose
instead that Ra locally updates its value to y. This update clearly supersedes
the first update of x on Ra; also, since the value of x on Rb has been reconciled
with the old x on Ra, the new update of y at Ra should also supersede the x
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Replica Ra Replica Rb Replica Rc

Event Local time value (vc) Lcl time value (vc) Lcl time value (vc)
Initial state 0 ε (0,0,0) 0 ε (0,0,0) 0 ε (0,0,0)
Local updates 1 x (1,0,0) 1 x (0,1,0) 1 x (0,0,1)
Ra → Rb 1 x (1,0,0) 1 x (1,1,0) 1 x (0,0,1)
Rb → Rc 1 x (1,0,0) 1 x (1,1,0) 1 x (1,1,1)
Ra updated 2 y (2,0,0) 1 x (1,1,0) 1 x (1,1,1)

Fig. 2. A case in which vector clocks “forget” a resolution event

on Rb, and similarly on Rc. However, at this point the system is totally stalled,
although it is clear (to an omniscient observer) that all replicas should converge
to y. No sequence of messages will ever reconcile Ra with either Rb or Rc. (Note
that the value on Rc is not in the causal history of y, even if both the sender and
receiver update their local clocks after communication. )

In a similar vein, vector clocks and standard causal histories provide no way of
reconciling a conflict by simply declaring that one of the conflicting events is bet-
ter than the others. For example, suppose replicas Ra and Rb are independently
updated with conflicting values and each communicates its value to some large
set of other nodes before anybody notices the conflict. If the user performing the
reconciliation decides that Ra’s value is actually preferable to Rb’s, they would
like to be able to declare this to the system so that, with no further intervention,
every host that hears about both updates will choose Ra’s value. Moreover, if, in
the meantime, some host that heard about Ra’s update has made yet a further
update, this new value should also automatically be preferred over Rb’s.

These shortcomings are not an artifact of a vector clock representation; the
system stalls because causal histories do not remember equivalences between
events. If Rc declares that the values at Ra, Rb and Rc are equivalent, and Ra

simultaneously decides that the value y is preferable to its current value x, then
we want the system to prefer one causally unrelated value to another. There is
no way to put the value at Rc into the causal history of Ra. (We will see later
that attempting to simply add equivalence edges can causes cycles in the causal
history graph. Those cycles, in turn, can give rise to paradoxical behavior.)

Such scenarios become more likely as the frequency of updates (and hence
conflicts and reconciliations) increases, relative to the speed with which infor-
mation propagates between nodes. Thus, in systems where conflicts are rare, or
where nodes are tightly coupled and communicate frequently, vector clock solu-
tions are likely to be satisfactory; on the other hand, in systems where conflicts
are more frequent and/or communication more intermittent, more sophisticated
solutions, such as the one we propose here, may perform significantly better.
(We explain in the next section how our proposal, which combines agreement
and dominance declarations, smoothly handles the examples in Figures 1 and 2.)

Harmony: A Motivating Application. Our interest in conflict resolution algo-
rithms originates in our work on Harmony [4,5], a generic “data synchronizer,”
capable of reconciling data from heterogeneous, off-the-shelf applications that
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were developed without synchronization in mind. For example, Harmony can
be used to synchronize collections of bookmarks from several different browsers
(Explorer, Safari, Mozilla, or OmniWeb), or to keep appointments in MacOS X
iCal or Gnome Evolution up-to-date with our appointments in Palm Datebook
or Unix ical formats. The current Harmony prototype is able to synchronize
only pairs of replicas, with pairwise reconciliation triggered by explicit user syn-
chronization attempts such as putting a PDA into a cradle (perhaps attached
to a disconnected laptop). This scheme extends fairly smoothly from pairs to
small collections of replicas by iterated pairwise synchronization, but becomes
awkward as the set of replicas grows. The work in this paper was inspired by
the goal of extending Harmony to handle large numbers of replicas.

Several features of Harmony conspire to make conflicts likely to appear rela-
tively frequently. First, because of its loose coupling with the applications whose
data it reconciles, Harmony is a state-based reconciliation system [6]. Unlike
operation-based systems, where the system keeps a log of all operations and
may be able to resolve conflicts by merging the operation logs on two replicas,
state-based systems cannot, in general, merge updates that modified the same
atomic values. Second, Harmony reconciles updates between systems such as
PDAs that may operate disconnected for long periods of time. Third, we have
observed that, even with small numbers of replicas, it often happens that iden-
tical updates are entered at different nodes—particularly when the same user
owns multiple devices.

Our Results. Since causal histories are not able to satisfactorily handle reconcil-
iation in systems such as Harmony, we develop in this work a new reconciliation
framework offering notions of both dominance and agreement, allowing users to
resolve conflicts by explicitly specifying the prior events they want to take into
account. In §2 we specify this framework precisely by defining legal sequences of
local updates, dominance and agreement events, and communications between
replicas and showing how to calculate, at each replica, which events will be
reported as “maximal” and which as “conflicting.”

Our main contribution, in §3, is an algorithm implementing our specification
under the assumption that communication is “reciprocal”—after one replica has
sent its current state to another, it will wait for a message from the other before
sending its own state to that replica again. This algorithm has the property that
the information stored at any replica and the sizes of the messages sent between
replicas are bounded, in the worst case, by a polynomial function (O(n4), to
be precise) of the number of replicas in the system. §4 discusses related work.
Omitted proofs can be found in an accompanying technical report, available on
the Harmony home page [5].

2 An Agreeable Reconciliation Framework

A reconciliation framework has three choices when comparing the same object
on two different replicas. It can decide that the two objects have equivalent
values, and do nothing. It can decide that one value is better than the other, and
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modify one replica. Or, it can decide that the two objects are in conflict and
require external reconciliation. Our goal is to design a consistency maintenance
mechanism that can reduce the number of objects that the system decides are
in conflict, with less user intervention than conventional causal histories.

The key to achieving this is recognizing “agreement events” as first class
citizens. A reconciliation system based on causal history, implements the better-
than relation through causal order: u is better-than v if v is in the causal history
of u, they are equivalent only if they are identical, and in conflict if u and v
are causally unrelated. In our framework it is no longer the case that the simple
fact of a node knowing about an event implies that a new update event at that
node is better than that prior event — instead we offer a richer ‘better-than”
relation (defined formally at the end of this section). The user may declare that
two or more updates agree, or that an update dominates another update, or
leave two updates unrelated. The system remembers these declarations, so that,
if an update u is better-than another update v then u is also better-than all
updates equivalent to v, even if they are not in the (conventional) causal history
of u or v. Rather than basing our notion of better-than simply on a “knows
about” relation (i.e., causal order), we now require users to specify whether the
new update u “took v into account” (defined formally below) and, if so, whether
through agreement or domination. Agreement events introduce the possibility
that two distinct events can be considered equivalent.

This seemingly small shift raises a rather subtle new issue. By introducing
“equivalence” we allow the possibility of cycles in the graph of the took-into-
account relation. Consider a scenario where two conflicting values x and y were
both known about by two different replicas. One decided that y was better than
x; the other decided that x was better than y. When the replicas communicate
with each other, they discover a cyclical took-into-account relation. Such cycles
represent a new sort of conflict—a situation in which users at two or more repli-
cas have given the system conflicting guidance about how to repair a previous
conflict! How should we treat such cycles of taking-into-account? In general,
there may be multiple distinct values in the cycle, so we cannot pick a single
value from the cycle that the system should converge to. The question, then, is
not how the values in the cycle relate to each other, but how other values relate
to the cycle—i.e., how we can resolve this conflict and allow the replicas to con-
verge by finding or creating values that are not taken into account by others.
We address this issue with the notion of dominance defined later in this section.

Preliminaries. We assume a fixed set of n replicas, called Ra, Rb, etc. (The
development extends straightforwardly to a dynamically changing set of replicas.
The main challenge is discovering when information about replicas that have left
the system can be garbage collected; standard techniques used in vector clock
systems should apply.) The variables α, β, etc. range over indices of replicas.
For simplicity, we focus on the case where each replica holds a single, atomic
value.

External actions (by the user or a program acting on the user’s behalf) that
change the value at some replica are represented as events, written vα

i , where α
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is the replica where the event occurred and i is a local sequence number that
distinguishes events on replica α.

An event is a predecessor of all local events that occur after it—that is, vα
i is a

predecessor of all vα
j with j > i; similarly, vα

i is a successor of all events vα
j with

j < i. We use vα
i+ and vα

i− as variables ranging over successor and predecessor
events of vα

i . When the location or precise local sequence number of an event
are not important, we lighten notation by dropping super- and/or subscripts,
writing events as just v, vα, vα

+, vα−, etc.
Our specification uses a structure called a history graph (or just graph) to

represent the state of knowledge at a particular replica at a particular moment in
the whole system’s evolution. A history graph is a directed graph whose vertices
are events and whose edges represent “took into account” relations between
events. There are two kinds of edges: an edge v −→ w, pronounced “v takes w
into account through dominance,” represents the fact that event v was created
taking w into account and dominating it, while an edge v =⇒ w, pronounced
“v takes w into account through agreement,” represents the fact that v and w
were declared in agreement by the creator of v. (Note that we are not necessarily
requiring that v and w have the same value in order to be declared in agreement;
typically they will, but it may sometimes be useful to resolve a conflict between
different values by declaring that either one is acceptable and there is no need
for every replica to converge to the same one.) We use Gα to denote the history
graph for replica Rα. The set of events in Gα at any given moment is the set of
events in the standard causal history of Rα (in contrast, the set of edges in Gα

may be only a subset of the set of edges representing causal order).
The set of events and edges reachable in a graph G from an event v, including

v itself, is called the cone of v, written cone(v). This set represents the events v
transitively took into account when it was created. We will maintain the invariant
that edges originating at an event can be created only at its time of creation,
so that the set of events reachable from v will not change over time; moreover,
because entire history graphs are exchanged when replicas communicate (at the
level of the specification, though of course not in the implementation we describe
later), any graph G that contains v will also include cone(v); for this reason, we
do not bother annotating cone(v) with G.

Another important invariant property is equivalence. We first define Gα
≡, the

graph obtained from Gα by symmetrizing its =⇒ edges, adding an edge v =⇒ u
for each existing edge u =⇒ v. Two events u and v are now said to be equivalent
in Gα if there is a path from u to v in Gα

≡ consisting only of =⇒ edges. Because
replicas exchange whole history graphs, if two events become equivalent at some
point in time in the history graph at some replica Rα, they will remain equivalent
at all replicas that ever hear (transitively) from Rα. We refer to the partitions
induced by this equivalence as equivalence classes, or just classes.

For a pair of classes E and E′, we say E takes E′ into account if there exist
events x ∈ E and y ∈ E′ with y ∈ cone(x). We noted above that there can
be cycles in the took-into-account relation: two distinct equivalence classes may
each contain an event that has an event from the other in its cone. For example,
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suppose that the latest (conflicting) values in replicas Ra and Rb are va
i and vb

j ,
respectively, and that Ga and Gb both contain the complete system history. Ra

tries to reconcile the conflict by adopting the value of vb
j (by creating an event

va
i+1 with the same value as vb

j and declaring va
i+1 to be in an equivalence class

E with vb
j). R

b tries to reconcile the conflict by similarly adopting the value of
va

i , by putting vb
j+1 in an equivalence class E′ with it. E takes E′ into account,

because va
i is in the cone of va

i+1; similarly, E′ takes E into account because vb
j

is in the cone of vb
j+1. We call such situations reconciliation conflicts, since they

arise when users at different replicas make different decisions about which of a
set of conflicting events should be preferred.

In general, a class can belong to multiple cycles—i.e., it can be involved si-
multaneously in multiple reconciliation conflicts. To arrive at a clear notion of
“better-than”, we will define a dominance relation. We consider strongly con-
nected components of the graph Gα

≡ (i.e., sets of events such that there is some
path from every event in the set to every other event in the set), which we re-
fer to simply as components. Every pair of classes in a component belongs to
some cycle denoting a reconciliation conflict, and so intra-component “took into
account” relations between events cannot be used to determine dominance.

Now, a class E is said to dominate a class E′, written E > E′, if E and E′

belong to different components and there exist events x ∈ E and y ∈ E′ with
y ∈ cone(x). Note that E > E′ implies E′ 
> E because of the assumption that
the two are in different components.

We say that an event vβ
i ∈ Gα is latest if no successor event vβ

i+ belongs to
Gα. We are particularly interested in events belonging to classes that are not
dominated by other classes and, among these, in the ones that are latest: if the
entire system is going to converge to a single value (or set of equivalent values),
such events are the only possible candidates. Formally, we say that a class E is a
maximal class if it contains a latest event and there is no class E′ with E′ > E.
An event v is a maximal event if it is a latest event in a maximal class.

When can a replica Rα conclude that there is no conflict between the values
in Gα? Based on our definition of dominance, it is easy to see that, if all maximal
events belong to the same (maximal) class E, we can be sure that the events
in E took every event in Gα into account and that no other events took them
into account, implying that there is no conflict between these events (at least
according to the present local state of knowledge) and that these events are
“better than” all other events. Rule 3 in the specification below guarantees that
Rα will then adopt an event from E.

Let us see how our model applies to the examples we discussed in §1. The
initial values at the replicas are represented by va, vb and vc respectively. For
the example in Figure 1, after receiving state updates from Ra and Rb, Rc joins
va, vb, and vc into an equivalence class by creating a new event vc

+ and adding
=⇒ edges from vc

+ to them. Independently, Rb, after receiving Ra’s state, makes
va, vb and vb

+ into an equivalence class. Fortunately, these new events vc
+ and

vb
+ do not conflict, and anyone who later hears of both can calculate that va,
vb, vc, vb

+, and vc
+ all belong to the same equivalence class, so that any new
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event dominating any of them will also dominate all the others. Similarly, in
the scenario in Figure 2, Rb makes va, vb, and vb

+ equivalent and later Rc adds
vc to this equivalence class (via a new event vc

+ with =⇒ edges to vc, va, vb,
and vb

+). Independently, Ra adds a new event va
+ (with value y), dominating

va. Henceforth, regardless of the order of messages from Ra and Rc, any replica
that learns of both va

+ and vc
+ can see that va

+ dominates all the values from the
other replicas.

Continuing the example, it is possible that, for some time, some other replica
Rd may hear only from Ra and Rb(before Rb creates the event vb

+) but not Rc

and therefore believe that events va
+ and vb are in conflict. Once it hears from Rc

as well, the apparent conflict will disappear. But if, in the meantime, the user
at Rd decides to repair the apparent conflict by declaring that vb dominates va

+

(by creating an event vd dominating va
+ and then another event vd

+ in agreement
with both vb and vd), then a reconciliation conflict will be created, requiring one
more user intervention to eliminate.

We have now presented all the basic concepts on which our reconciliation
scheme is based. It remains to specify exactly what state is maintained at each
replica and how this state changes as various actions are performed. These ac-
tions are of two sorts: local actions by the user, and gossiping between replicas,
in which one replica periodically passes its state to another, which updates its
picture of the world and later sends the combined state along to yet other repli-
cas. We will not be precise in this paper about exactly how replicas determine
when and with whom to communicate—we simply treat communication as a
non-deterministic transmission of state from one replica to another. (We have
in mind a practical implementation based on a gossip architecture such as [7].)
However, to ensure that our implementation in §3 can work in bounded space,
we need to make one restriction on the pattern of communication: after a replica
Rα has sent its state to a particular neighbor Rβ, it should wait until it re-
ceives an update message from Rβ before sending another of its own. (Indeed, in
the accompanying technical report we prove that, with unrestricted asymmetric
communication, no representation that operates in bounded space can imple-
ment the specification correctly.) This reciprocality of communication bounds
the number of possible open events on each replica. To guarantee reciprocality,
each replica maintains a boolean flag CanSend(β) for each replica Rβ, initially
set to true. It is reset to false each time Rα sends a communication to Rβ and
reset to true each time Rα receives a communication from Rβ.(This definition
places a somewhat unrealistic constraint on the communication substrate: it as-
sumes that messages are not lost and are not reordered in transit. We believe
that this constraint can probably be relaxed, but we do not have a proof yet.)

Specification. The state of the entire system at any moment comprises the follow-
ing information: a history graph Gα for each replica Rα, a reciprocity predicate
CanSendα for each replica Rα, and a current event Currentα ∈ Gα for each
replica Rα. The initial state of the system has all history graphs Gα containing
a single vertex vinit and no edges, CanSendα(β) = true for all α and β, and
Currentα = vinit for all α. At any given moment, a user (or user-level program)
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at replica Rα can query the current event at Rα, as well as the current set of
maximal events in Gα and, for each of these, the other events in its class.

Each step in the system’s evolution must obey one of the following rules:

1. A replica Rα may generate a new event vα
i , where i = 1 + max(j | vα

j ∈ Gα),
taking into account some subset W (containing Currentα) of the maximal
events in Gα. The current event Currentα is set to vα

i . A vertex vα
i and an

edge vα
i −→ w for each w ∈ W are added to the graph Gα.

2. A replica Rα may generate a new event vα
i , where i = 1 + max(j | vα

j ∈ Gα),
and declare it to be in agreement with some subset W of the maximal events
in Gα. A vertex vα

i , and an edge vα
i =⇒ w for each w ∈W , are added to the

graph Gα. If Currentα 
∈ W and Currentα is a predecessor of vα
i , an edge

vα
i −→ Currentα is also added to the graph. The current event Currentα is

then set to vα
i .

The choice of W is constrained by one technical condition: Let E1 . . . Ep

be the maximal classes containing the subset of maximal events W . This
operation is allowed only if for each replica Rβ, the set of events from the
creating replica Rβ that will now be in the new merged class, call it E,
correspond to a contiguous range of indices—that is, for any i < j < k if
vβ

i ∈ E and vβ
k ∈ E then vβ

j ∈ E. The interpretation of this restriction is
that a user is not allowed to establish agreement between two distinct events
vβ

i and vβ
k created by a replica Rβ unless it can do so for every event that

was created by Rβ in between.
3. A replica Rα may send its current state to another replica Rβ, provided

that CanSendα(β) = true. The history graph Gβ is replaced by Gβ ∪ Gα.
A new maximal event x (if one exists) in the combined Gβ is better-than
Currentβ (and hence overwrites it) if Currentβ is not a a maximal event in
Gβ . The reciprocity predicates are updated with CanSendα(β) = false and
CanSendβ(α) = true.

3 A Bounded-Space Implementation

We now develop an efficient implementation based on a sparse representation
of history graphs, written Sα. The crucial property that we establish is that
the size of Sα depends only on the maximum number of distinct replicas that
ever communicate with Rα. For analyzing this representation, it is helpful to be
able to refer to the local state at any replica at particular points in time. We
introduce an imaginary global time counter t, which is incremented each time
any action is taken by any replica—i.e., each time the whole system evolves one
step by a replica taking one of the steps described in §2. The graph at replica
Rα at time t is written Gα(t).

There are two core concepts that facilitate our polynomial-space representa-
tion of all “relevant” information contained in a history graph. The first is the
notion of open and closed events, and the second is the notion of a sparse cone
of an event v. We start by decribing these concepts and some of their properties.
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Open and Closed Events. The creator replica of an event v = vα
i is the replica

Rα at which the event was created. It is clear from the specification that only
a creator replica can add edges originating from v to its graph, and only at the
time v is created. It can later add an =⇒ edge into v (in addition to the −→
edge that is always added), when it creates v’s immediate successor. Another
replica that later hears about v can create =⇒ or −→ edges into v as long as v
is a maximal event in its local graph.

No replica R can afford to forget about an event or any edges from or into
it, as long as it is possible for some replica to create edges into it, lest R be the
only witness to a relevant equivalence edge. Reciprocal communication enables
us to track such “critical” events with bounded space.

An event v is closed if, at every replica Rα, if v ∈ Gα then v+ ∈ Gα for some
successor v+ of v; an event that is not closed is open. If v is closed, then any
replica that hears about v will simultaneously hear about a successor of v. It
follows from this that a closed event can never be a latest event at any replica
(hence also not a maximal one), and that, once an event is closed, it stays closed
forever. No edges can be created to or from a closed event at any replica at any
time in the future.

An omniscient observer can see when an event becomes closed. But how can
a replica know that an event is closed using only locally available information?

We maintain a data structure Oα at every replica Rα that can be used to
certify that events are closed. The creator replica of an event v marks it closed
when it knows that all other replicas who ever heard of v, have also heard of a
successor to v. The other replicas mark the event closed when they hear that
it has been marked closed by the event’s creator replica. We say that an event
that is marked closed by replica Rα is closed at Rα. An event that is not closed
at a given replica is considered open at that replica.

An event can be simultaneously considered open at certain replicas and closed
at others. The data structure Oα ensures that, at any time t, for each non-latest
event vα

i considered open at a replica Rα, we can identify a pair of replicas in the
system, say (Rβ , Rγ), such that (i) Rγ first learnt about vα

i from Rβ and (ii) Rα

is certain that Rβ is aware of a successor of v but it is uncertain if this is also the
case for Rγ . In this case, Rα can not yet consider vα

i closed as Rγ may possibly
create an edge to the event vα

i . We refer to such a pair as a witness to event vα
i

being open at time t. The reciprocal communication property allows us to ensure
that each pair of replicas can serve as a witness to at most two open events from
any replica. We use this fact to argue that at most O(n3) events are considered
open at any replica. The data structure Oα maintains O(n) information per open
event and hence has size O(n4). Theorem 3.2 shows that the space complexity
of Sα (which includes Oα) is also bounded by O(n4).

Sparse Cone. The sparse cone of an element vα
l , written sparse-cone(vα

l ), can
be derived from its cone in the following manner. For each β 
= α, let j be the
largest index, if any exists, such that vβ

j ∈ cone(vα
l ). If such a j does exist, then

add the vertex vβ
j and a directed edge (vα

l , v
β
j ) to sparse-cone(vα

l ).
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Note that both cone(v) and sparse-cone(v) are determined at the time of v’s
creation and are time invariant. Also, even though cone(v) can be arbitrarily
large, sparse-cone(v) is O(n) in size and implicitly contains all the necessary
information from cone(v), in the sense that, for any element w, we can determine
whether or not w ∈ cone(v) by examining sparse-cone(v).
Sparse Representation. We now describe a polynomial-space representation that
summarizes the information contained in Gα(t) at any time t. In the accompany-
ing technical report we show how to maintain this representation incrementally
as the system evolves, calculating the compact representation at each step from
the compact representation at the previous step, and prove that the represen-
tation is correct in the sense that it will report the same maximal events (and
equivalence classes) as the specification in §2.

We start with the observation that the graph Gα(t) may be viewed as simply
a union of the cones of all the elements known to replica Rα at time t. We
will represent Gα(t) by a pair of sparse graphs, denoted Hα(t) and Hα

≡(t). The
sparse graph Hα(t) is defined to be simply the union of the sparse cones of latest
events known atRα at time t. It thus takesO(n2) space. The sparse graphHα

≡(t),
summarizes the information contained in Gα

≡(t) as follows. Let v � w denote
the existence of a path from an event v to event w in a graph Gα≡. For each
open event vβ

i at Rα(t), Hα≡(t) records, for every other replica Rγ , the earliest
event vγ

j from Rγ for which vγ
j � vβ

i in Gα
≡(t). (Even though the information

contained in Gα
≡(t) can be derived from Gα(t), we need to explicitly maintain

the graph Hα≡(t) since Hα(t) does not contain all the information in Gα(t).)
Formally, for every pair of events vβ

i and vγ
j in Gα

≡(t) such that (i) vγ
j � vβ

i in
Gα

≡(t), (ii) vβ
i is considered open at Rα(t), and (iii) there is no j′ < j such that

vγ
j′ � vβ

i in Gα≡(t), we include in Hα≡(t) the events vβ
i and vγ

j and a directed
edge (vγ

j , v
β
i ). Note that an edge (u, v) in Hα≡ merely indicates the existence of a

path u � v ∈ Gα
≡ but not whether its edges are −→ or =⇒ or a mixture of the

two.

3.1 Definition. The sparse representation at a replica Rα at time t is a 4-tuple
Sα(t) = 〈Oα(t), Hα(t), Hα

≡(t), Cα(t)〉, where Oα(t) is a data structure containing
the set of events from each replica that are considered open at Rα as well as
the tables to maintain these open events (defined in the accompanying techni-
cal report), Hα(t) is the sparse graph derived from Gα(t), Hα

≡(t) is the sparse
graph derived from Gα≡(t), and Cα(t) is a collection of sets, one for each event v
considered open at Rα, such that the set corresponding to v contains all events
in the equivalence class of v.

Whenever replica Rα communicates to another replica Rβ, it sends the tuple
Sα. The next theorem bounds the size of this communication.

3.2 Theorem. At any time t, Sα(t) takes O(n4) space, where n is the number
of replicas.

We observed earlier that the number of open events at any replica can be
bounded by O(n3) and the data structure Oα(t) used to maintain them takes
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O(n4) space. The graph Hα(t) takes O(n2) space as observed above. The graph
Hα

≡(t) needs O(1) space for each open event for a total of O(n3) space. Finally,
we can show that the equivalence class of each open event can be described
compactly using O(n) space. This gives us a bound of O(n4) space for Cα(t).

In order to establish that a replica working with the sparse representation
will have the same user-visible behavior as if it were working with the complete
history graphs, it suffices to show the following.

3.3 Theorem. A class E is maximal in Gα(t) iff E is maximal in Sα(t).

The proof of this theorem in the accompanying technical report crucially relies
on the properties of open and closed events and sparse cones. The main idea of
the proof is to establish two key properties. First, for any pair of classes E,E′

in Gα(t) such that each contains a latest element, we can determine, using the
graph Hα

≡(t), whether or not they belong to the same component in Gα
≡(t).

Second, if a class E containing a latest element is dominated by another class
E′ in Gα(t), we show that the graph Hα(t) contains a “witness” to this fact.
Since a maximal class always contains a latest element, these two properties
together ensure that the set of maximal classes is the same in both Gα(t) and
Sα(t). Finally, we note that, since a latest event is always open, Cα(t) contains
all elements in each maximal class.

4 Related Work

Both theoretical underpinnings and efficient implementation strategies for ver-
sion vectors [1] and vector clocks [8,9] have received a great deal of attention
in the literature and have been used in many systems (e.g. Coda [10,11,12], Fi-
cus [13], and Bengal [14]); numerous extensions and refinements have also been
studied—see [15] for a recent survey. We conjecture that some of these ideas
can be applied to improve the efficiency of our sparse representation. However,
we are not aware of any work in this context that explicitly addresses the main
concern of our work—an explicit treatment of declarations of agreement (and
dominance) between existing events.

A number of systems have used replica equality (e.g., identity of file contents)
as an implicit indication of agreement. The user-level filesystem synchronization
tool Unison [16], for example, considers two replicas of a file to be in agreement
whenever their current contents are equal at the point of synchronization. This
gives users an easy way to repair conflicts (decide on a reconciled value for the
file, manually copy it to both replicas, and re-synchronize), as well as automat-
ically yielding sensible default behavior when Unison is run between previously
unsynchronized (but currently equal) filesystems. A similar strategy is used in
Panasync [17].

Matrix clocks [18,19] generalize vector clocks by explicitly representing clock
information about other processes’s views of the system’s execution. We leave
for future work the question of whether agreement events such as the ones we
are proposing could be generalized along similar lines.
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A rather different approach to conflict detection is embodied, for example, in
the hash histories of Kang et al. [3] and the version histories used in the Rec-
oncile file synchronizer [20] and the Clique peer-to-peer filesystem [21]. Rather
than deducing causal ordering from reduced representations such as clock vec-
tors, these systems represent the causal history of the system directly—storing
and transmitting (hashes of) complete histories of updates. An advantage of
such schemes is that their cost is proportional to the number of updates to a file
rather than the number of replicas in the system, which may be advantageous
in some situations. This suggests that it may be worth considering the possibil-
ity of implementing something akin to our naive specification from §2 directly,
bypassing the sparse representation.

Reconciliation protocols for optimistically replicated data can be divided into
two general categories [22]: state transfer and operation transfer protocols. We
have concentrated on state-based protocols in this work. However, a number
of systems (e.g., Bayou [23], IceCube [24], and Ceri’s work [25]) reconcile the
operation histories of replicas rather than their states. It is not clear whether
agreement events in the sense we have proposed them could meaningfully be
accommodated in this setting.
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Abstract. Most high-performance software transactional memories
(STM) use optimistic invisible reads. Consequently, a transaction might
have an inconsistent view of the objects it accesses unless the consistency
of the view is validated whenever the view changes. Although all STMs
usually detect inconsistencies at commit time, a transaction might never
reach this point because an inconsistent view can provoke arbitrary be-
havior in the application (e.g., enter an infinite loop). In this paper, we
formally introduce a lazy snapshot algorithm that verifies at each object
access that the view observed by a transaction is consistent. Validating
previously accessed objects is not necessary for that, however, it can be
used on-demand to prolong the view’s validity. We demonstrate both
formally and by measurements that the performance of our approach is
quite competitive by comparing other STMs with an STM that uses our
algorithm.

1 Introduction

The recent move to multi-core processors has resulted in an increased research
interest in software transactional memory (STM) [1]. STMs have been intro-
duced as a mean to support lightweight transactions in concurrent applications.
Transactions execute concurrently and those that fail to commit automatically
roll back and restart their execution.

In STMs there is currently a tradeoff between consistency and performance.
Several high-performance STM implementations [2,3,4] use optimistic reads in
the sense that the set of objects read by a transaction might not be consistent.
Consistency is only checked at commit time, i.e., commit validates the trans-
action. However, having an inconsistent view of the state of the objects during
the transactions might, for example, result in infinite loops or the throwing of
exceptions. These failures must then be detected and masked by the STM or
the program’s runtime environment, which is often both difficult and costly. Ex-
plicit, programmer-controlled validation is usually considered too difficult for
programmers.

Example 1. Consider a linked list and two operations: (1) search iterates through
the list until it finds a specific element while (2) sort re-orders the elements.

S. Dolev (Ed.): DISC 2006, LNCS 4167, pp. 284–298, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Lazy Snapshot Algorithm with Eager Validation 285

Consider that the list contains elements o2 and o1 in that order. Transaction T1

sorts the list, which leads to re-ordering o1 before o2. If transaction T2 iterates
through the list but reads o2 before the execution of T1 (o2 was the first object
of the list) and o1 after the sort operation has completed, it will experience a
cycle and will loop forever.

Validation, on the other hand, can be costly (see Section 4) if it is performed
in the obvious way, i.e., checking every object previously read. Typically, the
validation overhead grows linearly with the number of objects a transaction has
accessed so far. When one is forced to validate after each step, this could result
in a validation overhead that grows quadratically with the number of objects
accessed by a transaction.

In this paper, we introduce a lazy snapshot algorithm (LSA) that efficiently
constructs an always consistent snapshot for transactions. Reads of a transac-
tion are invisible to other transactions; the consistency of a transaction is verified
by maintaining a validity interval for snapshots. In this way, an STM can effi-
ciently verify during each object access that the snapshot of the objects that a
transaction has seen so far is consistent.

We have built an object-based STM using LSA, to which we will refer as
LSA-STM in what follows. It ensures linearizability [5] for read-only and update
transactions. Our performance measurements demonstrate that the performance
of LSA is very competitive with other STM implementations even when ensuring
linearizability and always providing transactions with a consistent view.

In earlier work [6], we showed how to use LSA to build STMs that provide
snapshot isolation [7]. The key idea of snapshot isolation (SI) is to provide each
transaction T with a consistent snapshot of all objects at a given time. Writes
of T occur atomically but possibly at a later time than that of the snapshot.
This decoupling of the reads and the writes has the potential of increasing the
transaction throughput but also gives application developers less ideal semantics
than, say, STMs that guarantee linearizability [5]. However, SI always provides
a transaction with a consistent view which avoids the programming anomalies
that we described above.

In what follows, we first give a brief overview of the related work (Section 2).
We then introduce LSA and demonstrate some of its properties (Section 3).
Finally, we describe the results of our performance evaluation (Section 4) and
conclude the paper (Section 5).

2 Related Work

Software Transaction Memory is not a new concept [1] but it recently attracted
much attention because of the rise of multi-processor and multi-core systems.
There are word-based [8] and object-based [9] STM implementations. The design
of the latter, Herlihy’s DSTM, is used by several current STM implementations.
Most STM implementations are obstruction-free [10] and use contention man-
agers [9] to deal with conflicts and ensure progress. Our LSA-STM is object-based



286 T. Riegel, P. Felber, and C. Fetzer

and obstruction-free [10] and thus, uses some of DSTM’s concepts. However,
LSA-STM is a multi-version STM, whereas DSTM keeps at most two versions
of an object but only uses the most recent version. We previously presented
SI-STM [6], which uses LSA but provides, in addition to strict transactional
consistency, support for snapshot isolation, which can increase the performance
of suitable applications.

In DSTM and most of the high-performance STMs in general, reads by a
transaction are invisible to other transactions: to ensure that consistent data is
read, one must validate that all previously read objects have not been updated
in the meantime. If reads are to be visible, transactions must add themselves to
a list of readers at every transactional object they read from. Reader lists enable
update transactions to detect conflicts with read transactions. However, the re-
spective checks can be costly because readers on other CPUs update the list,
which in turn increases the contention of the memory interconnect. Scherer and
Scott [11,12] investigated the trade-off between invisible and visible reads. They
showed that visible reads perform much better in several benchmarks but, ulti-
mately, the decision remains application-specific. Marathe et al. [13] present an
STM implementation that adapts between eager and lazy acquisition of objects
(i.e., at access or commit time) based on the execution of previous transactions.
However, they do not explore the trade-off between visible and invisible reads
but suggest that adaptation in this dimension could increase performance. Cole
and Herlihy propose a snapshot access mode [14] that can be roughly described
as application-controlled invisible reads for selected transactional objects with
explicit validation by the application. Dice et al. show in [15], a recent im-
provement of earlier work [4], how to use a global version clock to improve the
performance of low-overhead STMs. However, the validity of snapshots is fixed
to the start time of a transaction and is not extended on demand. The only
other multi-version STM that we are aware of is [16], although snapshots are
not computed dynamically and conflict detection of update transactions only
occurs at commit time. Furthermore, in that STM design, every commit oper-
ation, including the upgrade of transaction-private data to data accessible by
other threads, synchronizes on a single global lock. No performance benchmark
results were provided.

Read accesses in our LSA-STM are invisible to other transactions but do not
require revalidation of previously read objects on every new read access. We
show that our LSA facilitates inexpensive validation by maintaining a validity
range in which a transaction is valid. In this way we get most of the benefits of
visible and invisible reads but at a much lower cost.

3 Lazy Snapshot Algorithm

Before we can describe our lazy snapshot algorithm in Section 3.2, we first need
to introduce some notations in Section 3.1. We show the correctness of LSA in
Section 3.4.
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3.1 Notations

A transactional memory consists of a set of shared objects o1, . . . , on ∈ O. Trans-
actions are either read-only, i.e., they do not write to any object, or are update
transactions, i.e., write to one or more objects.

Our transactional memory has a global counter, CT , that counts the number
of update transactions that have committed so far. When an update transaction
commits, it acquires a unique CT timestamp and creates a new version of the
state of the transactional memory with this timestamp. Unlike in many other
systems, this counter is not incremented when a read-only transaction commits.
The goal is to improve the caching hit rate for this counter. We use CT as our
time base, that is, all times given in the following are given with respect to this
CT counter. For example, we denote the content of object oi at (commit) time
t, by ot

i. Note that CT is a simple integer counter.
A transaction T accesses a finite set of objects OT ⊆ O. We assume that ob-

jects are only accessed and modified within transactions. Hence, we can describe
a history of an object with respect to the global commit time CT . The sequence
Hi = (vi,1, . . . , vi,j , . . .) denotes all the times at which updates to object oi are
committed by some update transactions. vi,1 is the time the object is created.
Sequence Hi is strictly monotonically increasing, i.e., ∀j < |Hi| : vi,j < vi,j+1.
To simplify our equations, we assume that the first element of Hi, i.e., vj,1 is 0
(all objects are created at time zero) and the last element is ∞ if |Hi| is finite.

We say that the version j of object oi (j < |Hi|) is valid from vi,j to vi,j+1−1.
We call this the validity range and denote this by

Ri,j := [vi,j , vi,j+1 − 1].
A transaction T might not use the most recent version ot

i of an object oi when
accessing the object the first time at t. Instead an older version might be used.
Hence, for each object oi in transaction OT we denote the version of oi by o∗i ,
its version number by vi,∗, and its validity range by Ri,∗ (o∗i , vi,∗, and Ri,∗ are
specific to transaction T but, for simplicity, we do not make this explicit in our
terminology).

By �ot
i� we denote the time of the most recent update of object oi performed

no later than time t, i.e., this update is still valid at global time t. We define
�ot

i� as follows:
�ot

i� := vi,j | vi,j ≤ t ∧ t < vi,j+1.
By �ot

i� we denote the time until which the version of object oi that is valid
at time t remains valid:

�ot
i� := vi,j+1 − 1 | vi,j ≤ t ∧ vi,j+1 > t.

We define the validity range RT of a transaction T to be the time range during
which each of the objects accessed by T is valid. This is the intersection of the
validity ranges of the individual versions accessed by a transaction:

RT :=
⋂

oi∈OT
Ri,∗.

We say that the object versions accessed by transaction T , i.e., {o∗i |∀oi ∈ OT }
are a consistent snapshot if the validity range RT of T is non-empty. Note that
because of the intersection, the object versions contained in a consistent snapshot
are always the most recent versions at any time t ∈ RT .
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An update transaction T writes to a subset of the objects in OT . In our
implementation, writing to an object always includes reading the object. We
denote by UT ⊆ OT the set of objects written to by T .

3.2 Snapshot Construction

The main idea of LSA (see Algorithm 1) is to construct consistent snapshots on
the fly during the execution of a transaction and to—lazily—extend the validity
range on demand. By this, we can reach two goals. First, transactions working on
a consistent snapshot always read consistent data. Second, verifying that there
is an overlap between the snapshot’s validity range and the commit time of a
transaction can ensure linearizability (if that is desired). Note that LSA-STM
uses a lock-free implementation of LSA, whereas we assume sequential execution
for the pseudocode in Algorithm 1 for simplicity. We will first describe the basic
algorithm and then show that it is correct in Section 3.4.

Which objects are accessed by a transaction is determined during the exe-
cution of a transaction. The final RT might not even be known at the commit
time of the transaction. We therefore maintain a preliminary validity range R′

T .
When a transaction T is started, we set R′

T to [CT,∞] (lines 2–3, min(R′
T ) and

max(R′
T ) denote the lower and upper bound of R′

T ). Note that R′
T will never

assume a value smaller than the start time of T .
When accessing the most recent version of oi, it is not yet known when this

version will be replaced by a new version. We therefore approximate Ri,∗ at
time t by a preliminary range R′

i,∗ = Ri,∗ ∩ [0, t] and we set the new range
to R′

T ∩ R′
i,∗ (lines 18–19). During the execution of a transaction, time will

advance and thus the preliminary validity ranges might get longer. We can try
to extend R′

T by recomputing max(R′
T ) (lines 14 and 29–37). Note that this is

not required for correctness—it only increases the chance that a suitable object
version is available.

Read accesses are optimistic and invisible to other transactions. LSA assumes
that a system always keeps the most recent version of an object. In addition, LSA
might also have access to some old versions (e.g., which have not yet been garbage
collected) that can be used to increase the probability to create a consistent
snapshot. When a transaction reads object oi at time t, LSA tries to select
the newest object version from Hi that still exists and that keeps the snapshot
consistent, i.e., R′

T non-empty.
If the most recent version of oi cannot be used because it was created after

R′
T , we might still read some older version whose validity range overlaps R′

T . In
that case, we simply set the new range to R′

T ∩R′
i,∗ and we mark the transaction

as “closed” to indicate that it cannot be extended anymore (lines 21–23). If no
such version exists anymore, the transaction needs to be aborted. We omitted
this in the simplified pseudocode of LSA.

By construction of RT , LSA guarantees that a transaction started at time t
has a snapshot that is valid at or after the transaction started, i.e., min(R′

T ) ≥ t.
Hence, a read-only transaction can commit iff it has used a consistent snapshot
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Algorithm 1. Lazy Snapshot Algorithm (LSA)
1: procedure Start(T ) � Initialize transaction attributes
2: T.min ← CT � = min(R′

T )
3: T.max ← ∞ � = max(R′

T )
4: T.O ← ∅ � Set of objects accessed by T
5: T.open ← true � Can T still be extended?
6: T.update ← false � Is T an update transaction?
7: end procedure

8: procedure Open(T, oi, m) � T opens oi in mode m (read or write)
9: if m = write then
10: T.update ← true
11: end if
12: if �oCT

i � > T.max then � Is most recent version too recent?
13: if T.update ∧ T.open then � Try to extend?
14: Extend(T )
15: end if
16: end if
17: if �oCT

i � ≤ T.max then � Can we use the latest version?

18: T.min ← max(T.min, �oCT
i �) � Yes, T remains open if it is still open

19: T.max ← min(T.max, CT )

20: else if ¬T.update ∧ V ersionAvailable(oT.max
i ) then

21: T.open ← false � No, T.max has reached its maximum
22: T.min ← max(T.min, �oT.max

i �)
23: T.max ← min(T.max, �oT.max

i �)
24: else � Cannot maintain snapshot
25: Abort(T )
26: end if
27: T.O ← T.O ∪ {oi} � Access object
28: end procedure

29: procedure Extend(T ) � Try to extend the validity range of T
30: T.max ← CT
31: for all oi ∈ T.O do � Recompute the whole validity range
32: T.max ← min(T.max, max(R′

i,∗))

33: end for
34: if T.max < CT ∧ T.update then
35: Abort(T ) � Update transaction must access most recent versions
36: end if
37: end procedure

38: procedure Commit(T ) � Try to commit transaction
39: if T.update then
40: CTT ← (CT ← CT + 1) � Acquire T ’s unique commit time CTT

41: if T.max < CTT − 1 then
42: Extend(T ) � For update transactions, CTT and R′

T must overlap
43: if T.max < CTT − 1 then
44: Abort(T )
45: end if
46: end if
47: end if � T can now be safely committed
48: end procedure

(i.e., R′
T is non-empty). The commit time CT is not increased when committing

a read-only transaction because nothing has been modified.

3.3 Update Transactions

Informally, an update transaction T performs the following steps when commit-
ting: (1) acquire a unique commit time CTT from the CT time base (line 40),
(2) validate T (lines 41–46), and (3) set T ’s state to committed if the validation
was successful and to aborted otherwise (not shown). Update transactions can
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only commit if their validity range and their unique commit time (i.e., the global
version that they are going to produce) overlap; in this case, the transaction is
atomic. This is checked during the validation step (i.e., (CTT −1) ∈ R′

T ). There-
fore, accessed object versions must always be the most recent versions during
the transaction and the validity range must be “open”. If this is not possible,
the transaction is marked as aborted (lines 25 and 35) because it would not be
able to commit anyhow.

If it is possible to update a most recent version (i.e., R′
T remains non-empty),

LSA atomically marks the object that it is writing (visible write, not shown in
Algorithm 1). When another transaction T1 tries to write oi, T1 will see the mark
and detect a conflict. In that case, one of the transactions might need to wait
or be aborted. This task is typically delegated to a contention manager [9], a
configurable module whose role is to determine which transaction is allowed to
progress upon conflict.

Setting the transaction’s state atomically commits—or discards in case of
an abort—all object versions written by the transaction and removes the write
markers on all written objects (as in DSTM [9]).

If a transaction reads from the most recent version of an object that is write-
marked by another transaction that has not yet committed, then the validity of
the most recent version of this object ends at CT (the current time); the updating
transaction cannot commit at a time earlier than CT + 1. This allows the STM
to defer read-write conflicts to the commit time of the updating transaction,
which minimizes the duration of such conflicts and lets reading transactions run
unobstructed for a longer time.

For STMs that provide snapshot isolation [6], validation requires checking
that only all object versions written by T are still valid at CTT −1. Since we use
visible writes, this check is performed implicitly because write/write conflicts
will result in one of the two conflicting transactions being aborted (or delayed)
by the contention manager.

3.4 Linearizability

We sketch that transactions executed by an STM in the way outlined previously
are linearizable.1 To show this, we need to show that T takes effect atomically
in between the start of T at time t and its commit time CTT . We show that for
read-only transactions and then for update transactions. However, we introduce
some lemmas first.

By the construction of LSA, it is guaranteed that the lower bound of R′
T is

always greater than or equal to the start time of transaction T .

Lemma 1. For any transaction T with a non-empty R′
T , it is guaranteed that

min(R′
T ) is greater or equal to the start time of T .

Since the preliminary validity range of an object is always bounded by the current
commit time, we know the following:
1 We do not consider snapshot isolation (SI) here.
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Lemma 2. The preliminary time interval of transaction T at time t (after T
has opened the first object) is at most t, i.e., max(R′

T ) ≤ t.

Theorem 1. LSA guarantees that each read-only transaction T that started at
time ts and that commits between tc and before tc + 1 is linearizable.

Proof. T can only commit if its preliminary validity rangeR′
T is non-empty when

T commits. We know from lemma 1 and 2 that R′
T is a subset of [ts, tc]. This

means that T is executed atomically between its start and before T terminates.

Theorem 2. Each update transaction T that started at time t, that commits at
time CTT , and that satisfy max(R′

T ) ≥ CTT − 1, is linearizable.

Proof. On commit, LSA checks that (CTT−1) ∈ R′
T (lines 41–46 in Algorithm 1)

and hence that all object versions that T accessed are still valid up to the time
CTT at which T commits its changes. Since each transaction has a unique commit
time, no other transaction can commit at CTT . This means that, logically, T
reads all objects and commits all its updates atomically.

3.5 Extensions and Global Time

Validation is the bottleneck of STMs that use invisible reads. Whereas LSA
can verify validity for any commit time by trying to extend the validity range
to this time, other STMs usually verify the state at the time of validation.
One might expect that LSA needs to perform extension frequently when there
are concurrent updates that increase commit time fast. However, LSA is quite
independent of the speed in which concurrent transactions increase time: if there
are no concurrent updates to the objects that a transaction T accesses, the most
recent object versions are accessible and do not change. Thus, no extension is
required for obtaining a consistent read snapshot. If CT has been increased
concurrently and T is an update transaction, one extension from RT to CTT −1
is needed. If concurrent updates are not disjoint, LSA will require at most one
extension per accessed object. However, this worst case should be very rare
in practice because it requires certain update patterns; for example, once an
already accessed object gets updated, RT will be closed and there will be no
further extensions.

Furthermore, the number of required accesses to the commit time is small. All
transactions must read the current time when they are started. Update transac-
tions must additionally acquire a unique commit time. Further accesses are not
required for correctness. For example, if an update transactions needs to access a
most recent version, then it can extend to a time at which this version was valid,
but this time does not need to be the current time. Time information gathered
from the accessed objects can be used instead of the current time.

Although we evaluate LSA only on smaller systems (see Section 4), we believe
that the properties previously described as well as other mechanisms, such as
using multiple commit times to partition data, make it suitable even for larger
systems with higher communication costs.
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Fig. 1. LSA-STM read overhead in comparison to (Eager) ASTM and SXM

4 Performance Evaluation

To evaluate the performance of our LSA-STM, we compared it with two other
implementations. The first one follows the design of SXM by Herlihy et al. [17],
an object-based STM with visible reads, with a few minor extensions. The sec-
ond follows the design of Eager ASTM by Marathe et al. as described in [13].
Henceforth, we shall call these STM implementations SXM and ASTM. All three
STMs are implemented using Java. Read operations in SXM are visible to other
threads, whereas they are invisible in ASTM and LSA-STM. All STM imple-
mentations guarantee that all objects read in a transaction always represent a
consistent view.

We executed all benchmarks on a system with four Xeon CPUs, hyperthread-
ing enabled (resulting in eight logical CPUs).2 Results were obtained by execut-
ing eight runs of 10 seconds for every tested configuration and computing the
12.5%-trimmed mean, i.e., the mean of the six median values. All STMs use the
Karma [11] contention manager.

Overheads of validation and of a global commit time. To highlight the
differences between STM designs that use visible and invisible reads, Figure 1
shows the mean CPU time required for reading a single object in read-only
transactions of different sizes. In this micro-benchmark, 8 threads read a given
number of objects. All transactions read the same objects (with the exception
of the SXM benchmark run with disjoint accesses) and there are no concurrent
updates to these objects. The fixed overhead of a transaction gets negligible
2 8GB of RAM, Sun’s Java Virtual Machine version 1.5.0 with default configuration

(server-mode, Parallel garbage collector), start and maximum heap size of 1GB. The
machine has a light background load that we cannot control. Executing with more
than 8 threads can give us a larger percentage of the CPUs and potentially a slight
speedup when increasing beyond 8 threads.
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when the number of objects read during the transaction is high. SXM’s visible
reads have a higher overhead than LSA-STM’s invisible reads. This overhead
consists of the costs of the compare-and-swap (CAS) operation and possible
cache misses and CAS failures if transactions on different CPUs add themselves
to the reader list of the same object. ASTM has to guarantee the consistency of
reads by validating all objects previously read in the transaction, which increases
the overhead of read operations when transactions get large. Note that, although
not shown here, ASTM transactions with only a single validate at the end of each
transaction perform very similar to LSA-STM. However, for these transactions,
consistency is not guaranteed during the execution of the transaction.

LSA-STM currently implements the global commit time CT as a shared in-
teger counter. SXM and ASTM do not need such a counter that could become
a source of contention if the rate of commits of update transactions is high. Fig-
ure 2 shows the overhead of write operations in LSA-STM by means of a micro-
benchmark similar to the one used for Figure 1. However, now the 8 threads
write to disjoint, thread-local objects. Acquiring timestamps induces a small
overhead, which, however, gets negligible when at least 10 objects are written
by a transaction. Furthermore, the overhead is smaller than the costs of a single
write operation. Note, of course, that the results in Figure 1 and Figure 2 are
hardware-specific.

Throughput. Figure 3 shows throughput results for two micro-benchmarks
that are often used to evaluate STM implementations, namely integer sets im-
plemented via sorted linked lists and skip lists. Each benchmark consists of read
transactions, which determine whether an element is in the set, and update
transactions, which either add or remove an element. The sets consist of ap-
proximately 250 elements during the benchmark runs. We do not release objects
early: although this would decreases the possibility of conflicts, it can mainly be
used in cases in which the access path to an object is known.

We use the linked list to conveniently model transactions in which a modi-
fication depends on a larger amount of data that might be modified by other
transactions.
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For the skip list, STMs using invisible reads (ASTM and LSA-STM) show
good scalability and outperform SXM, which suffers from the contention on the
reader lists. However, the transactions in the linked list benchmark are quite large
(the integer sets contain 250 elements) and ASTMs validation is expensive. LSA-
STM, on the contrary, uses version information to compute the validity range
much faster and scales up well to the number of available CPUs.

In all previous benchmarks, we always configured LSA-STM to keep eight old
versions per object besides the most recent committed version. Keeping several
versions can typically increase the commit rate but also adds memory overhead.
In the following, we examine this problem further.

Object versions accessed. In LSA-STM, references to object versions are
stored in both a “locator” structure associated with transactional objects and
an extra version array referenced by the locator. Like SXM and ASTM, LSA-
STM is an object-based STM based on the design of DSTM [9] and thus uses
locators to manage two object versions. However, whereas the other STMs use
one of these versions as the working copy modified by updating transactions and
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the other version as a backup copy, LSA-STM can—because of LSA and validity
range information—let reading transactions efficiently access the backup copy
when an update is happening (it is the the most recent version) and when the
working copy is committed (then the backup copy is the most recent old version).
Thus, LSA-STM can provide one or two consistent versions of the object with
the same space overhead. In the following, we denote accesses to the two versions
(primary and backup) managed by the locator as accesses to version 0 or version
1, respectively. The extra version array stores references to older versions (the
most recent version in the array has number 2).

Which object versions are accessed by a read-only transaction depends on how
objects are concurrently updated by other transactions. To investigate this, we
use a simple bank micro-benchmark, which consists of two transaction types: (1)
transfers, i.e., a withdrawal from one account followed by a deposit on another
account, and (2) computation of the aggregate balance of all accounts. Whereas
the former transaction is small and contains 2 read/write accesses, the latter is a
long transaction consisting only of read accesses (one per account and always in
account order). There are 1,000 accounts and 8 threads perform either transfers
or, with a 10% probability, balance computations.

Figure 4 shows access histograms of transactions computing the aggregate
balance. There are three benchmark modes: (1) no hotspots, that is, update
probability is equal for all accounts, (2) hotspots are encountered early during
aggregate-balance computation, and (3) late hotspots. Hotspots are modeled by
making the probability of updates to the first or last 50 accounts (accessed early
or late, respectively) as probable as updates to other accounts.

In Figure 4, we can see how different update frequencies affect LSA’s version
selection (note the logarithmic scale). First, we observe that most accesses are
performed to recent versions. When there are no hotspots, eight old versions are
sufficient. When hotspots are encountered early during the runtime of a trans-
action, subsequent accesses will use even more recent object versions, because
the relative update frequency of objects accessed late is smaller. In contrast, if
hotspots are encountered late, the transaction has to use older versions if one of
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the objects accessed early has been updated, which lets the validity range become
closed. Thus, the probability that an old version will be useful increases with
the size of the transactions and when hotspots happen late in their execution.

Throughput when keeping fewer old versions. Figure 5 shows the through-
put of the bank application when LSA-STM is configured to keep an extra version
array with eight or one version, or no extra versions at all besides the versions
0 and 1 in the locator.

We can observe that keeping old versions can be beneficial, especially if
hotspots are encountered late. However, the figure shows as well that through-
put can increase if there are less versions. We will address this problem in future
work.
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Figure 6 shows throughput results for the linked list and skip list benchmarks,
with 20% or 100% update transactions and 8 or 32 threads. The skip list is mostly
unaffected by the number of old versions available, or benefits only slightly from
old versions. On the contrary, fewer versions increase the throughput of the
linked list significantly. Using old versions will close the validity range, which is
disadvantageous for transactions that become update transactions after reading
a lot of objects (we assume that the type of a transaction is not known a priori).
Nevertheless, we have focused our study on eight extra versions because this
solution adapts well to various workloads. Adaptive version selection strategies
might be able to increase the throughput further.

Even without any extra versions, and thus with the same space overhead as
SXM or ASTM, LSA-STM is able to provide high throughput thanks to LSA
and up to two consistent versions being available for reading transactions.

Validity range extensions. The number of validity range extensions is very
small in all of our benchmarks (not shown because of space limitations). The vast
majority of transactions uses less than two to four extensions, depending on the
transactions. In general, it can be observed that committed read-only transaction
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mostly use no or a single extension, whereas aborted read-only transactions
often use at least one extension but seldom more. This is not surprising because
high numbers of extensions can essentially be caused by scenarios in which (1)
the update frequencies of objects accessed late during the transactions runtime
are higher than those of objects accessed earlier, or (2) updates always happen
immediately prior to accesses. For example, a single transition from non-hotspot
to hotspot access patterns, as takes place in the benchmark, does not cause a lot
of extensions. In the bank benchmark, read-only transactions almost never use
extensions. In the linked list benchmark, however, almost all aborted read-only
transactions use a single extension.

Update transactions behave as expected: the number of extensions for ob-
taining a snapshot is similar to that of read-only transaction, plus at most one
extension per object update and at most one per commit. For example, less than
1% of the transfer transactions require an extension at all.

5 Conclusion

We introduced a lazy snapshot algorithm that creates consistent snapshots on the
fly and can be used by STMs for read-only and update transactions. It is efficient
both theoretically and practically. The idea is to maintain, for each transaction,
a validity range based on global time. This range is sufficient to decide if a
snapshot is consistent and transactions using this snapshot are linearizable. The
snapshots are created in such a way that their freshness is maximized, e.g., a
snapshot might actually become valid at a time after the snapshot is started.
One issue is that the validity range of some of the objects is not known at the
time the snapshot is created. This might require, in some cases, an extension of
the preliminary validity range.

Acknowledgements. We thank the anonymous reviewers for their comments.
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Abstract. We present the first direct bounded wait-free implementa-
tion of a replicated register with atomic semantics in a system with an
unbounded number of clients and in which up to f servers are subject
to Byzantine failures. In a system with n ≥ 4f + i + 1 servers, and in
the presence of a single writer, our implementation requires 5 messages
from the reader and at most 6 + 2(f − i) messages per correct server
per read operation and 2 request and 2 reply messages per server for
each write operation. Unlike previous solutions, the number of messages
is independent of the number of write operations that are concurrent
with a read operation. For the case of multiple writers, a read operation
requires 5 messages for the reader and no more than 6 + 2c(f − i) reply
messages per correct server, where c is the number of writers that execute
concurrently with the read operations, and a write operation requires 4
request and 4 reply messages per server. The message requirements of
our wait-free implementations are considerably better in the worst case
than those of the best known non wait-free implementations. If there is
a bound on the number of writers, the total number of messages sent by
a server is linear in the number of read operations, so faulty servers that
send too many messages will be detected as faulty. This implementation
does not rule out the possibility that a reader receives and discards many
delayed messages in a read operation, so it is bounded only in an amor-
tized sense. We describe a bounded solution in which a read operation
will not receive more than a constant number of messages from a server
without detecting the failure of the server. No other solution is bounded
– in an amortized sense or otherwise.

Keywords: Atomic, Byzantine, Fault Tolerance, Replication, Timestamps,
Wait-Free.

1 Introduction

We study the problem of implementing a replicated data store in an asynchro-
nous system in which f out of n servers can be faulty. We consider a system
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with an unbounded number of clients in which servers are subject to Byzantine
failures and the data stored at servers is not self-verifying1. We aim at providing
an implementation that tolerates any number of client crash failures (wait-free
with respect to client failures) and up to f server failures (f -resilient).

Distributed implementations of shared registers in systems in which servers are
subject to Byzantine failures have been proposed by a number of researchers [4,
9, 10]. In such systems it is straightforward to provide implementations of safe
registers [8]. To provide stronger semantics, classical implementations of atomic
registers using registers with safe semantics can be used ( [7] for example). Such
implementations are not appropriate for distributed shared storage systems be-
cause they have high latency and they assume an upper bound on the numbers
of readers and writers and therefore would require resources to accommodate
the maximum number of clients in the system. We are interested in solving the
problem in a system with an unbounded number of clients so that the used
resources at any given time are a function of the actual number of clients in
the system. Martin et al. [10] were the first to present a solution that provides
atomic semantics for non self-verifying data in our model. Their solution uses
a technique in which servers “forward” to every reader with an ongoing read
operation all late writes until the reader decides on a value to read. Using a
similar forwarding mechanism, we gave a solution that improved on the solu-
tion of Martin et al. in the readers’ memory requirements [4]. This improvement
was achieved by introducing, and providing an implementation of, non-skipping
timestamps whose size grows logarithmically in the number of operations, in
contrast to timestamps used by other solutions whose size grow arbitrarily.

To tolerate client crashes, Martin et al.’s and our previous solution use a
diffusion mechanism: a server does not process a write request until it forwards
the request to all other servers and receives acknowledgements from n−f servers.
In addition to the high message complexity of such a solution, Ω(n2), it cannot
be used to solve the problem in a model in which servers do not communicate
with each other, but rather act as shared objects [5]. Our previous solution as
well as that of Martin et al. can require an unbounded number of messages to be
sent to reader whose read operation is concurrent with many write operations. A
natural question to ask is the following: can the number of messages exchanged
be made dependent only on the number of writers and not on the number of write
operations? It turns out that it is relatively easy to come with a wait-free solution
that does not use message diffusion and that requires only a constant number
of messages per read operation, but that solution requires unbounded storage at
the servers. So, the more interesting question to answer is the following: is there
a solution in which the number of messages exchanged and the storage at each
server in a given time period is only dependent on the number of clients and not
on the number of operations during that period? We call such a solution, if it
exists, a bounded solution. In this paper we first show that such if n > 4f + i,
where i ≥ 0 is a system parameter that affects the solution’s efficiency, then

1 In other words, no cryptographic techniques are used to verify that the data stored
at a server is authentic and not made-up by the server.
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an amortized bounded solution exists. If c is the number of distinct writers
concurrent with a read operation and r is the number of read operations executed
so far by the reader, then, at any given time, if the reader has received from a
given server a cumulative number of messages that is larger than W × r, where
W is a constant that we define later, then the reader can detect that the server is
faulty and ignore all further messages from the server. The solution does not rule
out the possibility that many of the messages sent by a server will be handled by
one read operation if these messages take a long time in transit. So, the solution
is bounded only in an amortized sense. Still, it has significantly better message
complexity than previous solutions.

We show how the amortized bounded solution can be made into a bounded
solution in which a given read or write operation will not handle more than a
constant number W messages from a given server without detecting that the
server is faulty. If the number of writers is finite, then a read operation will
always handle a constant number of messages.

An interesting feature of both solutions is that messages that are sent to
readers use timestamps whose size is logarithmic in the number of operations
in the system; in practice their size can be bounded by a large constant. Since
the number of messages sent by a server for a given read operation is constant
and the number of messages handled by a read operation is also constant, it
follows that our solution requires only (almost) constant size buffers at both
readers and servers. Unfortunately, both solutions allow some messages sent by
servers to writers to be unbounded in size. Still, it is interesting that messages
sent to readers are almost bounded even though the solution is atomic. In fact,
readers have to writeback values to ensure atomicity and we introduce a new
way to handle writebacks by readers to avoid having the readers acting like an
unbounded number of writers. Our bounded solution is a significant improve-
ment over previously proposed solutions because the number of messages sent
by correct servers and the number of messages handled by read operations are
constant if the number of writers in the system are constant and if faulty servers
do not want to be detected as faulty2. No other solution is comparable in this
regards. Even our amortized bounded solution improves greatly on the solution
of Martin et al. [10] and our previous solution [4]. For the case of multiple writers
the amortized solution achieves:

– For a read operation, 5 messages are sent by the reader to each server, and
6 + 2c(f − i) messages are sent by each correct server (c is define above),
whereas in previous work [4, 10] the number of messages sent by a correct
server is equal to 1 plus the number of write operations concurrent with a
read operation.

– The solution is wait-free without requiring servers to communicate with each
other. Previous solutions required Ω(n2) messages to be exchanged by servers
per write request to tolerate client crashes.

2 If the faulty servers do not mind being detected as faulty, there is nothing that
prevents them from sending any number of messages to a reader.
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Our amortized bounded solution requires n ≥ 4f + i + 1, where i is a systems
parameter that affects the number of messages sent by servers (see above). In
our solution each server keeps only three copies of the data (two most recent
values and one writeback value), which is almost optimal. Our solution, as well
as previous solutions, requires each server to maintain a list of active readers and
therefore, it requires space that is bounded by the number of active readers in any
given time period, but practically that space will be small because only reader
identifiers and not data values are maintained and that space might be required
anyway in a practical setting if connections are established between readers and
servers. In addition, our solution requires the server to maintain for a reader
a finite list of timestamps, but since the timestamps in our solution are non-
skipping, their space requirement is practically constant as we explained above.
Finally, all solutions we are aware of always require space that is proportional
to the number of readers or active readers in the system.

2 Related Work and Contributions

Researchers studied the problem of implementing shared registers in a variety of
models, including the shared object model [2] and the distributed storage (with
active servers) model. Earlier work in the shared object model considered benign
and arbitrary failures and distinguished between responsive and non-responsive
failures [6]. An object that is subject to responsive failures always responds, so
it is possible to detect object crashes and in this model Byzantine objects have
to always respond or their failure will be detected. In this paper we consider
non-responsive failures. This is the harder model to handle and it is the model
considered in Martin et al.’s work as well as our previous work and more recent
related work [1]. Jayanti et al. [6] provided wait-free implementations of safe
registers using shared registers that are subject to non-responsive arbitrary fail-
ures, but they did not provide direct implementations of registers with stronger
semantics.

In message passing systems, Attiya et al. [3] seem to be the first to consider
the implementations of shared memory primitives (in the presence of benign
failures). In the presence of Byzantine failures, Byzantine quorum systems are
typically used for replicated register implementation [8]. To write a value, a
writer sends the value to all servers in a quorum set, and, to read a value, a
reader collects data from all elements of a quorum set that has a large enough
intersection with the write so that the reader can get the most up-to-date value
even in the presence of Byzantine servers in the intersection. The simple imple-
mentation provides safe semantics [8] and stronger semantics can be enforced
using classical results [7].

Martin et al. [10] were the first to present a solution that provides atomic
semantics for non self-verifying data in an asynchronous system with an un-
bounded number of readers and writers, and in which servers are subject to
Byzantine failures and in which servers can: do a number of operations atomi-
cally; asynchronously forward messages to clients; and store data. Their solution
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uses message diffusion to tolerate client failures and cannot tolerate client fail-
ures if servers cannot communicate. Our previous solution is for the same system
model [4]. Our server model is similar to active disks which were earlier consid-
ered by Chockler and Malkhi [5] for providing solutions to the consensus problem
in the presence of non-responsive crash failures. The difference is that we allow
servers to asynchronously forward messages to clients. In practice, active servers
should be able to asynchronously forward messages to clients.

More recently, researchers considered f -resilient implementations of shared
registers using only read/write registers as base objects. The resulting solutions
are either not wait-free or not atomic and they do not support multiple writers.
Abraham et al. [2] present a wait-free single writer multiple readers (SWMR)
safe register that works for n = 3f + 1 (which is optimal), and a regular SWMR
register in which the read operations are guaranteed to terminate only when they
overlap with a finite number of write operations (FW-termination). Their work
uses read/write register objects subject to Byzantine failures. To our knowledge,
no previous direct implementation of wait-free registers in the shared object
model satisfies atomic semantics. The best direct wait-free implementation pro-
vides a single-writer/single-reader register with regular semantics, but it only
uses the weaker read/write objects and not the powerful servers that we use [1].
That work seems to be the first work that leverages classical techniques for
wait-free implementations of shared registers [11] to directly implement shared
register with stronger than safe semantics in the presence of Byzantine failures.

The techniques we use in this paper for the single writer case are only in
some aspects similar to those in [1, 11] and there are major differences between
the techniques we use and their techniques, especially that we support multiple
writers and provide atomic semantics. For example, in [1], the register keeps the
two most up to date written values and the writer alternates in writing to the
one or the other copy and a reader will read a value that is equal to the old
value in a sufficient number of register or equal to the new value in a sufficient
number of registers. In our implementation, we also use two most up to date
value (which was also used in the early work of Peterson [11]), but we also need
the servers to keep a separate writeback value. The value read is only required to
appear in a sufficient number of servers: it can be old in some servers and new
in some other servers or it can be a writeback value still in some other servers.

More importantly, we use a novel technique to execute writebacks. In all other
work that we are aware of, the writeback value replaces existing old value. In our
solution, we keep a separate writeback value and have a new writeback throttling
technique in which the writeback operation is executed in two phases to ensure
that the separate writeback value does not get way ahead of values directly
written by a writer. In a first phase, a reader will send a writeback request,
and, only after its request is acknowledged, it will send the actual value being
written back. Instead of writing back a value by sending an explicit writeback
message, we could have required the reader to do a full write operation at the end
of reading. This would even make the protocol less complicated and the proof
of atomicity will also be simpler, but this approach has the disadvantage of
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exposing the reader to messages that are potentially unbounded in size because
the messages sent to writers are not bounded. Our solution has to somehow hook
the writeback on a write message without exposing the reader to write messages
from servers. This is achieved through the writeback throttling technique.

To ensure atomicity, we require the reader to read twice before deciding on
potential timestamps for a value to read. Reading twice is used in the literature,
but this is the first time it is used in this context.

Furthermore, to ensure termination and boundedness, we use a new timestamp
requesting approach in which the reader determines a finite number of timestamps
as being the only possible timestamps for a value to be read. This is coupled
with functionality that allow a writer to detect ongoing read operations. This
functionality will guarantee that the reader will read a value with one of the de-
termined timestamps or it will be detected by the writer in which case it can get
identical values forwarded directly to it by the write operation. We manage to
use those techniques and other techniques to achieve the first bounded wait-free
implementation that does not use message diffusion.

3 System Model

The system consists of two sets of processes: a set of n server processes (servers)
and an unbounded set of client processes (clients). Clients have unique identifiers
that are completely ordered.

Clients communicate with servers and servers communicate with clients and
with other servers through reliable FIFO message passing.3 To send a message,
a process uses the send function that takes an intended recipient and a message
content as parameters. We identify a sent message as a triplet (s, r, c), where s is
the sender, r is the recipient and c is the content of the message. Every message
sent is guaranteed to be delivered to the intended recipient at a later time, but
there is no bound on the time elapsed between the time a message is sent and
the time it is delivered. A message delivered to p is of the form (s, c), where
(s, p, c) is a message sent at an earlier time. To receive messages, a process p
uses the receive function which returns a message that has been delivered to p
and that p has not previously received.

Up to f of the server processes can be faulty and n ≥ 4f + i + 1 for some
f ≥ i ≥ 0. Faulty server processes exhibit arbitrary failure behavior: they can
send arbitrary messages and change state arbitrarily.

Client processes can invoke a “read” or a “write” protocol which specifies
the state changes and the messages to send to servers to initiate a “read” or a
“write” as well as the state changes and messages to send in response to server
messages. A reader is a client process that executes a read protocol. A writer is a
client process that executes a write protocol. When we consider faulty clients, we
assume that they fail by crashing. When a client fails, it stops sending messages.
3 Message passing is assumed to be FIFO to simplify the exposition. All our results can

be modified using standard techniques to work for systems with non-FIFO message
passing.



Bounded Wait-Free f -Resilient Atomic Byzantine Data Storage Systems 305

4 Single Writer Amortized Bounded Solution

4.1 Overview

Servers store the two most up to date values they are aware of (vcur and vpre) as
well as a separate writeback value (vwb). A reader requests values from servers
and attempts to find a value that appears in enough responses. Since the pro-
tocol maintains only a finite number of values, handling a read operation that
is concurrent with multiple write operations requires special care. In particular,
if old values are replaced by new values at different servers, it is possible that
the reader will not be able to find a value that was written by a particular write
operation because each server might have a value written by a different write
operation. To protect against this possibility, a write operation tries to detect
concurrent read operations. For such detected operations, the writer will act ”on
behalf” of the readers and instructs the servers to forward to the detected readers
the value being written. This forwarding can occur before the server receives the
direct read requests from the readers. This forwarding will ensure that the reader
will be able to get a snapshot of the server values that guarantees the reader to
be able to find a value that was stored at a sufficient number of servers and that
is equal to one of the recently written values. Still, it is possible that a writer
does not detect (or see) the concurrent read operation, so another mechanism is
needed to ensure termination at all times.

In our solution, the reader determines a finite set of timestamps of values
that it needs for termination and requests that servers forward values with these
timestamps whenever they receive them. We ensure that the reader will get
enough values with identical timestamps equal to one of the timestamps deter-
mined by the reader or, if that does not happen, the writer must have written too
many values and will see the pending read operation in which case it will request
that servers forward one value completely to enable it to terminate. In fact, in
order for the writer to see the reader, it is enough for the writer to completely
write a value with timestamp tlargest +1, where tlargest is the largest timestamp
that the reader receives from a correct server in reply to its second read request
phase and that is not one of the i largest timestamps that the reader receives in
reply to its second read request (in our solution, a reader issues two read requests
and collects two sets of values to ensure atomicity; see description below). If the
writer does not write a value whose timestamp is tlargest + 1, then the values
with timestamp tlargest or the value with timestamp tlargest − 1 is completely
written and is not overwritten by a value with higher timestamp. Unfortunately,
the reader does not know the value of tlargest, otherwise it could request a value
whose timestamp is tlargest or tlargest − 1. To guarantee that it requests tlargest,
the reader request the (f + 1)’th largest to (i + 1)’th largest tscur timestamps
that the reader receives in reply to its second read request, and the timestamps
equal to these timestamps minus one. (Note: from (f +1)’th largest to (i+1)’th
largest tscur may not be the consecutive values. Also, the larger the value of i
the less values will be requested; in fact, if i = f , only 2 values will be requested)
So the number of the potential timestamps is at most 2(f−i+1), which is finite.
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Two interesting aspects of our protocol relate to how atomicity is ensured.
In an atomic implementation, we would like a read operation that starts after
another read operation terminates to return a value that is at least as recent as
the value returned by the older read operation (read-read atomicity). Also, we
would like that a read operation that starts after a write operation terminates
to return a value that is at least as recent as the value written by the write
operation (read-write atomicity).

The standard technique to provide read-read atomicity is to have a reader
write back the value that it reads. Since we are only maintaining a finite number
of values at a server (in particular, only one writeback value), we would like to
ensure that a later read operation will receive enough identical values that are
at least as recent as the value returned by the older read. If there are multiple
writebacks concurrent with one read operation, it is possible that the older (and
more relevant) writeback value is erased. One possible approach would have later
writebacks check for concurrent readers, but this will complicate the solution and
will expose the readers to potentially unbounded messages from faulty servers
as explained in Section 2. To get around this difficulty, we propose a novel write-
back throttling mechanism that prevents writebacks from getting much ahead of
writes. The idea is to divide a writeback into two phases. In a first phase, a
reader sends a writeback request specifying the timestamp of the value it wants
to write back. A server will grant the writeback request only after it receives
the data value that immediately precedes the writeback value; the immediately
preceding value has a timestamp that is equal to the writeback timestamp minus
one (timestamps are non-skipping). This will ensure that the writeback value can
only be one step ahead of directly written values and makes our solution possible.

To provide read-write atomicity, we require the reader to collect two sets
of data, in effect reading twice, before deciding on a value to read. Reading
twice is needed to ensure that either the reader will decide to read a value whose
timestamp is larger than that of the latest written value or that the latest written
value did not get overwritten many times between the two reads, in which case
the reader can read the latest written value.

So, in summary of the main techniques in this solution, we are using the detec-
tion of concurrent readers, forwarding, and requesting for potential timestamps
to ensure termination, and, we are using writeback throttling and repeated reads
to ensure read-read and read-write atomicity respectively. We should note here
that the forwarding we are using is different from that we used in the past in that
it is writer-initiated and not server-initiated. Also, the requesting of potential
timestamps is new for this solution. In the detailed description that follows we
also describe how readers detect faulty servers that send too many messages.

4.2 Client Side

We assume that a writer will not write a new value until it finishes writing the
previous value. Each read operation has an id (cur opID) which is incremented
before each read operation. The id is used to ensure that the cumulative number
of messages received by a reader from a given server is less than 2(f − i)+6 (the
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maximum number of messages per read operation) times the number of read
operations. If this total is exceeded, the server is added to a faulty set (initially
empty) and its messages are rejected. This is enforced in the receive function
(Figure 2) which wraps the system’s receive function. Note that we could have
made the detection of failures tighter, but we want to keep the description simple.
Each message is tagged with the id of the operation to which it pertains and
messages that do not pertain to the current operation are ignored.

Read operation. A reader starts by sending a READ REQUEST I message
to all servers and waits for replies from n − f of them (Figure 1, lines 1-6). A
reply of a server consists of a triplet of pairs of the form (v, t), where v is a
value and t is a timestamp. These three pairs are the two most up-to-date values
that the server has received directly from a writer and a writeback value that
the server receives from readers at the end of read operations. Then, the reader
starts another round of read by sending a READ REQUEST II message and
waits for another n−f triplets from different servers. The replies received in the
two rounds are kept in two received arrays that can contain up to n entries, one
for each server, and whose entries are triplets of values. Any forwarded messages
received by the reader during the two phases is kept in a forwarded array. ( lines
7-14). The reader sorts the timestamps received in the two rounds and chooses
two timestamps as the potential target timestamps: (1) tst1 = f +1+i’th largest
current timestamp value (tscur) received, and (2) tst1 − 1. (lines 15-16) Then
the reader tries to decide a value with a timestamp tst1, and, if that is not
successful, it tries to decide on a value with timestamp tst1−1. A reader decides
a value (using the decide function) if there at least f + 1 replies by different
servers that contain the same value with the timestamp specified as an input to
the decide function. (lines 17-20) The other parameters of the decide function
specify the entries that can be used in looking for identical values. For the case
of the received arrays, these identical values can appear in any pair in the triplet.
If the reader can decide a value, it writes back the value read and finishes the
operation (see below). If there are not enought identical replies for the reader to
decide, the reader determine a set of POTENTIAL Target timestamps (line 21)
and requests that servers send values whose timestamps are equal to one of the
potential target timestamps or to one of the potential target timestamps minus
1 (the request for potential target timestamps -1 is implicit in the reader’s code
but is enforced in the server code). The smallest explicitly requested potential
target timestamp is tst1 and the smallest implicitly requested potential target
timestamp is tst1 − 1. The data value that the reader will end up reading will
have a timestamp that is not less than tst1 − 1. This is enforced in lines 23-40
(lines 30,32 and 35 in particular). The reader waits for replies from the servers
until it can read a value.

After the reader reads a value, it has to ensure that later readers will not
read older values. This is achieved by writing back the value read. As explained
in the protocol overview, we use a novel writeback throttling mechanism when
writing back values. The writeback operation proceeds in two phases. In the
first phase, the reader sends WRITEBACK REQUEST messages to all servers
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indicating the timestamp tstarget of the value it wishes to writeback (line 41). The
WRITEBACK REQUEST will be acknowledged by a server only if the server
has a tscur = tstarget − 1. This ensures that no server will have a writeback
value that is way ahead of a directly written value. This property is essential for
ensuring atomicity. When a reader receives a WRITEBACK REQUEST ACK
from a server, it adds the server to the set Sreq ackof servers that acknowledged
the writeback request and it sends to the server a WRITEBACK MESSAGE
containing the writeback value (lines 42-48). The reader waits until it receives
n − f acknowledgments to its WRITEBACK messages at which time it sends
the WRITEBACK messages to the rest servers (lines 49-50). After the reader
receives (n-f) acknowledgments, it terminates(lines 52-53).

Write operation. The writer starts by sending a WRITE message to all servers
and waits until it receives n − f replies (Figure 3, lines 1-6). The goal of this
request is not only to write a new value, but to detect readers that have already
started their second read requests, but not finished reading - the set of concur-
rent readers. In response to a WRITE message, the writer receives from each
correct server s a reply that contains the set Rconcur of readers that have started
their second read requests, but whose read operations have not terminated (no
writeback request message received by s). The writer can tell that the second
read request phase of a reader r is concurrent with the write operation if f + 1
servers reply with messages indicating that they received a second read request
from r (line 7). To each server, the writer sends a FORWARD message specifying
the set of concurrent readers, Rconcur, that the writer calculated acknowledg-
ments in line 7 and from which the server might not have received read requests
(line 8). We assume that whenever the writer wants to write a new value, it
increments by 1 the value of the timestamp it used in its last write operation.
After the writer receives n − f acknowledgments, it terminates. We omit from
the writer code functionality to bound the total number of messages and detect
failures; it is similar to that of the reader.

4.3 Server Side

Reader messages. Upon receipt of a READ REQUEST I message, the server
sends the reader the most up-to-date values that the server has (Figure 4, lines
1-2). Upon receipt of a READ REQUEST II message, the server adds the reader
to the set Gsend2 of readers from whom it received second read requests and
sends the reader the most up-to-date values that the server has (lines 3-5).

Upon receipt of a WRITEBACK REQUEST message, the server first removes
the reader from the set of Gfwd and Gsent2(lines 6-8), then checks if the proposed
writeback timestamp is not very large (line 9). If it is very large, the server adds
the reader to the set of readers with pending writebacks (line 10). If the proposed
timestamp value is not very large, the server acknowledges the writeback request,
thereby allowing the reader to send the actual writeback value (lines 11-12).
A reader that is added to the set of readers with pending writebacks will be
acknowledged once the value preceding the value being written back is received
directly from the writer. The preceding value is guaranteed to eventually arrive
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because a writer does not start writing a value before finishing writing a previous
value and timestamps are non-skipping.

Upon receipt of a WRITEBACK message, the server updates the most up-to-
date writeback value (vwb) and corresponding timestamp if the received value is
more up-to-date than vwb, then it removes the reader from the set Gsend2 sends
an acknowledgement to the reader (lines 13-16)

Upon receipt of a REQUEST TARGET message, the server checks whether
it has a value whose timestamp is requested by the reader explicitly (lines 18-
22) or implicitly (lines 23-27). If it has one or more of the requested values, it
sends those values to the reader. The server will keeps the list of the timestamps
requested by the reader in the request pending set, Reqpending (line 28).

Writer messages. Upon receipt of a WRITE message, the server updates its
values (vcur and vpre, but not vwb) and timestamps if the received value is newer
than the most up-to-date stored value (lines 30-32) (Since communication is
FIFO, there is really no need to check that the written value is more up-to-date
than the stored values because every new value written by the writer will me
more up-to-date than vcur and vpre. This will not be the case for the multiple
writer solution). Then, it will check whether the new data is one of pending
reader requesting, and send to it if so (line 33-39). Next, the server sends the
list of readers in the set Gsend2) but not in Gfwd; these are the readers have
started their second read request phase, but from which the server has not yet
received writeback messages and not forwarded a value to them (line 40). Finally,
the server checks if there are pending writebacks of a value that immediately
follow the value just received. If there are such pending writebacks the server
acknowledges them (lines 41-43). It is important to note here that checking that
a value immediately follows another value is straightforward because timestamps
are non-skipping and successive value have timestamps that differ exeactly by 1.

Upon receipt of a FORWARD message, for every reader in the set Rconcur

but not Gfwd whose second phase is concurrent with the writer and to which
the writer has not previously forwarded a value, the server sends (vcur, tscur) to
the reader (lines 45-46). Then, the server adds the set of concurrent readers to
the sets Gfwd and sends an acknowledgement to the writer (lines 47-48).

Due to space limitations, we state without proof the following Theorem.

Theorem 1. The proposed solution provides a wait-free atomic implementation
of a distributed register in the presence of up to f Byzantine faulty servers. At
any given time, the average number of messages received by a reader from a
server that is not detected to be faulty is less than or equal to 6 + 2(f − i) per
read operation.

Next we describe at a high level the bounded solution for the single writer case.

5 Bounded Solution

In the amortized bounded solution, a client always sends its requests to all servers
even if the servers did not reply to previous requests. This can result in a large
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Initially: faulty = ∅, cur opID = 0, rpl num[i] = fwd numID[i] = 0, 1 ≤ i ≤ n.

read(out: ts,value)
0: cur opID = cur opID + 1

:1st Read Request:
1: send (cur opID, READ REQUEST I) to all servers
2: received1[i] = null, 1 ≤ i ≤ n
3: repeat
4: (s, opID, (tag, [(vcur, tcur), (vpre, tpre), (vwb, twb)])) = receive()
5: if (tag = r1)and(opID = cur opID) then

received1[s] = [(vcur, tcur), (vpre, tpre), (vwb, twb)]
6: until |{i : received1[i] �= null}| ≥ n − f

:2nd Read Request:
7: send (cur opID, READ REQUEST II) to all servers
8: received2[i] = null, 1 ≤ i ≤ n
9: forwarded[i] = null, 1 ≤ i ≤ n
10: repeat
11: (s, opID, (tag, data))=receive()
12: if (tag = r2)and(opID = cur opID) then received2[s] = data
13: elseif (tag = fwd)and(opID = cur opID) then forwarded[s] = data
14: until |{i : received2[i] �= null}| ≥ n − f
15: sorted rcvd2[] = received2[] sorted in descending order according to tcur

16: tst1 = sorted rcvd2[f + i + 1]

:1st Try to Decide:
17: value = decide(tst1, {received1, received2})
18: if value �= null then WriteBack(value, tst1)
19: value = decide(tst1 − 1, {received1, received2})
20: if value �= null then WriteBack(value, tst1 − 1)

: Request Potential Target Timestamps:
21: Targets = [sorted rcvd2[i + 1].tcur, . . . , sorted rcvd2[f + 1].tcur]
22: send (cur opID, POTENTIAL TARGETS, Targets) to all servers

: 2nd Try to Decide:
23: target rcvd[j][s] = null i + 1 ≤ j ≤ f + 1, 1 ≤ s ≤ n
24: target rcvd−1[j][s] = null i + 1 ≤ j ≤ f + 1, 1 ≤ s ≤ n
25: value = null
26: repeat
27: value = decide(tst1, forwarded)
28: if value �= null then WriteBack(value, tst1)
29: for j = i + 1 to f+1 do
30: value = decide(sorted rcvd2[j].tcur, target rcvd[j])
31: if value �= null then WriteBack(value, sorted rcvd2[j].tcur)
32: value = decide(sorted rcvd2[j].tcur − 1, target rcvd−1[j])
33: if value �= null then WriteBack(value, sorted rcvd2[j].tcur)
34: (s, opID, (tag, data))=receive()
35: if (tag = fwd)and(opID = cur opID) then forwarded[s] = data
36: elseif (tag = (tar, j, 0)and(opID = cur opID)and(i + 1 ≤ j ≤ f + 1))
37: target rcvd[j][s] = data
38: elseif (tag = (tar, j,−1)and(opID = cur opID)and(i + 1 ≤ j ≤ f + 1))
39: target rcvd−1[j][s] = data
40: until value �= null

WriteBack(value, tstarget)
41: send (cur opID, WRITEBACK REQUEST) tstarget to all servers
42: Sreq ack = ∅
43: repeat
44: (s, opID, (wrqack, WRITEBACK REQUEST ACK))=receive()
45: if (opID = cur opID) then
46: Sreq ack = Sreq ack ∪ {s}
47: send (cur opID, WRITEBACK(value, tstarget)) to s
48: until |Sreq ack| ≥ n − f
49: forall s �∈ Sreq ack do
50: send (cur opID, WRITEBACK, (value, tstarget)) to s
51: (s, opID, (wback, WRITEBAC ACK))=receive()
52: wait for n − f WRITEBACK ACK (opID = cur opID) messages
53: return // exits the read operation

Fig. 1. Read: Client Side
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receive()
1: m = receive(s, opID, (tag, data))
2: rpl num[s] = rpl num[s] + 1
3: if s �∈ faulty then if (opID > cur opID) or (rpl num[s] > cur opID × (2(f − i) + 6)) then
4: m.tag = ⊥; add s to faulty
5: return m

Fig. 2. Reader’s receive() function

1: send WRITE MESSAGE (value, ts) to all servers
2: received[i] = null, 1 ≤ i ≤ n
3: repeat
4: receive (s, (Rs2))
5: received[s] = (Rs2)
6: until |{i : received[i] �= null}| ≥ n − f

7: Rconcur = {(r, opID) : |{s : (r, opID) ∈ received[s].Rs2}| ≥ f + 1}
8: send FORWARD MESSAGE (Rconcur) to all servers
9: wait for acknowledgments from n − f different servers

Fig. 3. Write: Code execute by client

number of replies to delayed messages reaching a reader during a given read
operation. These replies can be either direct replies to requests or values sent
in response to a target timestamps request. Another source of delayed messages
are forwarded messages. A writer might send many forward messages for read
operations pertaining to the same reader and the actual forwarded messages
might reach the reader together during a given read operation.

Delayed Replies. Handling delayed replies to request from the reader is rel-
atively easy. A reader can simply not send a request to a server in a given
operation until the server replies to all previous requests from the reader. For
example, if a server s does not reply to all the requests of operation 5 and the
reader meanwhile successfully completes operations 6, 7, and 8, the reader will
refrain from sending any requests to s when it executes operations 6, 7, and 8.
When the reader receives all replies to operation 5, it can send s the requests of
the current operation, 9 for example. Implementing this idea requires some care.
For example, s might send all replies to operation 5, after the reader has sent
some, but not all, messages for operation 9. The reader should be able to let
s catch up on the requests in operation 9. This is achieved by keeping a buffer
of all outgoing requests during an operation. Whenever the reader determines
that server has sent all its pending replies, it will send it all requests that are
stored in the buffer. The buffer is reset at the end of the a read operation. The
implementation requires that the reader does some bookkeeping to keep track of
the pending replies its expects from each server. Also, whenever a server replies
to a writeback message for a given operation, the reader can assume that it will
not send replies to target timestamp requests for that operation.

Forwarded messages. Handling forwarded messages is more interesting and
less straightforward. The amortized bounded solution requires that a server that
receives a forward request must forward the value to the reader even if it did not
receive a direct read request from the reader. This is needed to ensure termi-
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Read:
1: upon receipt of (opID, READ REQUEST I) from a reader p
2: send (r1, opID, {(vcur , tcur), (vpre, tpre), (vwb, twb)}) to p
3: upon receipt of a (opID, READ REQUEST II) from a reader p
4: send (r2, opID, {(vcur , tcur), (vpre, tpre), (vwb, twb)}) to p
5: Gsent2 = Gsent2 ∪ {p}

6: upon receipt of (opID, WRITEBACK REQUEST, ts0) from a reader p
7: Gfwd = Gfwd − {(p, opID)}
8: Gsent2 = Gsent2 − {(p, opID)}
9: if ts0 > tcur + 1 then
10: Gwriteback = Gwriteback ∪ {(p, opID, ts0)}
11: else
12: send (opID, wrqack, WRITEBACK REQUEST ACK) to p
13: upon receipt of (opID, WRITEBACK, (v0, ts0)) from a reader p
14: if (ts0 > tswb) then
15: vwb = v0, tswb = ts0

16: send (opID, wback, WRITEBACK ACK) to p

17: upon receipt of (opID, POTENTIAL TARGETS, Reqp) from a reader p
18: for j = i + 1 to f + 1 do
19: if (tscur = Reqp[j]) then // If a requested timestamp equals
20: send (opID, (tar, j, 0), (vcur , tcur)) to p // current or previous timestamp,
21: if (tspre = Reqp[j]) then // send that value to requesting client
22: send (opID, (tar, j, 0), (vpre, tpre)) to p
23: for j = i + 1 to f + 1 do
24: if (tscur = Reqp[j] − 1) then // If an implicitly requested timestamp
25: send (opID, (tar, j,−1), (vcur , tcur)) to p // equals currentor previous timestamps,
26: if (tspre = Reqp[j] − 1) then // send that value to requesting client
27: send (opID, (tar, j,−1), (vpre, tpre)) to p
28: Reqpending = Reqpending ∪ {(p, opID, Reqp)}

Write:
29: upon receipt of a WRITE MESSAGE (v0, ts0) from the writer w
30: if (ts0 > tscur) // If new value and timestamp received,
31: vpre = vcur , tspre = tscur // overwrite old value and timestamp,
32: vcur = v0, tscur = ts0

33: forall (p, opID, Reqp) ∈ Reqpending do // and send new value to clients waiting
34: for j = i + 1 to f + 1 do // for a value with the new timestamp
35: if (tscur = Reqp[j]) then send (opID, (tar, j, 0), (vcur, tcur)) to p
37: for j = i + 1 to f + 1 do
38: if (tscur = Reqp[j] − 1) then send (opID, (tar, j, −1), (vcur, tcur)) to p
40: send (Gsent2 − Gfwd) to w // Send to writer list of pending reads

// that did not receive a forward message
41: forall (p, opID, ts) ∈ Gwriteback such that ts = tscur + 1
42: Gwriteback = Gwriteback − {(p, opID, ts)}
43: send (opID, wrqack, WRITEBACK REQUEST ACK) to p

44: upon receipt of a FORWARD MESSAGE (Rconcur2) from the writer w
45: forall (r, opID) ∈ (Rconcur2 − Gfwd)
46: send (opID, fwd, (vcur , tcur)) to r
47: Gfwd = Gfwd ∪ Rconcur2
48: send ACK FORWARD to w

Fig. 4. Write & Read: Server Side

nation. It is also problematic because a server that is not communicating with
the reader is required to send a message to the reader. This problem cannot be
solved by simply requiring that the message be forwarded only by servers that
have heard directly from the reader because the reader would not be guaran-
teed to receive enough identical forwarded messages. Also, this problem cannot
be solved by requiring that the writer only forwards if 2f + 1 servers tell the
writer that they have received the reader’s read request, because the writer is
not guaranteed to get that many messages for a concurrent reader. Our way out



Bounded Wait-Free f -Resilient Atomic Byzantine Data Storage Systems 313

of this problem is through the use of multiple forward requests from a writer.
The writer will send at most f + 1 forward requests for a given read operation
and a given server will forward a value only if it has received directly the read
request. To avoid that the same set of servers always forward the message to
the reader (in which case the reader might never be able to decide on a value),
the solution requires that every time a forward is to occur, there must be new
servers involved in the forward. This way, after f +1 forwards, the reader will be
guaranteed to receive forward messages from f +1 correct servers. To implement
this idea, the writer includes in the forward request the id’s of the server that
claim to have received the reader’s request. When a new forward request arrives,
a server that has received a request from the reader will check if the new set of
id’s contain any new servers; if it does, the server forwards the message.

6 Multi-writer Solution

The multi writer case is a relatively simple extension of the single writer case.
Each server keeps 3 values for each writer and all the values are sent to readers.
To ensure non-skipping timestamps, the writer will first execute a complete read
of a value, then do a complete write on behalf of the writer whose value it read,
then it increments the timestamp and writes its value. This helping technique is
common in wait-free implementations.

If the number of writers is bounded by c, then the number of messages sent
by servers to readers can be bounded by 6 + 2c(f − i).
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Abstract. This paper is about consensus solutions optimized simulta-
neously for the time and communication complexities. Synchronous mes-
sage passing with processors prone to crashes is the computing environ-
ment. The number f of crashes can be arbitrary as long as it is smaller
than the number n of processors in the system. As a building block to our
consensus solutions, we consider the gossiping problem in which proces-
sors have input rumors and the goal of every processor is to learn all the
rumors of the processors that have not crashed. We show that gossiping
can be achieved by a deterministic algorithm working in O(log3 n) time
and sending O(n log4 n) point-to-point messages. These results improve
upon the best previously known deterministic solution of gossiping that
operated in O(log2 n) time and generated O(n1+ε) messages, for any con-
stant ε > 0. The efficient gossiping algorithm is applied to the problem
of reaching consensus. In the Consensus problem, each processor starts
with its input value and the goal is to have all processors agree on exactly
one value among the inputs. First we develop a deterministic algorithm
solving Consensus in O(n) time while sending O(n log5 n) messages. The
best previously known algorithms solving Consensus in O(n) time had
the message complexity bounded by O(n1+ε), for any constant ε > 0.
Next we improve the Consensus solution so that it is early stopping,
which means that it terminates in O(f + 1) time, where f is the num-
ber of crashes in an execution, while preserving the message complexity
O(n log5 n).

1 Introduction

Reaching consensus in a distributed setting is usually achieved after an exchange
of initial values that is sufficiently informative for every processor to decide. The
exchange of information among all the processors is a fundamental algorithmic
primitive in its own right. An abstraction of this tasks called Gossiping can be
formulated as follows: initially every processor holds an input value, called its
rumor, the goal is to have all processors learn all the rumors.

This abstraction of rumor spreading and gathering is well defined when all
the processors remain non-faulty in the course of an execution of a gossiping
protocol. The gossip abstraction needs to be modified when crashes occur, since
it is possible that these processors that managed to learn some specific rumor
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have crashed before the rumor was learned by all the processors. Chlebus and
Kowalski [4] introduced the following form of the gossiping problem for a crash-
prone environment: every processor is to learn either the rumor of processor v or
the fact that v has crashed, for each processor v. We call Gossip-with-Crashes this
version of the gossiping problem. Observe that it is possible, when processor v
crashes in an execution of a solution of Gossip-with-Crashes, that some processors
learn the original input rumor of v, while others learn that processor v has
crashed, and some processors may get to know both these facts.

This paper considers the distributed environment of a synchronous message-
passing system with processors prone to crashes. The number f of crashes is
required to satisfy only the requirement f < n, where n is the number of proces-
sors in the system. Scenarios of occurrences of crashes are controlled by a fully
adaptive adversary, while the number f of crashes in never a part of code of
an algorithm. The model of distributed computing abstracts from the underly-
ing communication network by assuming that any processor can send a message
to any subset of processors, and the message is delivered to all its recipients
within one round. If a processor crashes while sending a message, then some
recipients may receive the message and some may not. The performance of a
distributed protocol in such a system can be measured by natural metrics of
time and communication, the latter defined conservatively as the number of
point-to-point messages. For instance, consider a simple gossiping protocol in
which every processor sends its input rumor to all the remaining processors in
one round of communication. A processor receives the rumors of the processors
that did not crash during these concurrent broadcast operations, and also pos-
sibly some of these that crashed in the course of broadcasting. If a message is
not received from a processor, then this indicates that the sender crashed. This
gives a simple gossiping algorithm of a constant-time performance but with a
drawback that Ω(n2) messages are exchanged in the worst case.

The above example indicates that there is a tradeoff between the time and
communication complexities of solutions to Gossip-with-Crashes. We would like
to have a gossiping protocol optimized for both time and communication, prefer-
ably with O(polylog n) time and O(n polylog n) communication. Then such a
gossiping primitive could be applied to solve other distributed problems with
the goal to obtain solutions optimized for both the time and communication
complexities.

The Consensus problem is about having processors decide on a common value,
assuming that each processor starts with its initial input value. The problem is
defined as follows.

(1) Termination: Eventually every non-faulty processor decides on some deci-
sion value.

(2) Validity: Any decision value is among the input values.
(3) Agreement: The decision values of any two non-faulty processors are equal.

We consider two levels of specification of algorithms. On the existential level,
certain combinatorial structures that are a part of code of an algorithm may
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only be known to exist. The stronger explicit level of specification requires the
code to be instantiated completely within time that is polynomial in the length
of the input. The algorithms we consider are existential unless stated otherwise.

Our results. The summary of the contributions is as follows.

I. We show that Gossip-with-Crashes can be solved by a deterministic algo-
rithm working in O(log3 n) time and sending O(n log4 n) point-to-point mes-
sages. The algorithm can be explicitly instantiated to work in O(polylog n)
time while sending O(n polylog n) point-to-point messages. The best previ-
ously known gossiping algorithm given by Georgiou, Kowalski and Shvarts-
man [14] operated inO(log2 n) time and usedO(n1+ε) messages, for any fixed
ε > 0; an explicit version given by Kowalski, Musial and Shvartsman [21]
works in O(polylog n) time. The improvement we obtain is in decreasing the
message complexity per processor from polynomial to polylogarithmic, while
maintaining the polylogarithmic time.

II. We develop a deterministic algorithm to solve Consensus in O(f + 1) time,
where f is the number of crashes occurring in an execution, while send-
ing O(n log5 n) messages. The algorithm can be made explicit and work in
O(f + 1) time and send O(n polylog n) messages. The algorithm solving
Consensus in the synchronous setting with processor crashes that worked
in O(n) time and was most efficient in terms of communication among al-
gorithms known previously was given by Galil, Mayer and Yung [4]; the
algorithm had message complexity O(n1+ε), for a constant ε > 0. Our con-
tribution is in decreasing the message complexity per processor from poly-
nomial to polylogarithmic while simultaneously achieving the optimum time
O(f + 1).

The main contribution of this paper is in showing how to solve Gossip-with-
Crashes and Consensus efficiently in terms of both the time and message com-
plexities, when the number f of crashes can be as large as f = n − 1 and the
scenarios of failures are controlled by a fully adaptive adversary. The previously
known solutions achieved only at most one measure of efficiency, among time
and communication, to be close to the optimum value within a polylogarithmic
factor, while the other complexity measure had at least a polynomial overhead
per processor. The main technical obstacle to obtain the results of this paper is
that the adversary is fully adaptive and limited only by the absolutely minimal
requirement to leave at least one non-faulty processor in an execution.

Previous work. Gossiping in a synchronous deterministic environment with
processors prone to failures with the specification that every processor needs
to get to know, about each other processor v, either the original input value
of v or merely the fact that processor v has crashed, was considered by Chlebus
and Kowalski [4]. They developed an algorithm solving Gossip-with-Crashes in
O(log2 f) time and with O(n log2 f) messages if n − f = Ω(n), where f is the
number of crashed processors. They also showed that Ω( log n

log(n log n)−log f ) time
is necessary if communication is by way of only O(n polylog n) messages. In
the general case of up to f = n − 1 crashes, a result given in [4] stated that a
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sub-quadratic amount of communication O(n1.837) was achievable in O(log2 f)
time. This performance was later improved to the communication O(n1+ε) and
O(log2 n) time by Georgiou, Kowalski and Shvartsman [14], where ε > 0 is
an arbitrary constant being a part of code of the algorithm. These performance
bounds were shown to be achievable by an explicit algorithm by Kowalski, Musial
and Shvartsman [21].

The optimal complexity of Consensus with crashes is known with respect
to the time and the number of messages when these performance metrics are
considered separately. The linear lower bound Ω(n) on the number of messages
holds. Dwork, Halpern and Waarts [9] found a solution with O(n log n) messages
but with an exponential time. Galil, Mayer and Yung [12] developed an algorithm
with O(n) messages, thus showing that this is the optimum number of messages.
The drawback of their solution is that it runs in an over-linearO(n1+ε) time, for
any 0 < ε < 1. The time complexity f + 1 is optimal, as shown by Fischer and
Lynch [10]. A Consensus solution has the early-stopping property if the running
time is O(f + 1), where the number f is the actual number of failures occurring
in an execution. Galil, Mayer and Yung [12] found an early-stopping solution
with O(n + fnε) communication complexity, for any 0 < ε < 1. Chlebus and
Kowalski [4] showed that Consensus can be solved in O(f + 1) time and with
O(n log2 f) messages if only the number n− f of non-faulty processors satisfies
n− f = Ω(n).

Related work. In most of the prior research on the Gossiping problem in net-
works prone to failures, either link failures or processor failures controlled by
oblivious adversaries were considered, while the methods applied were mainly
graph-theoretic; see [17] for an overview. One may consider dissemination of in-
formation similarly as spreading of an infectious disease, which has been studied
in applied mathematics [3]. The general rumor-spreading paradigm has proved
to be versatile also in distributed environments and in communication networks.
Demers et al. [6] introduced epidemic algorithms for updating data bases, in
which a processor regularly chooses other processors at random and transmits
the rumors. Such general randomized epidemic algorithms were studied by Karp,
Schindelhauer, Shenker and Vöcking [18]. Rumor-spreading algorithms to learn
about the nearest resource location was given by Kempe, Kleinberg and De-
mers [20] and Kempe and Kleinberg [19]. Bagchi and Hakimi [2] investigated
gossiping in networks with Byzantine node failures, in the case when nodes can
test other nodes. Application of gossiping to gathering information about occur-
rences of failures was proposed by van Renesse, Minsky and Hayden [25].

The Consensus problem was introduced by Pease, Shostak and Lamport [22].
Fisher, Lynch and Paterson [11] showed that the problem is unsolvable in an
asynchronous setting, even with only one crash failure. Hadzilacos and Toueg [16]
discussed the relevance of the consensus problem to fault-tolerant broadcast and
other communication primitives. Fisher and Lynch [10] showed that a synchro-
nous solution requires f+1 rounds. Garay and Moses [13] developed an algorithm
with polynomial-size messages operating in f + 1 rounds, for n > 3f proces-
sors subject to Byzantine failures. The message complexity of Consensus in
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executions when no failures happen was studied by Amdur, Weber, and Hadzi-
lacos [1] and by Hadzilacos and Halpern [15].

The message complexity of Consensus in the case of Byzantine faults was
studied for both pure Byzantine faults and in a less demanding situation when
some cryptographic authentication mechanism is available, which makes forging
signatures of forwarded messages impossible. Dolev and Reischuk [8] showed
a lower bound Ω(nf) on the number of signatures, for any algorithm using
authentication, which is also a lower bound on the total number of messages
for any protocol without authentication. They showed that any algorithm with
authentication has to send Ω(n+f2) messages, and that achieving this number of
messages is possible. A conclusion is that, when faults are sufficiently malicious,
Ω(n2) is a lower bound on the number of messages.

2 Technical Preliminaries

All graphs that we consider are undirected. The notation [k] denotes {1, . . . , k},
for an integer k > 0. The names of all processors make the set [n]. To simplify
the notation, we assume that n is a power of 2.

Expanders. The communication schemes of our algorithms are based on suit-
able expander graphs. Such graphs have good connectivity properties and can
be defined in many ways, see [24,26]. Following Pippenger [23], we define an
a-expander, for a positive integer a, to be a simple graph G = (V,E) with
|V | = n ≥ a nodes such that every set A ⊆ [n] of size a has more than n − a
neighbors. This is equivalent to requiring that two disjoint sets of size a each are
connected by an edge. We use the following property of expanders:

Fact 1 ([5]). Consider a 2a-expanding graph G(a) for a ≤ logn− 2. For every
set A ⊆ [n] of at least 3 · 2a nodes of G(a) there is a set B ⊆ A of a size at least
2a+1 + 1 such that the subgraph of G(a) induced by the set B is of a diameter at
most 2a+ 2.
Communication graphs. Processors send messages directly to these proces-
sors that are their neighbors in suitable communication graphs. We use graphs
denoted by G(i) for this purpose, where G(i) = ([n], Ei) is a 2i-expanding graph,
for 0 ≤ i ≤ logn. GraphG(0) is the complete graph on n nodes, which guarantees
a possibility for any pair of nodes to exchange messages directly if necessary.
Overhead δn. The probabilistic method allows to show that there are 2a-
expanding graphs of n nodes with the maximum degree O(n2−a logn). Ta-
Shma, Umans, and Zuckerman [26] showed a polynomial-time construction of
2a-expanding graphs with the maximum degree O(n2−a polylog n). We denote
the maximum degree of the used 2a-expanding graphs by Δ(a, n), or by Δ(a)
when the number n is understood from context. The maximum of the frac-
tions 2aΔ(a, n)/n, taken over all the integers a such that 0 ≤ a ≤ logn, is
denoted by δn. The number δn can be interpreted as the complexity overhead
resulting from using communication graphs. There exists a family of n-node
2a-expanding graphs with δn = O(log n), while the construction of [26] yields
2a-expanding graphs with δn that is polylogarithmic in n.
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Schedules. A permutation π of [n] is called a schedule when the elements of [n]
are interpreted as jobs and the permutation π specifies in which order to perform
them. Let S = 〈π1, . . . , πn〉 be a list of schedules. Let Q ⊆ [n] be a subset of
q = |Q| ≤ n active processors. Let d > 0 be an integer parameter called delay.

Consider the following synchronous distributed S-steered operation in which
only active processors perform jobs. In every consecutive round each active
processor v performs the first job according to πv about which v does not know
if it has been already performed. If a job is performed for the first time at some
round τ , then all the active processors learn about this by the end of round
τ + d− 1.

Measuring work. Following Kowalski, Musial and Shvartsman [21], we use
the following measure of quality of parameters S, q and d. Let W(S, q, d) be the
maximum number of all the available processor steps in S-steered operations
to perform n jobs, taken over all the executions in which only q processors are
active and accounted for and with delay d. This measure allows to capture an
estimate of work needed to perform n jobs by any set of q processors using their
individual schedules, when the information about the completion of any job may
be delayed for up to d rounds. The following facts provide the existence of lists S
good in terms of the metric W .

Fact 2 ([14,21]). There exists a list S of schedules such that the inequality
W(S, q, d) ≤ (n+ 10dq) logn holds, for all parameters 1 ≤ d, q ≤ n.

Fact 3 ([21]). There is an explicit list S for which the estimate W(S, q, d) =
O((n + dq) polylog n) holds for all the parameters such that 1 ≤ d, q ≤ n.

Overhead αn. Every round of computation of an active processor contributes
a unit to the measure W(S, q, d) until the processor halts. Let αn denote the
maximum of the ratios W(S, n/d, d)/n taken over all the values 1 ≤ d ≤ n, for a
given list S of n schedules, each of n jobs. The number αn can be interpreted as
the complexity overhead resulting from the processors communicating according
to their schedules. By Fact 2, there exists a list of schedules such that αn ≤
11 logn. By Fact 3, there is an explicit list of schedules with αn = O(polylog n).

From communication graphs and schedules to gossiping. Any two proces-
sors can communicate directly, so the communication schemes are used to opti-
mize for message complexity only. Now we describe the underlying connections
between gossiping and both the communication graphs and schedules.

One component of the underlying communication structure is provided by
a sequence of communication graphs with suitable expansion properties. These
graphs are not sufficient by themselves, because when processors crash, then a
connected graph may be broken into separate connected components. Commu-
nication graphs G(i), as specified in Fact 1, are used; such explicit graphs exist
as shown in [26]. Fact 1 guarantees that at least one large component remains
when sufficiently many nodes do not crash.

Schedules provide the remaining part of the communication scheme. They
are used, concurrently with the communication graphs, to determine patterns
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to reach to nodes outside neighborhoods in the communication graphs. This is
needed to ensure that the processors in a large component of a communication
graph collect rumors from the nodes that do not belong to the component.

A gossiping algorithm is structured as a sequence of iterations called epochs.
The scheme of communication in an epoch is determined by a communication
graph, which depends on the number of the epoch. The set S of schedules used
in all epochs depends on the number n of processors. The communication graphs
determine the number of messages by their degrees, since a processor communi-
cates with its neighbors in a round. The number of point-to-point messages sent
in an epoch, which results from using schedules in S, is bounded from above by
W(S, q, d), for suitable values of q and d that depend on the epoch. The para-
meter q is a lower bound on the number of non-faulty processors chosen to make
this epoch efficient. The parameter d corresponds to a delay of information flow
between nodes in the largest connected component in the communication graph,
measured as the diameter of the largest connected component times the number
of messages per round. The time of any epoch is Θ(W(S, q, d)/(qd)). Facts 2
and 3 allow to obtain a polylogarithmic estimate of this time bound.

3 Gossiping in Crash-Prone Environments

In this section we describe a deterministic algorithm called Alg-Gossip.

Private data structures of the processors. Every processor v maintains an
array called Rumorsv of rumors it has collected and a list called Uninformedv

of processors that should be informed in case v gathered complete information
about the other processors. Initially Uninformedv contains all the processors
except for v. These two structures are ordered according to permutation πv,
which is the schedule of v.

The processors to communicate directly with are determined in the course of
an execution based on the values stored in Rumors and Uninformed and on the
communication graph. A message sent to a neighbor in a communication graph
is called spreading. A message sent to a processor determined by the contents of
Rumors is called requesting. A message sent to a processor determined from the
contents of list Uninformed is called informing. If a processor sends a message
to a processor from which it received a requesting message in the current round,
then this message is called replying.

Each processor v maintains a list called Faultyv, which contains all the proces-
sors about which v has learned that they are faulty.“Learning”is used a technical
term defined as follows: processor v learns that processor w is faulty if either w
is on some list Faultyz received by v in the current round, or w did not answer
to a requesting message sent by v in the previous round, or w is a neighbor of
v in the communication graph G(log n − i) and v did not receive a spreading
message from w in the current round.

Epochs. Algorithm Alg-Gossip iterates epochs numbered 2 through logn. In
epoch i, graph G(log n− i) is used as the communication graph. The processors
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Receiving: Every processor receives the messages sent to it.
Local computation: Each working processor v updates its private data

structures as follows:
– If v received an unknown rumor of processor w, then v puts the

rumor at Rumorsv [w].
– If v received the information that processor w was faulty and v did

not have a rumor of w and did not get it in the receiving round, then
v puts marker ⊥ at position Rumorsv [w].

– If v is working or informing and received the information that proces-
sor w is faulty, then v adds name w to its list Faultyv and removes
w from list Uninformedv in case w is there.

– If array Rumorsv becomes completely filled, then v changes its status
to informing.

Sending: Every non-faulty processor v sends the following:
– If v is working or informing, then v sends a spreading message with

its local knowledge to these neighbors in the communication graph
G(log n − i) that are not in list Faultyv .

– If v is working, then v sends a requesting message to Δ(log n − i)
processors, the first according to the sequence πv about which v has
no information, or to all the remaining such processors, if there are
less than Δ(log n − i) of them.

– If v is working, then v sends an informing message to Δ(log n − i)
processors, the first according to the sequence πv from list Unin-

formed, or to all the remaining processors in case there are less than
Δ(log n − i) of them, and next removes them from this list.

– Processor v sends a replying message with its local knowledge to all
the processors from which v received a requesting message in this
round.

Fig. 1. One phase of epoch i in algorithm Alg-Gossip

use also permutations from some list S of schedules. The specific goal of epoch i is
as follows: if at least 3n/2i processors are non-faulty during the whole epoch, then
some subset of them of a size at least 2n/2i will gather the needed information
about all the processors and spread the information first among themselves, and
later, in a cooperative fashion, will spread this knowledge to all the non-faulty
processors. An epoch lasts exactly T = 2αn · (2 logn)+ 2 phases, each consisting
of three rounds; see Figure 1.

At the end of epoch i, processor v sets its current status as follows: v becomes
waiting if v was informing or waiting and Uninformedv is not empty; v becomes
done if v was informing or waiting and Uninformedv is empty; v remains working
in all the remaining cases. Note that only the processors that start epoch i as
working are active during epoch i, while all the waiting and done processors
merely reply to the received requesting messages, if any.
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Lemma 1. Algorithm Alg-Gossip sends O(nδnαn log2 n) messages and works
in O(αn log2 n) time.

As discussed in Section 2, there exist communication graphs with δn = O(log n)
and explicit communication graphs with δn = O(polylog n). Similarly, there are
schedules with αn = O(log n) and explicit schedules with αn = O(polylog n).
This combined with Lemma 1 implies:

Theorem 1. Algorithm Alg-Gossip works in O(log3 n) time sending
O(n log4 n) point-to-point messages. It can be explicitely instantiated so that it
works in O(polylog n) time while sending O(n polylog n) point-to-point
messages.

4 Consensus in Linear Time

We consider the case of binary consensus, which restricts the input values to be
either 0 or 1, to simplify the exposition. The algorithm described in this section
is called LT-Consensus. Each processor uses a variable called its preference,
initialized to its input value. A preference is a possible decision value, given the
current knowledge of a processor. At the beginning each processor is hesitant. If
a processor is convinced that its preference is final, it changes its status from hes-
itant to convinced. Algorithm LT-Consensus operates by going through phases
numbered from 2 to logn. The preferences can be modified during a phase. If
the status is changed, then this happens at the end of a phase. The final decision
is made at the end of the algorithm. Phase i, for 2 ≤ i ≤ logn, consists of three
parts as specified in Figure 2. After the last phase, a processor decides on its
current preference.

Correctness of consensus. We break the proof of correctness into parts cor-
responding to the termination, validity and agreement conditions. We show the
termination property by deriving an estimate on time performance.

Lemma 2. Agorithm LT-Consensus works in O(n) time.

It follows from the specification of algorithm LT-Consensus that if there is no
occurrence of 0 as an initial value, then no preference on 0 is ever set. Similarly,
if there is no occurrence of 1 as an initial value, then no preference of 1 occurs
in an execution. This shows validity of algorithm LT-Consensus.

Lemma 3. After phase i of algorithm LT-Consensus, there are at most 3n
2i+1

non-faulty and hesitant processors.

Lemma 4. Consider some processors v and w that are non-faulty and hesitant
at the end of Part 2 of the phase i and become convinced at the end of the phase i
of algorithm LT-Consensus. If processor v learns about the preference 1 of some
other processor in Part 1 or Part 2 of phase i, then processor w also learns about
the preference 1 in Part 2 of phase i.
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Part 1: Gossiping the preferences. Alg-Gossip is executed by the hesitant
processors. We treat convinced processors as “crashed” so they do not
cooperate in collecting and spreading rumors, but they always reply to
requesting messages; instead of the status “faulty” they have the status
“convinced” in arrays Rumors. The preferences at the start of this part
are treated as rumors. When the gossiping is complete, each hesitant
processor updates its preference to the maximum preference received.

Part 2: Flooding the preferences. This part takes 3n
2i +4 log n rounds and con-

sists of exchanging and updating preferences by flooding in the commu-
nication graph G(log n − i). Only the hesitant processors participate. In
the first round, each hesitant processor v sends its preference to all its
neighbors in the communication graph. During the remaining rounds, a
hesitant processor v changes its preference from 0 to 1 only if it has heard
a preference 1 from some of its neighbors, and if so then it also sends its
new preference to all its neighbors in the same round.

Part 3: Checking the sizes of hesitant connected components. This part takes
2 log n rounds. The hesitant processors cooperatively learn the size of
their connected components in the communication graph G(log n − i).
Every hesitant processor maintains a list of nodes in the connected com-
ponent it knows about, which is included in every message. Initially a
processor knows only about itself. In the first round, each hesitant proces-
sor sends its name to all the neighbors. When a hesitant processor re-
ceives a message, then it merges the obtained list of nodes with its own,
and if the list expands, then the list is sent to all the neighbors.

Concluding actions. A hesitant processor changes its status to convinced, if
it heard about at least 2n/2i processors, including itself, during Part 3
of this phase; otherwise, if i < log n, then the hesitant processor resets
its preference to the initial value.

Fig. 2. Phase i of algorithm LT-Consensus

Lemma 5. Agreement is achieved by all the processors running algorithm LT-
Consensus.

Proof. Assume, to arrive at a contradiction, that there are some two processors,
say, v and w that decide on different values. We first consider the case when
these processors are convinced.

Case 1. Processors v and w become convinced at the end of the same phase i.

Without the loss of generality, we may assume that v decides on 0 and w
decides on 1. Note that w could learn about some preference 1 only in Part 1
or Part 2 of phase i. Hence, by Lemma 4, processor v learns about preference 1
by the end of Part 2. More precisely, if it does not learn about it during Part 1,
then by Lemma 4 it learns it by the end of Part 2.
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Case 2. Processors v and w become convinced at the ends of different phases i
and j, respectively.

Without the loss of generality, we may assume that v decides on 0 while w
decides on 1. It follows, from the property of gossip in Part 1 of the phase i,
that i < j. Otherwise processor v would know the preference of the convinced
processor w, which is 1, by the end of Part 1 of phase i > j, and also would set
its preference to 1. Then it would become convinced at the end of phase i, and
finally decided on 1 at the end of the execution. Consider the phase i. It follows
that all the non-faulty and hesitant processors that do not become convinced at
the end of this phase change their preferences to the initial value, which must
be 0. This is because if some of these processors, say z, has 1 as the initial
value, then it has value 1 as its preference during the whole phase i. This means
that all the processors that are non-faulty at the end of phase i learn about
the preference on 1 during Part 1 of this phase, so v does too. Consequently,
processor v would prefer value 1 and become convinced, hence it would decide
on 1, which is a contradiction. All the processors that have become convinced by
the beginning of phase i + 1 decide on 0, and all the remaining non-faulty and
hesitant processors have preferences equal to 0 at the beginning of phase i+1. By
the same argument as for the validity property, where all the current preferences
of the non-faulty processors are equal to 0, we obtain that all the processors
decide on 0, which is a contradiction with the decision of processor w. This
completes the proof of agreement among the convinced processors.

It remains to consider the non-faulty processors that remain hesitant till the
end of an execution. By Lemma 3, there is at most one such a processor; let it
be denoted by v. If v is the only non-faulty processor at this point, than the
agreement holds. Otherwise there is another non-faulty processor w, which then
must become convinced in some phase i ≤ logn. Suppose, to the contrary, that
w decides on a different value than processor v.

If w becomes convinced after the last phase, then, by the property of gossip in
Part 1 of phase log n, both the preferences of v and w are set to 1 after Part 1.
The preferences remain unchanged by the time the decision is made, so both
processors decide on the same value, which is a contradiction.

Suppose w becomes convinced after phase i < logn. We already proved that
all the convinced non-faulty processors decide on the same value, which means
on the same value as w does. There are two subcases. If w decides on 1, then
v learns about this in Part 1 of phase logn, updates its preference to 1, and
decides on 1, which is a contradiction. The remaining subcase is when w decides
on 0. Since v decides on 1, either the initial value of v is 1 or v learns about the
preference 1 during phase logn from some processor that is non-faulty at the
beginning of phase logn and not convinced. In both cases processorw would have
learned about preference 1, being the initial value of one of these two processors,
in Part 1 of phase i, but w decides on 0, which is a contradiction. This completes
the proof of the property of agreement.
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Lemma 6. The total number of point-to-point messages sent by algorithm LT-
Consensus is O(nδnαn log3 n).

Proof. The message complexity of Parts 1 in all the phases is logn − 1 times
the message complexity of gossiping in Part 1. This, in view of Lemma 1, gives
O(nδnαn log3 n) point-to-point messages sent. The message complexity of Parts 2
in all phases is

O
( log n∑

i=1

( n
2i

+ 4 logn
)
·Δ(logn− i)

)
= O(nδn logn)

by Lemma 3. The total number of point-to-point messages sent in Parts 3 in all
the phases is

O
( log n∑

i=1

n

2i
·Δ(logn− i) logn

)
= O(nδn log2 n) ,

also by Lemma 3.

Now we summarize the properties of algorithm LT-Consensus. As discussed
in Section 2, there exist communication graphs with δn = O(log n) and ex-
plicit communication graphs with δn = O(polylog n). Regarding the parame-
ter αn, there are schedules with αn = O(logn) and explicit schedules with
αn = O(polylog n). These facts combined with the preceding analysis of time
and message complexities yield the following result for arbitrary f < n:

Proposition 1. Algorithm LT-Consensus sends O(n log5 n) messages and
works in O(n) time. It can be explicitly instantiated to work in O(n) time and
with O(n polylog n) messages.

5 Early-Stopping Consensus

In this section we develop algorithm ES-Consensus which is an early stopping
solution to Consensus. We assume that n is a power of 2 to avoid rounding.

Let Gossip(k) denote a variant of algorithm Alg-Gossip, in which the goal
is to have every processor learn, about all processors v such that 1 ≤ v ≤ k,
what is the rumor of v or that v has already crashed. What the algorithm
does depends on the size of k. When k > log3 n, then we use algorithm Alg-
Gossip modified such that rumors of processors with names larger than k are
omitted from circulated messages. For k ≤ log3 n, a simple algorithm suffices,
in which each processor p ∈ [k] broadcasts its rumor directly to all processors
in one round. Let Tg(k) denote the number of rounds needed for Gossip(k) to
terminate. Number Tg(k) is a part of code of the algorithm so that each processor
stops after exactly Tg(k) rounds. Note that Tg(k) = O(k), since Alg-Gossip
takes O(log3 n) rounds. Additionally, the communication during this subroutine
is O(min{nk, n log4 n}) = O(n log4 n).
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Part 1: local consensus: If v ∈ [2j ] then do the following:
(a) run LT-Consensus(2j) on preferences during exactly Tc(2j) rounds
(b) update the preference to the decision made in LT-Consensus(2j)
(c) update the status to leaving

Part 2: first gossip:

(a) run Gossip(2j) with preferences and statuses as rumors during ex-
actly Tg(2j) rounds

(b) update the preference to the minimum of the received preferences

Part 3: second gossip:

(a) run Gossip(2j) with preferences and statuses as rumors during ex-
actly Tg(2j) rounds

(b) update the preference to the minimum of the received preferences
(c) if the preference of a leaving processor was received during gossip in

(a) in this part, then set status to leaving

Part 4: third gossip:

(a) if 2j > log3 n then run Gossip(n) during exactly Tg(n) rounds else
run PartialGossip, with preferences and statuses as rumors

(b) update the preference to the minimum of the current preference and
the received preferences of leaving processors

(c) if 2j > log3 n and the status is leaving then decide on the preference
and halt; else, if 2j ≤ log3 n and the status is leaving and a message
was received during the last round of (a) of this part, then decide on
the preference and halt

(d) if the preference of a leaving processor was received during the gossip
in (a) of this part, then set the status to leaving

Fig. 3. Epoch j in algorithm ES-Consensus, for 1 ≤ j ≤ log n−1. Code for processor v

We will also use a subroutine PartialGossip which works in four rounds as
follows. In round 1, all processors send their rumors to all processors in [log3 n].
In round 2, every processor in [log3 n] broadcasts its knowledge, consisting of
rumors and the information about crashes, to all processors. Round 3 is the
same as round 1, and round 4 is the same as round 2. The message complexity is
O(n log3 n). This procedure assures that if there is a processor in [log3 n] which
is non-faulty by the round of termination of this procedure, then the gossip has
been completed.

Let LT-Consensus(k) denote the (k− 1)-reliable LT-Consensus algorithm
performed by the first k processors, which takes exactly Tc(k) = O(k) rounds.
Similarly as for the Gossip(k) subroutine, each processor halts after exactly
Tc(k) rounds, despite the fact it might decide before this round. The decision
made during this procedure is not the final one, but is used only to possibly
modify the current preference. The message complexity of this subroutine is
O(2j log5 2j) = O(2j log5 n).
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The algorithm keeps updating local preferences of processors. A preference
contains a value from among the initial ones. Each preference is initialized to
the input value. Each processor has a status. It is initialized to working and next
may be changed to leaving. The algorithm proceeds through epochs numbered
from 1 to logn. Epoch j, for 1 ≤ j ≤ logn−1, consists of four parts, see Figure 3.
A part is broken into up to four consecutive components, marked by letters (a)
through (d). The final epoch number logn consists of calling Consensus(n) on
preferences, making the final preference the decision and halting.

Correctness and complexity. Any preference value is among the initial val-
ues, which implies validity.

Lemma 7. Every two halted processors decide on the same value.

Lemma 8. Every processor halts by round O(f + 1).

Consider epoch j. There areO(2j log5 n) messages sent in Consensus(2j). There
are O(min{n2j, n log4 n}) messages exchanged during Gossip(2j). Finally, there
are O(n log3 n) messages sent during PartialGossip. The total number of mes-
sages is bounded from above by

O
(∑

j≤b

(2j · log5 n+ n log4 n)
)

= O(n log5 n) .

These facts yield the following final result:

Theorem 2. Algorithm ES-Consenus solves Consensus in O(f + 1) time and
with O(n log5 n) messages, when f < n is the number of crashes in an execution.
It can be explicitly instantiated to work in O(f+1) time and with O(n polylog n)
messages.

References

1. S. Amdur, S. Weber, and V. Hadzilacos, On the message complexity of binary
agreement under crash failures, Distributed Computing, 5 (1992) 175 - 186.

2. A. Bagchi, and S.L. Hakimi, Information dissemination in distributed systems with
faulty units, IEEE Transactions on Computing, 43 (1994) 698 - 710.

3. N.T.J. Bailey, “The Mathematical Theory of Infectious Diseases and its Applica-
tions,” Charles Griffin, London, 1975.

4. B.S. Chlebus, and D.R. Kowalski, Gossiping to reach consensus, in Proceedings,
14th ACM Symposium on Parallel Algorithms and Architectures (SPAA), 2002,
pp. 220 - 229.

5. B.S. Chlebus, D.R. Kowalski, and A.A. Shvartsman, Collective asynchronous read-
ing with polylogarithmic worst-case overhead, in Proceedings, 36th ACM Sympo-
sium on Theory of Computing (STOC), 2004, pp. 321 - 330.

6. A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,
D. Swineheart, and D. Terry, Epidemic algorithms for replicated database mainte-
nance, in Proceedings, 6th ACM Symposium on Principles of Distributed Computing
(PODC), 1987, pp. 1 - 12.



328 B.S. Chlebus and D.R. Kowalski

7. R. De Prisco, A. Mayer, and M. Yung, Time-optimal message-efficient work perfor-
mance in the presence of faults, in Proceedings, 13th ACM Symposium on Principles
of Distributed Computing (PODC), 1994, pp. 161 - 172.

8. D. Dolev, and R. Reischuk, Bounds on information exchange for Byzantine agree-
ment, Journal of the ACM, 32 (1985) 191 - 204.

9. C. Dwork, J. Halpern, and O. Waarts, Performing work efficiently in the presence
of faults, SIAM Journal on Computing, 27 (1998) 1457–1491.

10. M. Fisher, and N. Lynch, A lower bound for the time to assure interactive consis-
tency, Information Processing Letters, 14 (1982) 183 - 186.

11. M. Fisher, N. Lynch, and M. Paterson, Impossibility of distributed consensus with
one faulty process, Journal of the ACM, 32 (1985) 374 - 382.

12. Z. Galil, A. Mayer, and M. Yung, Resolving message complexity of Byzantine
agreement and beyond, in Proceedings, 36th IEEE Symposium on Foundations of
Computer Science (FOCS), 1995, pp. 724 - 733.

13. J.A. Garay, and Y. Moses, Fully polynomial Byzantine agreement for n > 3t proces-
sors in t + 1 rounds, SIAM Journal on Computing, 27 (1998) 247 - 290.

14. C. Georgiou, D.R., Kowalski, and A.A. Shvartsman, Efficient gossip and robust
distributed computation, Theoretical Computer Science, 347 (2005) 130 - 166.

15. V. Hadzilacos, and J.Y. Halpern, Message-optimal protocols for Byzantine agree-
ment, Mathematical Systems Theory, 26 (1993) 41 - 102.

16. V. Hadzilacos, and S. Toueg, Fault-tolerant broadcast and related problems, in
“Distributed Systems,” 2nd ed., S. Mullender (Ed.), Eddison-Wesley, 1993, pp. 97 -
145.

17. J. Hromkovic, R. Klasing, A. Pelc, P. Ruzicka, and W. Unger,“Dissemination of In-
formation in Communication Networks: Broadcasting, Gossiping, Leader Election,
and Fault-Tolerance,” Springer-Verlag, 2005.

18. R. Karp, C. Schindelhauer, S. Shenker, and B. Vöcking, Randomized rumor spread-
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Abstract. We consider the the relative power of two important synchroniza-
tion problems: set agreement and renaming. We show that renaming is strictly
weaker than set agreement, in a round-by-round model of computation. We intro-
duce new techniques, including previously unknown connections between prop-
erties of manifolds and computation, as well as novel “symmetry-breaking”
constructions.

1 Introduction

A task in an asynchronous system is a problem where each process starts with a private
input value, communicates with the others, and halts with a private output value. A
protocol is a program that solves the task. In asynchronous systems, it is desirable to
design protocols that are wait-free: any process that continues to run will halt with
an output value in a fixed number of steps, regardless of delays or failures by other
processes.

We are interested in the relative power of tasks: given two tasks, can one be used to
implement the other, or are they incomparable? One way to measure the relative power
of tasks is by consensus numbers [11]. If a task can solve consensus [7] for n processes
is universal in a system of n processes in the sense that it can be used to construct
a protocol that solves any other task. Moreover, any task that solves consensus for n
processes also solves consensus for fewer.

One question that has received substantial attention, and yet is still far from under-
stood, is the relative power of tasks too weak to solve consensus for two processes, the
so-called “subconsensus” tasks. For example, it is known that read/write memory can-
not solve consensus. After a substantial effort, it was discovered that two other tasks,
set agreement [6] and renaming [1], which are both subconsensus tasks, cannot be im-
plemented in read/write memory [3,10,13]. It follows that subconsensus tasks have a
“fine structure”, inaccessible by consensus-based analysis.

In this paper, we shed further light on this fine structure by showing that the renaming
task is strictly weaker than the set agreement task, in a natural model of asynchronous
computation. a surprising result, since the two tasks are superficially quite dissimilar.
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We introduce new techniques that may be helpful for other problems: a previously un-
known connection between properties of manifolds and computation, as well as novel
“symmetry-breaking” constructions.

2 Model

2.1 Combinatorial Topology

We start by reviewing standard terminology from combinatorial topology (mostly taken
from Munkres [12]). We employ concepts from combinatorial topology, in a style sim-
ilar to Attiya and Rajsbaum [2].

A simplicial complex A is a collection of finite non-empty sets, such that if A is
an element of A, so is every non-empty subset of A. An element A of A is called a
simplex, and an element of A is called a vertex. The dimension of A is one less than
its number of elements. A subcollection B of A is called a subcomplex of A if B is
itself a complex. A subset B of simplex A is itself a simplex called a face of A. We
refer to an n-dimensional simplex as an n-simplex, and we sometimes use superscripts
(for example An) to indicate a simplex’s dimension. The dimension of a complex is
the largest dimension of any of its simplexes. An n-dimensional complex A is full to
dimension n if every simplex in A is a face of an n-simplex. All complexes considered
here are full to some dimension.

Let A and B be complexes. A simplicial map M : A → B carries vertexes of
A to vertexes of B so that every simplex of A maps to a simplex of B. An n-complex
is colored if there exists a map id sending each vertex to {0, . . . , n} such that each n-
simplex is labeled with n+ 1 distinct colors. If A is a colored simplex, ids(A) denotes
its set of colors. If A and B are colored complexes, then a simplicial mapM : A → B
is color-preserving if id(v) = id(M(v)) for every vertex v in A.

For a simplex S, χ(S), the standard chromatic subdivision, is defined as follows.
Each vertex of χ(S) is a pair (s, F ), where F is a face of S, and s a vertex of F .
A set of vertexes of χ(S) define a simplex if for each pair (s, F ) and (s′, F ′), id(s)
and id(s′) are distinct, and either F ⊆ F ′, or F ′ ⊆ F . As s ranges over the vertexes
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Fig. 1. Standard Chromatic Subdivision
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of S, the vertexes (s, S) define the central simplex of χ(S). (The standard chromatic
subdivision is the colored analog of the standard barycentric subdivision [12, p.96].)

A complex is strongly connected if any two n-simplexes can be joined by a “chain”
of n-simplexes in which each pair of neighboring simplexes has a common (n − 1)-
dimensional face. A complex M is a manifold with boundary (sometimes called a
pseudomanifold with boundary) if it is strongly connected, and each (n − 1)-simplex
in M is contained in precisely one or two n-simplexes. An (n − 1) simplex in M
is an interior simplex if it is contained in two n-simplexes, and a boundary simplex
otherwise. The boundary subcomplex ofM, denoted ∂M, is the subcomplex induced
by its boundary simplexes. For brevity, we will use “manifold” as an abbreviation for
“manifold with boundary”.

2.2 Distributed Computation

We are given a set of n + 1 process ids {0, . . . , n}. An initial or final state of a process
is modeled as a vertex v = (P,w), a pair consisting of a process id P and a value w.
We say the vertex is colored with the process id. A set of n + 1 mutually compatible
initial or final states is modeled as an n-simplex An = (a0, . . . , an).

A task specification is given by a colored input complex I, a colored output complex
O, and a recursive relation Δ carrying each m-simplex of I to a set of m-simplexes of
O, for each 0 ≤ m ≤ n. Δ has the following interpretation: if the (m + 1) processes
named in Sm start with the designated input values, and the remaining n−m processes
fail without taking any steps, then each simplex in Δ(Sm) corresponds to a legal fi-
nal state of the non-faulty processes. A protocol is a program in which processes re-
ceive their inputs, communicate via shared objects, and eventually return with mutu-
ally compatible decision values. Any protocol has an associated protocol complex P ,
in which each vertex is labeled with a process id and that process’s final state (called
its view). Each simplex thus corresponds to an equivalence class of executions that
“look the same” to the processes at its vertexes. The protocol complex corresponding
to executions starting from a fixed simplex Sm is denoted P(Sm). We typically use
P to denote both a protocol and its complex. A protocol solves a task if there exists
a color-preserving simplicial decision map δ : P → O such that for each simplex
Rm ∈ P(Sm), δ(Rm) ∈ Δ(Sm). Note that a protocol can also be considered as a task.

3 Tasks

In the immediate snapshot protocol [3], the processes share an array of registers, one
for each process, which for brevity we refer to as the immediate snapshot memory. This
memory provides a single operation: write-read, which writes the process state to its
register and takes an instantaneous snapshot of the others. Logically, the processes act
as if the round is divided into phases, where in each phase a set of processes is chosen,
disjoint from any set chosen in an earlier phase. The processes in the set simultaneously
write to their own registers, and then read all the others. The protocol complex for the
one-round immediate snapshot is just the standard chromatic subdivision. An algorithm
for implementing immediate snapshot from asynchronous read/write registers is given
by Borowsky and Gafni [3,5].
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In the k-Set Agreement task [6], each process starts with a private input value, com-
municates with the others, and then halts after choosing a private output value. Each
process is required to choose some process’s input, and at most k distinct values may
be chosen. For brevity we use set agreement as shorthand for (n + 1)-process n-Set
Agreement, since this is the easiest set agreement task known to be impossible for n+1
processes using shared read/write memory [3,9,10,13,14].

Set agreement has a particularly simple interpretation in the simplicial model. A
protocol P , starting from an input n-simplex Sn, solves set agreement if and only if
there exists a (necessarily not color-preserving) simplicial map

δ : P(Sn)→ Sn

that (1) carries each P(Sm) to Sm, for dimensions m in 0, . . . , n, and (2) does not map
any n-simplex of P(Sn) onto Sn.

The Renaming task [1] can be formulated in several equivalent ways. Processes are
issued unique input names from a large name space, and must choose unique output
names taken from a smaller name space. To rule out trivial solutions, the protocol must
be anonymous [10]): the value chosen must depend on the protocol execution, not on the
specific process id. Formally, a protocol complex P(Sn) is symmetric if any permuta-
tion π of the process ids induces a simplicial map π : P(Sn) → P(Sn). All complexes
considered in this paper are symmetric. Recall that the protocol has a decision function
δ : P(Sn)→ O, where O is the output complex. The protocol is anonymous if

π(δ(P(Sn))) = δ(π(P(Sn)))

that is, relabeling process ids does not change the protocol’s decisions.
In the Weak Symmetry-Breaking (WSB) task, tasks have no input values and Boolean

output values. In every execution in which all n + 1 processes participate, at least one
process decides true and at least one process decides false. Like renaming, any protocol
that implements WSB must be anonymous.

Definition 1. A task M is a manifold task if for every input m-simplex S, for m in
0, . . . , n,M(S) is a manifold of dimension m andM(∂S) = ∂M(S).

The immediate snapshot task is an example of a manifold task. A manifold task is a
special case of a divided image [2].

4 Round-by-Round Computations

We study tasks in the round-by-round model [8], where processes execute in a sequence
of asynchronous rounds. Each round is associated with an object (which could be an
immediate snapshot memory, or another object). In each round, each process applies
one operation to that round’s object. Once a process has finished a round, it never re-
visits that round’s objects. The result of one round are carried to the next not though
objects, but through processor-local state.

It is known that for read/write memory alone, the round-by-roundmodel is equivalent
to the usual model in which processes can access any object at any time [4,5]. We
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conjecture that the two models are equivalent for tasks as well, but the question remains
open.

The principal attraction of the round-by-round model is that manifold tasks are
closed under composition: given a set of tasks whose one-round protocol complexes
are manifolds, the result of their multi-round composition is also a manifold. For exam-
ple, consider the effect of iterating the immediate snapshot protocol. Running it once
yields the standard chromatic subdivision, and running it multiple times yields an iter-
ated subdivision, where each simplex R in χr−1(I) is replaced with a copy of χ(R),
yielding the subdivision χr(I).

Although the protocol complex for the multi-round snapshot complex is a subdivi-
sion of the input simplex, this property is not true of multi-round manifold tasks in gen-
eral. For example, the Moebius task introduced below has a boundary complex equiv-
alent to the boundary of a subdivided simplex, but the complex interior has a “hole”
(that is, non-trivial homology), so the multi-round composition of this task cannot be
a subdivided simplex. Nevertheless, a multi-round composition of a manifold task is
manifold task.

Lemma 1. If single-round protocol R is a manifold task, and A is a manifold, then
R(A) is a manifold, andR(∂A) = ∂R(A).

Proof. Let Rn−1 be an (n − 1)-simplex in R(A). There are several cases to consider.
Suppose Rn−1 is an interior simplex of R(An) for some n-simplex An ∈ A. Because
R(An) is a manifold with boundary, there exist exactly two n-simplexes Rn

0 and Rn
1 in

R(An) such that Rn−1 = Rn
0 ∩Rn

1 .
Suppose Rn−1 is a simplex of R(An−1), for some interior simplex An−1 ∈ A.

There are exactly two n-simplexes An
0 and An

1 in An such that An−1 = An
0 ∩ An

1 .
Because Rn−1 is a boundary simplex of R(An

0 ), there exists exactly one n-simplex
Rn

0 in ρ(An
0 ) such that Rn−1 ⊂ Rn

0 . Similarly, because Rn−1 is a boundary simplex
of ρ(An

1 ), there exists exactly one n-simplex Rn
1 in ρ(An

1 ) such that Rn−1 ⊂ Rn
1 . It

follows that there exist exactly two n-simplexesRn
0 andRn

1 in ρ(An) such thatRn−1 =
Rn

0 ∩Rn
1 .

Suppose Rn−1 is a simplex of R(An−1), for some boundary simplex An−1 ∈ A.
Because An−1 is a boundary simplex, there is exactly one n-simplex An inA such that
An−1 ⊂ An. Because Rn−1 is a boundary simplex of R(An), there exists exactly one
n-simplex Rn in R(An) such that Rn−1 ⊂ Rn. It follows that Rn−1 is a boundary
simplex ofR(A). The last item implies that R(∂A) ⊆ ∂R(A).

If Rn−1 ∈ ∂R(A), then Rn−1 ∈ ∂R(An), for some An in A. Because R is a
manifold task, ∂R(An) = R(∂An) Rn−1 is also in R(∂An), and therefore ∂R(A) ⊆
R(∂A).

It remains to check R(A) is strongly connected. Pick two n-simplexes R0 and R1

of R(A). Let R0 ∈ R(A0) and R1 ∈ R(A1). Because A is a manifold, it is strongly
connected, and there exists a chain of n-simplexes B0, . . . , Bk such that A0 = B0,
A1 = Bk, and each Bi and Bi+1 share an (n − 1)-dimensional face. We argue by
induction on k. When k is zero, the result follows because R(A0) = R(A1) is a
manifold.

Assume the result for chains of length k − 1. Let S be an (n − 1)-simplex on the
common boundary of R(Ak−1) and R(Ak), and let S0 (S1) be the unique n-simplex
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in R(Ak−1) (R(Ak)) having S as a face. By the induction hypothesis, there exists a
chain from R0 to S0, and from S1 to R1. Since S0 and S1 share a common (n − 1)-
dimensional face, we have constructed a chain from R0 to R1. ��
Corollary 1. The result of composing manifold tasks is a manifold task.

5 Structural Results

5.1 Set Agreement

Theorem 1. No manifold task can solve set agreement.

Proof. LetM be a manifold task, and let Sn be an input n-simplex. A Sperner labeling
is defined as follows1. Define a map carrying each vertex ofM(Sn) to a vertex of Sn.
For each face Sm of Sn, where the dimensionm ranges from 0 to n, map each vertex of
M(Sm) with one of the vertexes in Sm. Sperner’s Lemma states that there must exist
at least one n-simplex in M(Sn) that maps onto Sn (that is, maps to n + 1 distinct
vertexes).

Now suppose we can solve set agreement by some repeated composition of M and
one-round immediate-snapshot protocols. By Corollary 1, the resulting complex is itself
a manifold. The decision map δ induces a Sperner labeling: for each face Sm of Sn,
for m in 0, . . . , n, δ carries each vertex of M(Sm) to a vertex of Sm. It follows that
there is some n-simplex of M(Sn) that maps on to every vertex of Sn, contradicting
the definition of the set agreement task. ��

5.2 Renaming vs Weak Symmetry-Breaking

Lemma 2. Renaming implements Weak Symmetry-Breaking.

Proof. The n + 1 processes call a Renaming protocol to choose unique names in the
range 0, . . . , 2n − 1. Each process then chooses true if its chosen name is even, and
false if odd. At least process must choose true and at least one false. This protocol is
anonymous. ��

Lemma 3. Weak Symmetry-Breaking implements Renaming.

Proof. Attiya et al. [1] give a renaming algorithm for n+1 processes and 2n+1 names
with the property that if k ≤ n+1 processes actually participate, then they are assigned
names at most 2k− 1 names. Consider the algorithm illustrated in Figure 2. Create two
instances of this renaming algorithm: R0 and R1. The processes first execute a weak
symmetry-breaking task. The k > 0 processes that decide true each take a name from
R0, choosing at most 2k − 1 names in the range 0, . . . , 2k − 2. The other n − k + 1
processes that decide false each take an intermediate name from R1, choosing at most
2n − 2k + 1 names in the range 0, . . . , 2n − 2k. Each process in the second group
chooses a name by subtracting its intermediate name from 2n, yielding a name in the
range 2n− 2k− 1, . . . , 2n− 1. Since these ranges do not overlap, this algorithm solves
renaming for n+ 1 processes and 2n names. ��

1 Other authors call this construct a Sperner coloring, but we have already used “coloring” to
mean labeling with process ids.
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// data fields
WSB wsb = new WSB();
Renaming R0 = new Renaming(); // renaming task instance
Renaming R1 = new Renaming(); // renaming task instance
// algorithm
int chooseName(int n) { // there are n+1 processes

boolean side = wsb.choose();
int name;
if (side) {
return R0.choose();

} else {
return (2*n) - R1.choose();

}
}

Fig. 2. Implementing Renaming from WSB

Corollary 2. Renaming is equivalent to Weak Symmetry-Breaking.

5.3 Set Agreement vs Weak Symmetry-Breaking

We now show set agreement solves weak symmetry-breaking. Assume we have a pro-
tocol that solves set agreement. We also need an instance of the Attiya et al. [1] protocol
that assigns to each of n + 1 processes a unique name in the range 0, . . . , 2n+ 1. This
protocol uses only read/write memory, and is anonymous. Consider the protocol shown
in Figure 3.

The processes first call the Attiya protocol to choose ids in the range 0, . . . , 2n− 1.
This step ensures that the protocol as a whole is anonymous. The processes that choose

int[2][n] output; // two (n+1)-element arrays, initially -1
ABDPR rename; // ABDPR renaming algorithm
SetAgree sa[2]; // set agreement protocol objects
boolean choose(int me) {

int id = rename.choose(me); // anonymous id
if (id < n+1) {
output[0][id] = sa[0].decide(id);
foreach (int i in output[0]) {

if (i == id) return true;
}
return false;

} else {
output[1][id] = sa[1].decide(id);
foreach (int i in output[1]) {

if (i == id) return false;
}
return true;

}

Fig. 3. Implementing WSB from set agreement
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names in the range 0, . . . , n call the first set agreement object’s decide method, using
its own anonymous id as input. The process then reads through the array, returning true
if it finds its own id, and false otherwise. The processes that choose names in the range
n+1, . . . , 2n−2 do the same using the other set agreement object and the other output
array, except that they return inverted values.

Lemma 4. Some process decides true.

Proof. At least one process goes to the first set agreement object. Of these, the process
whose id is first to be written to the output array decides true. ��

Lemma 5. Some process decides false.

Proof. There are two cases to consider: (1) all processes go to the first set-agreement,
or (2) some go to the first and some to the second. In the first case, if all processes
decide true, then all n + 1 inputs were chosen as decision values, violating the Set
Agreement specification. In the second case, the processes that go to the second set-
agreement object, the process whose id is first to be written decides false. ��

Corollary 3. Set Agreement solves Weak Symmetry-Breaking.

This result shows that any task that solves Set Agreement also solves renaming, ruling
out the possibility that the two tasks are incomparable.

We next introduce a new task, called the Moebius task, because in two dimensions
its one-round protocol complex is a Moebius strip. (Of course, in higher dimensions,
the complex is not a Moebius strip, although it is still a non-orientable manifold with
boundary.)

This task is defined in even dimensions, so let n = 2N . Consider a system of
processes, P0, . . . , P2N . Let S0, . . . , S2N be 2N + 1 disjoint (2N)-simplexes, and let
Sij be the face of Si opposite vertex Pj .

Let Xi = χ(Si), the standard chromatic subdivision of Si, and let Xij = χ(Xij).
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Fig. 5. Weak Symmetry-breaking from one-round Moebius task protocol

We call Xii the external face of Xi (even though it is technically a complex), and
the Xij , for i 
= j, the internal faces.

Let Uj be the set of process ids in Xij : 0 to 2N + 1 except for j. Let πj : Uj → Uj

send the index with rank r in Uj to the index with rank r +N mod 2N .
Identify each internal face Xij with Xπj(i)j . Because πj(πj(i)) = i, each (2N −

1)-simplex in an external face lies in exactly two (2N)-simplexes, so the result is a
manifold. (This also why the construction only works in even dimensions.)

The Moebius task itself is defined as follows. Let Sn be the input n-simplex. The
Moebius complex M(Sn) is defined so that its boundary complex ∂M(Sn) is a sub-
division of the boundary complex ∂Sn of the input simplex. For each proper face Sm

of Sn, for m < n, the task specification map Δ carries Sm to the m-simplexes in the
unique face of ∂M(Sn) with the same set of process ids. Finally, Δ maps Sn to all
n-simplexes ofM(Sn).

Theorem 2. The Moebius task cannot solve Set Agreement.

Proof. The one-round Moebius task is a manifold task, so composing the Moebius task
with itself, with read/write rounds, or with any other manifold task yields a manifold
task (Corollary 1). So by Corollary 1, the Moebius task cannot solve Set Agreement. ��

To show this task solves weak symmetry breaking, we color the edges with black and
white pebbles (that is, true or false values) so that no simplex is monochrome. For the
central simplex of each Xi, color each node black except for the one labeled with Pi.
For the central simplex of each external face Xii, color the central (2N − 2)-simplex
black. The rest are white.

Every (2N − 1)-simplex X in Xi intersects both a face, either internal or external,
and a central (2N − 1)-simplex. If X intersects an internal face, then the vertexes on
that face are white, and the vertexes on the central simplex are black. If X intersects the
internal face, then it intersects the white node of the central simplex of Xi, and a black
node of the central simplex of Xii.

Theorem 3. Set agreement implements renaming but not vice-versa.

Proof. Set agreement solves weak symmetry-breaking (Corollary 3) which solves re-
naming (Corollary 2).



338 E. Gafni, S. Rajsbaum, and M. Herlihy

On the other hand, if renaming solves set agreement, then so does WSB, and so does
the Moebius task, contradicting Theorem 1. ��
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Abstract. Distance labelings and compact routing schemes have both
been active areas of recent research. It was already known that graphs
with constant-sized recursive separators, such as trees, outerplanar
graphs, series-parallel graphs and graphs of bounded treewidth, sup-
port both exact distance labelings and optimal (additive stretch 0,
multiplicative stretch 1) compact routing schemes, but there are many
classes of graphs known to admit exact distance labelings that do not
have constant-sized separators. Our main result is to demonstrate that
every unweighted, undirected n-vertex graph which supports an exact
distance labeling with l(n)-sized labels also supports a compact rout-
ing scheme with O(l(n) + log2 n/ log log n)-sized headers, O(

√
n(l(n) +

log2 n/ log log n))-sized routing tables, and an additive stretch of 6.
We then investigate two classes of graphs which support exact dis-

tance labelings (but do not guarantee constant-sized separators), where
we can improve substantially on our general result. In the case of interval
graphs, we present a compact routing scheme with O(log n)-sized head-
ers, O(log n)-sized routing tables and additive stretch 1, improving head-
ers and table sizes from a result of [1], which uses O(log3 n/ log log n)-bit
headers and tables. We also present a compact routing scheme for the
related family of circular arc graphs which guarantees O(log2 n)-sized
headers, O(log n)-sized routing tables and an additive stretch of 1.

1 Introduction

According to the usual representation of a graph, vertices are assigned labels
(say 1 to n for an n-vertex graph) in an arbitrary way, in the sense that the
names are just logn bit placeholders for the rows and columns of the adjacency
matrix (or alternatively, the list of edges), used to encode the structure of the
graph. Breuer and Folkman [2] introduced the problem of determining which
classes of graphs support the assignment of short vertex labels (i.e. O(log n) or
O(logc n) bits, c constant) so that, given only the labels of vertices i and j, it
can be inferred whether or not i and j are adjacent. David Peleg [3] introduced
the notion of distance labelings by generalizing this question: that is, he asked if
can we assign short labels to the vertices of a graph so that the distance between
vertices i and j can be computed just from the labels of i and j.

Definition 1.1. Given an undirected graph G = (V,E), a distance labeling
on G (over some string alphabet Σ) is a function DL : V �−→ Σ∗ which assigns
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a string to each vertex v ∈ V in such a way that for any two vertices v, w ∈ V ,
a function dist can be computed so that dist(DL(v), DL(w)) is the distance
between v and w in G. We refer to the string DL(v) assigned to a vertex v as
v’s distance label, and we refer to the computation of dist(DL(v), DL(w)) as
a distance query.

Notice that our definition bounds neither the size of the distance labels nor
the time required to compute the distance function (once the labels have been
generated). For these structures to be of any practical use, we would prefer to
find a distance labeling which guarantees small labels (sayO(logc n) bits for some
small constant c) and fast computation times. Unfortunately, not all classes of
graphs enjoy distance labelings which have these properties. For example, it’s
known [4] that any distance labeling on general graphs must use Θ(n)-bit labels,
and any distance labeling on planar graphs must use Ω(n1/3)-bit labels. On the
other hand, distance labelings meeting these criteria have been discovered for
several well-studied classes of graphs. The distance labeling on trees given in [3]
uses O(log2 n)-bit labels and answers distance queries in polylogarithmic time.
In fact, it was shown in [4] that the size of the labels in this result matches the
lower bound for any distance labeling on trees.

Much of the existing work on distance labelings for particular graph families
has relied on the existence of separators for these families. It was shown in [4]
that any n-node graph with a recursive separator of size f(n) supports a distance
labeling which uses labels of size O(f(n) · log2 n). Trees, series-parallel graphs,
and graphs of bounded treewidth all have constant-sized separators, yielding
distance labelings on these graph families which use O(log2 n)-bit labels. This
idea was extended in [5] to construct a distance labeling using O(g(n) · log n)-bit
labels for any graph with an f(n)-sized separator. In this case, f(n) may be large,
but g(n) – which is derived from certain structural properties of the separator
– may be quite small (see [5] for full discussion and details). The authors went
on to demonstrate that the families of interval graphs and permutation graphs
exhibit separators for which g(n) = O(log n), yielding distance labelings for these
graphs with O(log2 n)-bit labels. The result for interval graphs was improved
in [6], which gives a labeling scheme which guarantees O(log n)-bit labels (for
both interval and circular arc graphs), and the scheme of [7] improves upon the
previous result for permutation graphs, also using O(log n)-bit labels.

1.1 Compact Routing

Consider a communications network modeled as a connected undirected graph
G = (V,E), |V | = n, with network nodes represented as vertices and direct
communications links represented as edges.

A routing scheme R is a distributed algorithm defined on G which guarantees
that any vertex v can send a message M to any other vertex w (along some
(v, w)-path P in G), using metadata stored in M along with information stored
locally at each vertex along P .

We refer to the metadata stored in a message M as M ’s header, and to the
local information stored at a vertex v as v’s routing table. Given an input graph
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G = (V,E), a routing scheme R must specify the construction of the routing
table at each vertex v ∈ V , the construction of the header of any message M
originating at a given source v and intended for a given destination w, and a
deterministic forwarding function F (table(x), header(M)). This function, when
given the information in the routing table of a vertex x and the information
in M ’s header, possibly rewrites the header, then selects an edge adjacent to x
along which to forward M .
F is known as R’s routing function. Given a source vertex v, a destination

vertex w and a message M , the sequence of vertices 〈v = v0, v1, . . . , vk〉 defined
by successive applications of F (table(vi), header(M)) must be such that k is
finite and vk = w. We refer to this (v, w)-path as the route Pvw from v to w with
respect to R. If F is allowed to alter the header of a message at intermediate
vertices between its source and destination (while maintaining bounds on the
size of the header), we refer to R as supporting writeable packet headers. Our
general result requires writeable packet headers; our schemes for interval graphs
and circular arc graphs do not. All our results are in the name-dependent model
of compact routing (see [8] for discussion), and hold for unweighted, undirected
graphs.

Definition 1.2. The multiplicative stretch of a routing scheme R with re-
spect to a graph G is max

v,w∈V (G)

Pvw

d(v,w) , where Pvw is defined as above and d(v, w)

is the length of a shortest (v, w)-path in G. The additive stretch of a routing
scheme R with respect to a graph G is max

v,w∈V (G)
|Pvw − d(v, w)|.

Additive stretch has been studied in the context of graph spanners (cf. [9,10,11]),
and is referred to as “deviation” in the work of [1,12].

We assume that each vertex in G is arbitrarily assigned a unique logn-bit ID
∈ {1 . . . n}, and that these IDs are provided along with the input graph, although
message headers will contain additional information, such as distance labels, so
we are considering compact routing in the name-dependent model (cf. [8]). We
consider the fixed-port routing model, in which each vertex v has locally assigned
an arbitrary log n-bit port name portv(w) ∈ {1 . . . d(v)} to each of its adjacent
edges (v, w), and that the retrieval of this port name is the only mechanism by
which v can forward a message along edge (v, w).

The field of compact routing is concerned with creating routing schemes which
minimize worst-case routing table size, header size and stretch. In particular, we
would like header sizes to be polylogarithmic in n, table sizes to be sublinear,
and stretch to be bounded by a constant.

Most work in compact routing to date has dealt only with multiplicative
stretch. Our main result is the following theorem:

Theorem 1.3. Let G = (V,E) with |V | = n have an exact distance la-
beling with O(l(n))-sized distance labels. Then there exists a compact routing
scheme for G which uses O(l(n)+ log2 n/ log logn)-sized headers, O(

√
n · (l(n)+

log2 n/ log log n))-sized routing tables, and has an additive stretch of 6.
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We prove this theorem in Sect. 2. This immediately implies compact routing
schemes for interval graphs and the related family of circular arc graphs [6], as
well as for permutation graphs [7], with O(log2 n/ log log n)-sized headers, O(

√
n·

log2 n/ log log n)-sized routing tables and an additive stretch of 6, by plugging
the known exact distance labeling schemes for these graphs into Theorem 1.3.
We note that for interval graphs and permutation graphs, better schemes were
already known: Dragan, Yan and Corneil [12] present compact routing schemes
for these graphs with O(log n)-bit routing tables and message headers, and an
additive stretch of 2, while Dragan and Lomonosov [1] present a compact routing
scheme for interval graphs with O(log3 n/ log log n)-bit headers and tables, and
an additive stretch of 1. In Sects. 3 and 4, we show that for interval graphs
and circular arc graphs, we can exploit the structural properties of these graphs
to do better. In Sect. 3, we introduce a compact routing scheme for interval
graphs which guarantees an additive stretch of 1 and uses O(log n)-bit headers
and routing tables. In Sect. 4, we give a compact routing scheme for circular
arc graphs which also guarantees an additive stretch of 1, using O(log2 n)-bit
headers and O(log n)-bit routing tables.

2 Proof of Theorem 1.3

Definition 2.1. Given any graph G = (V,E), the square G2 = (V,E′) of G is
the graph which places an edge between u and v if d(u, v) ≤ 2 in G.

Fact 2.2. [13,14] There exists an exact (i.e. additive stretch 0) compact rout-
ing scheme for n-vertex trees which uses O(log2 n/ log log n)-bit headers and
O(log2 n/ log logn)-bit routing tables.

2.1 Algorithm

Given a connected, unweighted, undirected n-vertex graph G = (V,E), with
vertices assigned arbitrary IDs ∈ {1 . . . n}, and a distance labeling 〈DL, dist〉
on G, which guarantees labels of size at most l(n), greedily construct a set I
by iteratively choosing vertices in G of degree ≥ �

√
n�, in such a way that each

chosen vertex v satisfies d(v, i) ≥ 3 for each i already in I, until no more vertices
can be chosen. Note that 0 ≤ |I| ≤ √n, and that I is an independent set in G2.
Identify a single-source shortest-path tree Ti, spanning G, rooted at each vertex
i ∈ I. Process each tree Ti according to the scheme referenced in Fact 2.2. We
will refer to the header assigned to v by the scheme of Fact 2.2 in tree Ti as
treeHeaderi(v), and to the table assigned to v by this scheme as treeTablei(v).

For each vertex v and each tree Ti, store treeTablei(v) in v’s routing table.
We refer to the entire collection of these tree-routing tables at v as v’s local tree
data. We will refer to the fixed logn-bit ID assigned to each vertex v in the
input graph as ID(v). All vertices store their own IDs and distance labels in
their tables; in addition, for each vertex v ∈ V :

Case 1: v ∈ I. Distribute the storage of all pairs 〈ID(w), treeHeaderv(w)〉,
for all vertices v 
= w ∈ V , across v’s neighbors as follows: first, sort these n
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pairs by ID(w) and store the result in a sequence Sv. Next, choose an arbitrary
sequence Nv of �

√
n� of v’s neighbors. Partition the ordered list Sv into �

√
n�

blocks, each of size �
√
n� (except possibly the last block, which can be smaller if√

n is not an integer), and store the kth such block at v’s neighbor Nv[k]. Also
at Nv[k], store portNv [k](v). We refer to this collection of data stored at Nv[k] as
Nv[k]’s dictionary data. At v, store a triple 〈portv(Nv[k]), ID(wstart), ID(wend)〉
for each of v’s �

√
n� neighbors in Nv, where wstart and wend are the first and

last entries in Nv[k]’s dictionary data, respectively. We refer to this collection of
triples stored at v as v’s dictionary index.

Case 2: v /∈ I and deg(v) ≥ �√n�. In this case, select some i ∈ I for which
d(v, i) ≤ 2. (Such an i always exists because I was constructed to be maximal in
G2.) At v, store at most two port names, containing exact shortest-path routing
information from v to i. Mark v “subordinate to i.” We refer to this collection
of data as v’s local link data.

Case 3: deg(v) < �
√
n�. At v, store 〈ID(x), DL(x), portv(x)〉, for each neighbor

x of v. We refer to this collection as v’s local neighbor data.
The header for a message destined for a vertex w will contain four elements:

ID(w), DL(w), an integer in tree ∈ {0 . . . n}, and treeHeaderv(w) for some
tree Tv. Headers will initially contain only ID(w) and DL(w), with the other
elements empty.

Routing from the current vertex v toward a destination vertex w proceeds
iteratively according to several cases. If deg(v) < �

√
n�, we search v’s local

neighbor data for a neighbor v′ of v such that d(v, v′)+ d(v′, w) = d(v, w), using
the distance labels to compute this value, then route to v′. If deg(v) ≥ �√n� but
v /∈ I, we route (along at most two edges) to v’s closest neighbor i in I using v’s
local link data. Lastly, if v ∈ I, we use v’s dictionary index to determine which
of v’s neighbors has stored information for w in its block, route to that neighbor,
retrieve treeHeaderv(w), write it into w’s message header, and route to w along
Tv according to the scheme referenced in Fact 2.2.

2.2 Analysis

At any point in the iteration of the routing procedure, the header on a message
destined for a vertex w contains at most ID(w), DL(w), one logn-bit inte-
ger, and treeHeaderv(w) for some v ∈ I, for a total header size of O(l(n) +
log2 n/ log log n).

If deg(v) < �
√
n�, then v’s local neighbor data contains O(

√
n) triples, each

containing a logn-bit ID, a logn-bit port name, and an O(l(n))-bit distance
label; v’s local tree data contains O(

√
n) tree tables assigned to v by the scheme

of Fact 2.2, each of size O(log2 n/ log logn); and lastly v also stores its own
logn-bit ID and its O(l(n))-bit distance label. If deg(v) ≥ �

√
n�, then v may

store a dictionary index containing O(
√
n) triples, each of size O(log n); local

tree data of total size O(
√
n log2 n/ log log n); and v’s own ID and distance label.

Lastly, v (irrespective of deg(v)) may have been selected to store at most one
block of dictionary data for some vertex in I, of size O(

√
n log2 n/ log logn).
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Taken together, this gives a worst-case routing table size of O(
√
n · (l(n) +

log2 n/ log log n)).

Lemma 2.3. (Stretch) The algorithm routes messages with maximum stretch
OPT+6.

Proof. When routing from v to w, if all intermediate vertices encountered are of
degree < �√n� (except possibly w), then each step routes along a shortest path
from the current vertex to w, yielding an optimal route overall. If an intermediate
vertex h of degree ≥ �

√
n� is encountered, we consider two cases:

Case 1: The first such vertex h is in I. In this case, we look up w’s header in Th,
using at most two edges to route to some neighbor of h which stores dictionary
data for w and back again, then continue along a shortest path from h to w in
Th. Since h was the first vertex of degree ≥ �√n� to be encountered and since
at each previous step we used distance labels to route optimally toward w, we
have d(v, w) = d(v, h) + d(h,w). Since in this case our algorithm uses a route
of length at most d(v, h) + 2 + d(h,w), this case yields an additive stretch of at
most 2.

Case 2: The first such vertex h is not in I. In this case, we route along at
most two edges to h’s closest neighbor i ∈ I, route to one of i’s neighbors j
to obtain tree-routing information for w, and route back along at most three
edges through h (possibly fewer, if j or i is closer to w), continuing along some
shortest path in Ti from i to w. Since d(v, w) = d(v, h)+ d(h,w), since d(i, w) ≤
d(h,w) + 2, and since Ti is a shortest-path spanning tree rooted at i, we have
Pvw ≤ d(v, h) + d(h, i) + d(i, j) + dTi(j, w) ≤ d(v, h) + 2 + 1 + [d(i, w) + 1] =
d(v, h)+d(i, w)+4 ≤ d(v, h)+[d(h,w)+2]+4 = d(v, h)+d(h,w)+6 = d(v, w)+6,
for a total of at most 6 more edges than an optimal route. ��

3 Compact Routing on Interval Graphs

Our general result implies the existence of a compact routing scheme for inter-
val graphs with O(log2 n/ log logn)-sized headers, O(

√
n log2 n/ log logn)-sized

routing tables, and an additive stretch of 6. We now show that we can do sub-
stantially better for this family of graphs, proving the following:

Theorem 3.1. Any (unweighted, undirected) interval graph supports a compact
routing scheme with O(log n)-bit headers, O(log n)-bit tables and an additive
stretch of 1.

Definition 3.2. Given a finite set H of closed intervals v = [L(v), R(v)] on the
real line, |H | = n, the interval graph G = (V,E) of H is defined by assigning
one vertex to each interval v, with an edge between every pair of vertices whose
corresponding intervals intersect. For a vertex v ∈ V , we define L(v) (R(v)) to
be the left (right) endpoint of the interval in H which corresponds to v, which
we will refer to as v’s reference interval. For a set J ⊆ V , we define L(J)
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to be min
v∈J

L(v) and R(J) to be max
v∈J

R(v). The reference set of a set J ⊆ V

consists of the union on the real line of all the reference intervals of vertices in
J , with overlapping intervals combined: that is, two elements in J ’s reference
set (which correspond to two subsets of J) are distinct only if there is no edge
between those two subsets in G. We say a vertex v (respectively, a set of vertices
J) spans a given interval i if the reference interval of v (resp., the reference set
of J) contains i.

We will use the same variable to describe both a vertex in an interval graph
and its reference interval on the real line, and we will similarly overload a sin-
gle variable to represent both a vertex set in G and its reference set. We also
only consider the case where there is no single vertex i whose reference interval
spans the reference set for the whole graph, since compact routing with additive
stretch 1 is otherwise simple: always route through i, since it is adjacent to every
other vertex; the routing table at v contains only portv(i), and the header for w
contains only porti(w).

Definition 3.3. Given an interval graph G = (V,E), choose a vertex a ∈ V so
that L(a) = L(V ) and R(a) is maximum, and choose a vertex b ∈ V so that
R(b) = R(V ) and L(b) is minimum. (Note that a 
= b since we are assuming
that no single vertex spans the reference set of V .) A spine of G is a sequence
of vertices S = 〈a = s1, . . . , sk = b〉 chosen so that R(si) is maximum over all
neighbors of si−1, for all 1 < i ≤ k, choosing sk = b as soon as it becomes
available. Given an interval graph G = (V,E), a spine S of G and a vertex
v /∈ S, we refer to the set of vertices in S adjacent to v as v’s landmarks.

Note that every v /∈ S has at least one and at most three landmarks; this follows
from the fact that the reference set of S is equal to that of V , combined with
the fact that S is a shortest path from a to b (cf. Lemma 3.5).

Given an interval graph G = (V,E) with a spine S, consider a pair of vertices
a and b where R(a) < L(b), i.e. a is to the left of b on the real line. Consider a
sequence P = 〈a = p0, p1, . . . , pl = b〉 describing a shortest path from a to b in
G. Since R(a) < L(b), there must be some vertex p ∈ P for which R(p) > R(a).
Notice that p1 is the first such vertex (if it weren’t, we could delete vertices from
P to form a shorter path). The following lemma is then immediate by induction:

Lemma 3.4. For all pi ∈ P , 0 ≤ i < l, R(pi+1) > R(pi). ��

Lemma 3.5. Let T = 〈a = t0, t1, . . . , tk = b〉 be a sequence constructed itera-
tively by setting t0 to a, setting an index i to 0, and while ti is not adjacent to
b, setting ti+1 to be a neighbor of ti for which R(ti) is maximum, incrementing
i at each step. Then T is a sequence describing a shortest path from a to b.

Proof. Let P = 〈a = p0, p1, . . . , pl = b〉 describe a shortest path from a to b.
If P = T , there is nothing to prove. So assume P 
= T , and let pi be the first
vertex of P where pi 
= ti. Observe that L(ti) ≤ R(pi−1), since ti is adjacent to
pi−1 and R(pi−1) ≤ R(ti) by construction. Since P describes a shortest path,
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pi−1 cannot be adjacent to pi+1, so R(pi−1) < L(pi+1). Since (by Lemma 3.4)
R(pi) < R(pi+1), and since pi is adjacent to pi+1, we have L(pi+1) ≤ R(pi). Since
ti was chosen from among the neighbors of pi−1 so that R(ti) was maximum,
we have R(pi) ≤ R(ti). Taken together, this gives L(ti) ≤ R(pi−1) < L(pi+1) ≤
R(pi) ≤ R(ti), meaning ti is adjacent to pi+1. We can thus substitute ti for pi in
P to form a new sequence P ′ which also describes a shortest path from a to b; we
can then perform such a substitution for every intermediate vertex a 
= pi 
= b
of P , and since pl−1 is adjacent to b, we have that |T | = k = l = |P |. ��

Lemma 3.6. If v, w /∈ S do not share a landmark, they are not adjacent. ��

3.1 Algorithm

The header for each vertex w ∈ S contains L(w) and R(w). The header for each
vertex w /∈ S contains L(w), R(w), and for each landmark x of w, L(x), R(x),
and portx(w). The routing table for any vertex v is constructed as follows: if
v ∈ S, let a and b be its neighbors in S to the left and right respectively (if
they both exist). Store L(v), R(v), L(a), R(a), portv(a), L(b), R(b), and portv(b).
If v /∈ S, store L(v) and R(v), and for each landmark x of v, store L(x), R(x),
and portv(x). Both v’s table and header contain the (fixed) ID assigned in the
input graph, plus an extra bit, signaling whether or not v is a member of S.
To route from v to w:

Case 1: v, w ∈ S. If v and w are adjacent, then use the information in v’s routing
table to route along portv(w) to w. Otherwise, compare the information in w’s
header (containing w’s endpoints) with the information in v’s table (containing
v’s endpoints) to determine whether w lies to the left or to the right of v on the
real line, and route along S in the appropriate direction, using the adjacency
information in v’s routing table and in the tables of all intermediate vertices in
S.

Case 2: v, w /∈ S. If v and w share a landmark a, retrieve portv(a) from v’s
table and porta(w) from w’s header, and route to w along those two edges. If v
and w do not share a landmark, then they are not adjacent by Lemma 3.6. Say
v is to the left of w on the real line. Let x be v’s rightmost landmark, and let
y be w’s leftmost landmark. Retrieve portv(x) from v’s routing table and route
along that edge to x, then from x to y along S, and finally retrieve porty(w)
from w’s header, and route along that edge from y to w. If v is to the right of w
on the real line, route analogously, reversing all directions.

Case 3: v ∈ S,w /∈ S. If v is one of w’s landmarks, retrieve portv(w) from w’s
header and route along that edge. If v is not one of w’s landmarks, but is adjacent
to one of w’s landmarks x, route to x using the information in v’s table, then to
w using the information in w’s header. Finally, if v is adjacent neither to w nor
to any of w’s landmarks, say that v lies to the left of w’s landmarks’ reference
set. Route from v to w’s leftmost landmark a, along S, using the routing tables
of v and all intermediate vertices in S, then retrieve porta(w) from w’s header
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and route along that edge. If v lies to the right of w’s landmarks’ reference set,
route analogously, reversing all directions.

Case 4: v /∈ S,w ∈ S. If w is one of v’s landmarks, retrieve portv(w) from
v’s table and route along that edge. If w is not one of v’s landmarks, but is
adjacent to one of v’s landmarks x, route to x using the information in v’s table,
then to w using the adjacency information in x’s table. Finally, if w is adjacent
neither to v nor to any of v’s landmarks, say that w lies to the right of v’s
landmarks’ reference set. Let x be v’s rightmost landmark; route to x using the
information in v’s table, then along S to w using the routing tables of x and all
intermediate vertices in S. If w lies to the left of v’s landmarks’ reference set,
route analogously, reversing all directions.

3.2 Analysis

Despite the fact that we have defined interval graphs for sets of intervals on
the real line, we assume for the sake of convenience that the endpoints of each
reference interval are O(log n)-bit integers; since we’re dealing with finite sets,
a straightforward scaling process can ensure that this is the case. Each header
contains at most 12 O(log n)-bit integers plus one bit, for a total asymptotic
header size of O(log n). Each routing table also contains at most 12 O(log n)-bit
integers plus one bit, for a total asymptotic table size of O(logn).

Lemma 3.7. Given an interval graph G = (V,E), let I be the connected interval
on the real line which is the reference set of V . Given any interval C which is
a subset of I, let A be the set of vertices in V whose reference intervals contain
L(C), and let B be the set of vertices in V whose reference intervals contain
R(C). Let l denote the length of a shortest path between any vertex in A and any
vertex in B. Then given the subsequence of S defined by 〈s0, s1, . . . , sk〉, where
s0 is the vertex of S containing L(C) for which R(s0) is maximum, and sk is
the vertex of S containing R(C) for which R(sk) is minimum, k ≤ l + 1.

Proof. Let I be defined as above, and let C be any closed interval contained
in I, with a = L(C) and b = R(C). Let P = 〈p0, p1, . . . , pl〉 be a path from
some vertex p0 containing a to some vertex pl containing b such that |P | = l is
minimized. Let s0 be the vertex of S containing a for which R(s0) is maximum,
and let sk be the leftmost vertex of S containing b, where k = d(s0, sk).

Case 1: s0 is adjacent to p1, and pl−1 is adjacent to sk. In this case, the result is
immediate: the sequence 〈s0, p1, , . . . , pl−1, sk〉 represents a path from s0 to sk of
length l, and the subsequence 〈s0, . . . , sk〉 of S represents a shortest path from
s0 to sk, so k ≤ l.

Case 2: s0 is not adjacent to p1, but pl−1 is adjacent to sk. In this case, notice
that s0 is adjacent to p0 since they both contain a. The path represented by the
sequence 〈s0, p0, p1, . . . , pl−1, sk〉 is of length l + 1, and since d(s0, sk) = k, we
have that k ≤ l + 1.
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Case 3: s0 is adjacent to p1, but pl−1 is not adjacent to sk. Using an argument
analogous to that of Case 2, we again have k ≤ l + 1.

Case 4: s0 is not adjacent to p1, and pl−1 is not adjacent to sk. Since s1 was
chosen from among the neighbors of s0 such that R(s1) was maximum, we know
that since p0 is a neighbor of s0, R(s1) ≥ R(p0), hence s1 is adjacent to p1.
Similarly, si is adjacent to pi for all 0 ≤ i ≤ min{k, l}, and min{k, l} = l, since l
was chosen to be minimum. Consider sl, which is adjacent to pl. If l = k, there
is nothing to prove. Otherwise, since sl+1 was chosen from among the neighbors
of sl so that R(sl+1) was maximum, and since pl is a neighbor of sl, we have
that R(sl+1) ≥ R(pl), so sl+1 must contain b, hence k ≤ l + 1. ��

Lemma 3.8. (Stretch) Given any connected interval graph G = (V,E), our
algorithm routes messages between any two vertices v, w ∈ V along a path Pvw

of length ≤ d(v, w) + 1, where d(v, w) is the distance between v and w in G.

Proof
Case 1: v, w ∈ S. Since we are routing along a shortest path between v and w,
|Pvw| = d(v, w).

Case 2: v, w /∈ S. If v and w share a landmark, then |Pvw| = 2, and since
d(v, w) ≥ 1, |Pvw| ≤ d(v, w) + 1. If v and w do not share a landmark, then
assume without loss of generality that v is to the left of w on the real line.
Let x be v’s rightmost landmark, and let y be w’s leftmost landmark. Since
v is not adjacent to x’s right-hand neighbor in S, R(x) > R(v), and similarly
L(y) < L(w). Consider the interval C = [R(x) + ε, L(y) − ε] on the real line,
where ε is chosen small enough so that R(x) + ε lies between R(x) and the next
(greater) endpoint of any interval in S to the right of R(x), and L(y) − ε lies
between L(y) and the next (lesser) endpoint of any interval in S to the left of
L(y). Let I ⊆ V be the set of vertices of G which intersect C, and notice that I
is a vertex cut of G separating v and w, so that d(v, w) ≥ d(v, I)+DI + d(I, w),
where DI is the minimum length of a path from a vertex containing L(C) to
a vertex containing R(C). Let 〈s0, s1, . . . , sk〉 be the sequence of vertices in S
traversed by our algorithm between x and y, not including x and y. Since s0 is
the only vertex in S containing R(x) + ε, s0 must be the vertex in S containing
L(C) where R(s0) is maximum, and similarly sk is the vertex in S containing
R(C) where L(sk) is minimum. By Lemma 3.7, then, k ≤ DI + 1. Since v
is not adjacent to any vertex containing R(x) + ε, d(v, I) ≥ 2, and since w
is not adjacent to any vertex containing L(y) − ε, d(I, w) ≥ 2. So we have
|Pvw| = 2 + k + 2 ≤ d(v, I) + (DI + 1) + d(I, w) ≤ d(v, w) + 1.

Case 3: v ∈ S,w /∈ S. If v is one of w’s landmarks, then |Pvw| = d(v, w). If
v is not one of w’s landmarks, but is adjacent to one of w’s landmarks, then
d(v, w) = 2, and |Pvw | = 2 = d(v, w). If neither of the above is the case, then
we have |Pvw| ≤ d(v, w) + 1, by an analogous argument to that of Case 2, with
C = [R(v)+ ε, L(y)− ε], where w’s leftmost landmark y is assumed without loss
of generality to be to the right of v on the real line.
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Case 4: v /∈ S,w ∈ S. This case is proved by an identical argument to that of
Case 3, with the interval C of the final part defined to be [R(x) + ε, L(w) − ε],
where v’s rightmost landmark x is assumed without loss of generality to be to
the left of w on the real line. ��

4 Compact Routing on Circular Arc Graphs

Definition 4.1. Given a circle C and a set A of n closed arcs which are subsets
of C, the circular arc graph corresponding to A is the graph G = (V,E)
constructed by creating one vertex va ∈ V for each arc a in A, with an edge
(va, vb) ∈ E if the arcs a and b corresponding to va and vb intersect. We refer
to C as the reference circle of G, to A as the arc set of G, and to a as the
reference arc of va. For any arc a ∈ A which is a strict subset of C, we define
L(a) = L(va) to be the counterclockwise endpoint of a, and similarly we define
R(a) = R(va) to be the clockwise endpoint of a. For any set J of vertices of
G, the reference set of J consists of the union (on the reference circle) of all
the reference arcs of vertices in J , with overlapping arcs combined: that is, two
elements in J ’s reference set (which correspond to two subsets of J) are distinct
only if there is no edge between those two subsets in G. Note in particular that
the reference set of V is not necessarily equal to the arc set of G. If the reference
set of some subset X ⊆ V of vertices of G is a single connected arc which is not
equal to the entire reference circle C, we define L(X) to be the counterclockwise
endpoint of the reference set of X, and R(X) to be its clockwise endpoint. We
say a vertex v (respectively, a set of vertices J) spans a given closed arc a on
C if the reference arc of v (resp., the reference set of J) contains a.

We will use the same variable to describe both a vertex in a circular arc graph G
and its reference arc on G’s reference circle C, and we will similarly overload a
single variable to represent both a vertex set in G and its reference set on C. We
can consider only the case where there is no single vertex a whose reference arc
spans the entire reference circle, since compact routing with additive stretch 1
in the other case is straightforward: always route through a, since it is adjacent
to every other vertex; the routing table at v contains only portv(a), and the
header for w contains only porta(w). Since each component of a circular arc
graph whose vertex set does not span its entire reference circle is also an interval
graph, and we already have a compact routing scheme for interval graphs, we
will only consider circular arc graphs whose vertex sets completely span their
reference circles.

Definition 4.2. Given a circular arc graph G with reference circle C and arc
set A, and given any point x on C, the plug of G corresponding to x is the
subset of vertices of G whose reference arcs contain x.

Lemma 4.3. Given a circular arc graph G with reference circle C, if there exists
a plug P of G (corresponding to a point x on C) such that the reference set of
P is C itself, then there exists a set of exactly two vertices in P whose reference
arcs also span all of C.
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Proof. Since we have ruled out the case in which one arc may span the entire
reference circle, and the reference set of P is the entire reference circle C, there
must be a set of at least two arcs in P which spans C. To show that there is such
a set containing exactly two arcs, first note that every arc in P must contain x
by definition. Let a be the arc in P which covers the largest portion of C in the
direction clockwise from x, and let b be the arc in P which covers the largest
portion of C in the direction counterclockwise from x. If the reference set of
{a, b} is not equal to C, then P cannot span C, since both a and b were chosen
as maximal. Hence a and b must together span C. ��

Note that since all vertices in a given plug intersect at x, a plug is also a clique.
According to Lemma 4.3, if the reference set of some plug P is the entire reference
circle C, then there exists a pair of vertices a, b ∈ P which together span all of
C, and so each vertex in G must be adjacent to a, b, or both. Finally, we use
the fact that there exists an exact distance labeling scheme for interval graphs
which uses O(log n)-bit labels [6].

4.1 Algorithm

Let G = (V,E) be an n-vertex circular arc graph, with reference circle C and
arc set A.

Case 1: There exists some plug P of G for which the reference set of P equals
all of C. In this case, let a and b be a pair of arcs of P spanning C whose
existence is guaranteed by Lemma 4.3. The routing table of every vertex v ∈ V
will contain at most five elements: the ID assigned to v in the input graph, one
bit indicating whether or not v is adjacent to a (and, if so, portv(a)), and one bit
indicating whether or not v is adjacent to b (and, if so, portv(b)). The header of
every vertex w ∈ V will similarly contain at most five elements: the ID assigned
to w in the input graph, a bit indicating whether or not w is adjacent to a (and,
if so, porta(w)), and a bit indicating whether or not w is adjacent to b (and, if
so, portb(w)).

Case 2: There is no plug of G whose reference set equals all of C. In this case,
we select an arbitrary point x on C, and let P be the plug of G corresponding
to x. Since the reference set of P does not equal C, and since P is connected
in G, the reference set of P is a single closed arc which is a proper subset of C.
Because of this, G[V \P ] is an interval graph. Let a and b be chosen from P such
that L(a) = L(P ) and R(b) = R(P ). (If one vertex satisfies both requirements,
we choose that vertex; for clarity, our language throughout the following will
assume that a and b are distinct.) Compute distance labels for all vertices in
G[V \ P ] using the scheme given in [6]. The header and routing table for each
vertex v in V \P will contain the distance label assigned to v by this scheme; the
header and routing table for each vertex p in P will contain a bit marking p as a
member of P . Next, identify two shortest-path trees Ta and Tb spanning G[V \P ],
rooted at a and b respectively. Preprocess these trees according to the compact
tree-routing scheme referenced in Fact 2.2, and append the headers and routing
tables generated by this scheme, for both trees, to the headers and routing tables,
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respectively, of every vertex in each tree. For each vertex v ∈ V \ P , add d(v, a)
and d(v, b) to both the header and the routing table of v. Also for each vertex
v ∈ V \ P , add the tree-routing headers of a and b, in Ta and Tb respectively,
to v’s local routing table. Preprocess G[V \P ] according to the compact routing
scheme for interval graphs given in Sect. 3, and append the headers and tables
generated by that scheme to the headers and tables, respectively, for all vertices
in V \P . For each vertex p in P , record portp(a), portp(b), porta(p) and portb(p)
in p’s header and routing table. Finally, both the header and routing table of
every vertex v will contain the ID assigned to it in the input graph.
Routing now proceeds as follows:

Case 1: To route from v to w, first extract adjacency information for a and b
from the routing table of v and the header of w. If both v and w are adjacent
to one of these (say a), route from v to a using portv(a) from v’s routing table,
then from a to w using porta(w) in w’s header. If this is not the case (say v is
adjacent only to a, and w is adjacent only to b), route from v to a using portv(a)
in v’s routing table, then from a to b using porta(b) in a’s routing table, then
from b to w using portb(w) from w’s header.

Case 2: If neither v nor w is in the plug P , compute d1, the distance between v
and w in G[V \P ], using the distance labels in v’s routing table and w’s header.
Next extract d(v, a) and d(v, b) from v’s routing table, extract d(w, a) and d(w, b)
from w’s header, and compute d2 = min{d(v, a), d(v, b)}+min{d(w, a), d(w, b)}+
1. If d1 < d2, route from v to w through G[V \ P ] using the scheme of Sect. 3.
Otherwise, say v is closest to a and w is closest to b. We route from v to a
along Ta, using the tree-routing header for a stored in v’s routing table (and the
tree-routing tables of all intermediate vertices), then from a to b using porta(b)
in a’s routing table, and finally from b to w along Tb using the information in
w’s tree-routing header for Tb (and the tree-routing tables at all intermediate
vertices). (If the closer of a and b to v and w is the same (say a), then route as
above from v to a and from a to w.) If only v is in P , use the information in w’s
header to compute the closer of a or b to w (say a), route to a using portv(a) in
v’s routing table, then to w along Ta using the information in w’s tree-routing
header (and the tree-routing tables at all intermediate vertices). If only w is in
P , use the information in v’s routing table to compute the closer of a or b to v
(say a), route to a along Ta using the tree-routing header for a in v’s routing
table (and the tree-routing table at each intermediate vertex), then route to w
using porta(w), stored in w’s header. If both v and w are in P , use portv(a) in
v’s routing table to route from v to a, then use porta(w) from w’s header to
route from a to w.

4.2 Analysis

If Case 1 above holds, the header for each vertex contains at most two bits and
two port names, for a header size of O(log n). If Case 2 above holds, then in
the worst case, the header for a vertex v contains a logn-bit ID, an O(log n)-bit
distance label in G[V \ P ], two O(log2 n/ log logn)-bit tree-routing headers for
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Ta and Tb, two O(log n)-bit integers representing d(v, a) and d(v, b), and one
O(log n)-bit header from the interval graph scheme of Sect. 3, yielding a total
header size of O(log2 n/ log logn).

If Case 1 above holds, then the routing table for each vertex contains at most
one logn-bit ID, two bits and two edge labels, for a table size of O(log n). If Case
2 above holds, then in the worst case, the routing table for a vertex v contains a
logn-bit ID, an O(log n)-bit distance label in G[V \P ], two O(log2 n/ log logn)-
bit tree-routing tables for Ta and Tb, two O(log n)-bit integers representing
d(v, a) and d(v, b), and one O(log n)-bit table from the interval graph scheme
of Sect. 3, yielding a total routing table size of O(log2 n/ log logn).

Lemma 4.4. If Case 2 above holds and a vertex v is not in the plug P , then
d(v, P ) = min{d(v, a), d(v, b)}.

Proof. L(a) = L(P ) and R(b) = R(P ) by definition, and v /∈ P . Observe that
the reference set of any shortest path from v to any vertex in P must be an
arc containing L(P ) or R(P ), say L(P ). If p is the vertex of P on this path
containing L(P ) and p 
= a, clearly we can substitute a for p to obtain a path of
equal length. The case for the crossing of R(P ) is analogous. ��

Lemma 4.5. (Stretch) Our algorithm routes messages from any source v to
any destination w with maximum stretch OPT+1.

Proof. If Case 1 above holds and if v and w are both adjacent to one of a or b,
we route along a path of length 2, and since d(v, w) ≥ 1, this is ≤ OPT + 1. If
Case 1 above holds and v and w are not both adjacent to a or to b, then say for
example that v is adjacent to a and w to b. Then since the reference arcs of a
and b span the entire reference circle C, observe that the reference arcs for v and
w can’t intersect, and so v and w are not adjacent in G, so d(v, w) ≥ 2. Since
we then route along a path of length 3, we have a route of length ≤ OPT + 1. If
Case 2 above holds and v and w are both in the plug P , then d(v, w) = 1, and
we route along a path of length ≤ 2 = OPT +1. If Case 2 above holds and if one
of v and w is in the plug P (say w), then d(v, w) ≥ d(v, P ). Since we route from
v to the closer of a or b and then along at most one edge to w, by Lemma 4.4,
we route along a path of length at most d(v, P ) + 1 ≤ OPT + 1. Finally, if Case
2 above holds and if neither v nor w is in P , we consider two sub-cases:

Case 2A: Every shortest path from v to w crosses P . In this case, d(v, w) ≥
d(v, P ) + d(w,P ). Since d2 = d(v, P ) + d(w,P ) + 1 by Lemma 4.4, we have that
d2 ≤ d(v, w) + 1. Since every shortest path between v and w crosses P , we also
know that d1 > d(v, w), since it represents the length of a path which does not
contain any vertices in P . If d1 < d2, then we have d(v, w) < d1 < d2, implying
(since the quantities involved are integers) that d2 ≥ d(v, w)+2, a contradiction.
So it must be the case that d2 ≤ d1, and according to our routing algorithm, we
therefore route along a path of length at most d2 ≤ OPT + 1.

Case 2B: No shortest path between v and w crosses P . Then d1 = d(v, w), so
d2 can’t be less than d1, since d1 is the length of a path between v and w and
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it’s minimum. Also, d2 
= d1, since d1 is minimum, d2 is the length of a path
through P , and no shortest path crosses P by assumption. So d1 < d2, and we
route through G[V \ P ] using the scheme given in Sect. 3, which uses a route of
length at most OPT + 1. ��

We have now proved the following: any circular arc graph supports a compact
routing scheme with O(log2 n/ log logn)-bit headers, O(log2 n/ log logn)-bit ta-
bles and an additive stretch of 1.

We note that substituting alternate tree-routing schemes for the one men-
tioned in Fact 2.2 will produce different tradeoffs in table and header size.
Substituting the alternate tree-routing scheme given in [14], which guarantees
O(log2 n)-bit headers and O(log n)-bit routing tables, achieves the bounds stated
in the abstract and Sect. 1. Substituting the tree-routing scheme of [15], which
guaranteesO(log n)-bit headers andO(min{deg(v),

√
n}·logn)-bit routing tables

at each vertex v, yields a compact routing scheme for circular arc graphs with
a header size of O(log n) and a (much larger) table size of O(min{deg(v),

√
n} ·

logn) at each vertex v.
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Minimum Spanning Trees
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Abstract. We give a distributed algorithm that constructs a O(log n)-
approximate minimum spanning tree (MST) in arbitrary networks. Our algorithm
runs in time Õ(D(G)+L(G, w)) where L(G, w) is a parameter called the local
shortest path diameter and D(G) is the (unweighted) diameter of the graph. Our
algorithm is existentially optimal (up to polylogarithmic factors), i.e., there exists
graphs which need Ω(D(G) + L(G, w)) time to compute an H-approximation
to the MST for any H ∈ [1, Θ(log n)]. Our result also shows that there can be
a significant time gap between exact and approximate MST computation: there
exists graphs in which the running time of our approximation algorithm is ex-
ponentially faster than the time-optimal distributed algorithm that computes the
MST. Finally, we show that our algorithm can be used to find an approximate
MST in wireless networks and in random weighted networks in almost optimal
Õ(D(G)) time.

Keywords: Distributed Approximation Algorithm, Minimum Spanning Tree.

1 Introduction

1.1 Background and Previous Work

The distributed minimum spanning tree (MST) problem is one of the most impor-
tant problems in the area of distributed computing. There has been a long line of re-
search to develop efficient distributed algorithms for the MST problem starting with
the seminal paper of Gallager et al [1] that constructs the MST in O(n logn) time and
O(|E| + n logn) messages. The communication (message) complexity of Gallager et
al. is optimal, but its time complexity is not. Hence further research concentrated on im-
proving the time complexity. The time complexity was first improved to O(n log logn)
by Chin and Ting [2], further improved to O(n log∗ n) by Gafni [3], and then improved
to existentially optimal running time of O(n) by Awerbuch [4]. The O(n) bound is ex-
istentially optimal because there exists graphs where no distributed MST algorithm can
do better than Ω(n) time. This was the state of art till the mid-nineties when Garay,
Kutten, and Peleg [5] raised the question of identifying graph parameters that can bet-
ter capture the complexity (motivated by “universal” complexity) of distributed MST
computation. For many existing networks G, their diameter D(G) (or D for short)
is significantly smaller than the number of vertices n and therefore is a good candi-
date to design protocols whose running time is bounded in terms of D(G) rather than
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n. Garay, Kutten, and Peleg [5] gave the first such distributed algorithm for the MST
problem that ran in time O(D(G) + n0.61) which was later improved by Kutten and
Peleg [6] to O(D(G) +

√
n log∗ n). Elkin [7] refined this result further and argued that

the parameter called “MST-radius” captures the complexity of distributed MST bet-
ter. He devised a distributed protocol that constructs the MST in Õ(μ(G,w) +

√
n)

time, where μ(G,w) is the “MST-radius” of the graph [7] (is a function of the graph
topology as well as the edge weights). The ratio between diameter and MST-radius can
be as large as Θ(n), and consequently on some inputs this protocol is faster than the
protocol of [6] by a factor of Ω(

√
n). However, a drawback of this protocol (unlike pre-

vious MST protocols [6,5,2,3,1]) is that it cannot detect termination in this much time
(unless μ(G,w) is given as part of the input). Finally, we note that the time-efficient al-
gorithms of [6,7,5] are not message-optimal (i.e., they take asymptotically much more
than O(|E|+ n logn), e.g., the protocol of [6] takes O(|E|+ n1.5) messages.

The lack of progress in improving the result of [6], and in particular breaking the√
n barrier, led to work on lower bounds for distributed MST problem. Peleg and Ra-

binovich [8] showed that Ω̃(
√
n) is required for constructing MST even on graphs of

small diameter and showed that this result establishes the asymptotic near-tight (exis-
tential) optimality of the protocol of [6].

While the previous distributed protocols deal with computing the exact MST, the
next important question addressed in the literature concerns the study of distributed
approximation of MST, i.e., constructing a spanning tree whose total weight is near-
minimum. From a practical perspective, given that MST construction can take as much
as Ω̃(

√
n) time, it is worth investigating whether one can design distributed algorithms

that run faster and output a near-minimum spanning tree. Peleg and Rabinovich [8]
was one of the first to raise the question of devising faster algorithms that construct an
approximation to the MST and left it open for further study. To quote their paper: “To
the best of our knowledge nothing nontrivial is known about this problem...”. Since then,
the most important result known till date is the hardness results shown by Elkin [9]. This
result showed that approximating the MST problem on graphs of small diameter (e.g.,
O(log n)) within a ratio H requires essentially Ω(

√
n/HB) time (assumingB bits can

be sent through each edge in one round), i.e., this gives a time-approximation trade-off
for the distributed MST problem: T 2H = Ω(

√
n/B). However, not much progress has

been made on designing time-efficient distributed approximation algorithms for MST.
To quote Elkin’s survey paper [10]: “There is no satisfactory approximation algorithm
known for the MST problem”. To the best of our knowledge, the only known distributed
approximation algorithm for MST is given by Elkin in [9]. This algorithm gives an H-
approximation protocol for the MST with running timeO(D(G)+ ωmax

H−1 ·log∗ n), where
ωmax is the ratio between the maximal and minimal weight of an edge in the input graph
G. Thus this algorithm is not independent of the edge weights and its running time can
be quite large.

1.2 Distributed Computing Model and Our Results

We present a fast distributed approximation algorithm for the MST problem. We will
first briefly describe the distributed computing model that is used by our algorithm (as
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well as the previous MST algorithms [2,1,5,6,4,3,7] mentioned above) which is now
standard in distributed computing literature (see e.g., the book by Peleg [11]).

Distributed computing model. We are given a network modeled as an undirected
weighted graph G = (V,E,w) where V is the set of nodes (vertices) and E is the
set of communication links between them and w(e) gives the weight of the edge e ∈ E.
Without loss of generality, we will assume that G is connected. Each node hosts a
processor with limited initial knowledge. Specifically, we make the common assump-
tion that nodes have unique identity numbers (this is not really essential, but simplifies
presentation) and at the beginning of the computation each vertex v accepts as input its
own identity number, the identity numbers of its neighbors in G (i.e., nodes that share
an edge with v), and the weights of the edges that are adjacent to v. Thus a node has
only local knowledge limited to itself and its neighbors. The vertices are allowed to
communicate through the edges of the graph G. We assume that the communication is
synchronous and occurs in discrete pulses (time steps). (This assumption is not essen-
tial for our time complexity analysis. One can use a synchronizer to obtain the same
time bound in an asynchronous network at the cost of some increase in the message
(communication) complexity [11].) During each time step, each node v is allowed to
send an arbitrary message of size O(log n) through each edge e = (v, u) that is ad-
jacent to v, and the message will arrive at u at the end of the current pulse. (We note
that if unbounded-size messages are allowed, then MST problem can be trivially solved
in O(D(G)) time[11].) The weights of the edges are at most polynomial in the num-
ber of vertices n, and therefore the weight of a single edge can be communicated in
one time step. This model of distributed computation is called the CONGEST (log n)
model or simply the CONGEST model [11] (the previous results on distributed MST
cited in Sect. 1.1 are for this model). We note that, more generally, CONGEST (B)
allows messages of size at most O(B) to be transmitted in a single time step across
an edge. Our algorithm can straightforwardly be applied to this model also. We will
assume B = logn throughout this paper.

Overview of results. Our main contribution is an almost existentially optimal (in both
time and communication complexity) distributed approximation algorithm that con-
structs a O(log n)-approximate minimum spanning tree, i.e., whose cost is within a
O(log n) factor of the MST. The running time1 of our algorithm is Õ(D(G)+L(G,w))
where L(G,w) is a parameter called as the local shortest path diameter (we defer the
definition of L(G,w) to Sect. 2.2). Like the MST-radius, L(G,w) depends both on the
graph topology as well as on the edge weights. L(G,w) always lies between 1 and
n. L(G,w) can be smaller or larger than the diameter and typically it can be much
smaller than n or even

√
n (recall that this is essentially a lower bound on distributed

(exact) MST computation). In fact, we show that there exists graphs for which any dis-
tributed algorithm for computing the MST will take Ω̃(

√
n) time, while our algorithm

will compute a near-optimal approximation in Õ(1) time, since L(G,w) = Õ(1) and
D = Õ(1) for these graphs. Thus there exists an exponential gap between exact MST
and O(log n)-approximate MST computation. However, in some graphs L(G,w) can

1 We use the notations Õ(f(n)) and Ω̃(f(n)) to denote O(f(n) · polylog(f(n))) and
Ω(f(n)/polylog(f(n))), respectively.
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be asymptotically much larger than both the diameter as well as
√
n. By combining

the MST algorithm of Kutten and Peleg [6] with our algorithm in an obvious way we
can obtain an algorithm with the same approximation guarantee but with running time
Õ(D(G) + min(L(G,w),

√
n)).

The parameter L(G,w) is not arbitrary. We show that it captures the hardness of dis-
tributed approximation quite precisely: there exists a family of n-vertex graphs where
Ω(L(G,w)) time is needed by any distributed approximation algorithm to approximate
MST within a H-factor (1 ≤ H ≤ O(log n)) (cf. Theorem 5). This implies that our
algorithm is existentially optimal (upto polylogarithmic factors) and in general no other
algorithm can do better. We note that the existential optimality our algorithm is with re-
spect to L(G,w) instead of n as in the case of Awerbuch’s algorithm [4]. Our algorithm
is also existentially optimal (upto polylogarithmic factors) with respect to communica-
tion (message) complexity — takes Õ(|E|) messages, since Ω(|E|) messages is clearly
needed in some graphs to construct any spanning tree[12,13].

One of our motivations for this work is to investigate whether fast distributed algo-
rithms that construct (near-optimal) MST can be given for special classes of networks.
An important consequence of our result is that networks with low L(G,w) value (com-
pared to O(D(G)) admit a Õ(D(G)) timeO(log n)-approximate distributed algorithm.
In particular unit disk graphs have L(G,w) = 1. Unit disk graphs are commonly used
models in wireless networks. We also show L(G,w) = O(log n) with high probability
in any arbitrary network whose edge weights are chosen independently at random from
an arbitrary distribution (cf. Theorem 7).

2 Distributed Approximate MST Algorithm

2.1 Nearest Neighbor Tree Scheme

The main idea of our approach is to construct a spanning tree called as the Nearest
Neighbor Tree (NNT) efficiently in a distributed fashion. In our previous work [14], we
introduced the Nearest Neighbor Tree and showed that its cost is within a O(log n) fac-
tor of the MST. The scheme used to construct a NNT (henceforth called NNT scheme)
is as follows: (1) each node first chooses a unique identity number called rank and (2)
each node (except the one with the highest rank) connects (via the shortest path) to the
nearest node of higher rank. We showed that the NNT scheme constructs a spanning
subgraph in any weighted graph whose cost is at most O(log n) times that of the MST,
irrespective of how the ranks are selected (as long as they are distinct) [14]. Note that
cycles can be introduced in step 2, and hence to get a spanning tree we need to re-
move some edges to break the cycles. Our NNT scheme is based on the approximation
algorithm for the traveling salesman problem (coincidentally called Nearest Neighbor
algorithm) analyzed in a classic paper of Rosenkrantz, Lewis, and Stearns [15]. Imase
and Waxman [16] also used a scheme based on [15] (their algorithm can also be con-
sidered a variant of NNT scheme) to show that it can maintain a O(log n)-approximate
Steiner tree dynamically (assuming only node additions, but not deletions.) However,
their algorithm will not work in a distributed setting (unlike our NNT scheme) because
one cannot connect to the shortest node (they can do that since the nodes are added one
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by one) as this can introduce cycles. The approach needed for distributed implementa-
tion is very different (cf. Sect. 2.3).

The advantage of NNT scheme is this: each node, individually, has the task of finding
its own node to connect, and hence no explicit coordination is needed between nodes.
However, despite the simplicity of the NNT scheme, it is not clear how to efficiently im-
plement the scheme in a general weighted graph. In our previous work [14], we showed
NNT scheme can be implemented in a complete metric graph G (i.e., D(G) = 1). Our
algorithm takes only O(n log n) messages to construct a O(log n)-approximate MST
as opposed to Ω(n2) lower bound (shown by Korach et al [17]) needed by any distrib-
uted MST algorithm in this model. If time complexity needs to be optimized, then NNT
scheme can be easily implemented in O(1) time (using O(n2) messges), as opposed to
the best known time bound of O(log logn) for (exact) MST [18]. These results suggest
that NNT scheme can yield faster and communication-efficient algorithms compared
to the algorithm that compute the exact MST. However, efficient implementation in a
general weighted graph is non-trivial and was left open in [14]. Thus, a main contri-
bution of this paper is giving an efficient implementation of the scheme in a general
network. The main difficulty is in efficiently finding the nearest node of higher rank
in a distributed fashion because of congestion (since many nodes are trying to search
at the same time) and avoiding cycle formation. We use a technique of “incremental”
neighborhood exploration that avoids congestion and cycle formation and is explained
in detail in Sect. 2.3.

2.2 Preliminaries

We use the following definitions and notations concerning an undirected weighted graph
G = (V,E,w). We say that u and v are neighbors of each other if (u, v) ∈ E.

Notations:
|Q(u, v)| or simply |Q|— is the number of edges in path Q from u to v.
w(Q(u, v)) or w(Q) — is the weight of the path Q, which is defined as the sum of the
weights of the edges in pathQ, i.e., w(Q) =

∑
(x,y)∈Qw(x, y). P (u, v) — is a shortest

path (in the weighted sense) from u to v.
d(u, v) — is the (weighted) distance between u and v, and defined by d(u, v) =
w(P (u, v)).
Nρ(v) — set of all neighbors u such that w(u, v) ≤ ρ, i.e., Nρ(v) = {u | (u, v) ∈
E ∧ w(u, v) ≤ ρ}.
W (v) — is the weight of the largest edge adjacent to v. W (v) = max(v,x)∈E w(v, x)
l(u, v) — is the minimum length (number of the edges) shortest path from u to v.
Note that there may be more than one shortest path from u to v. Thus l(u, v) is the
number of edges of the shortest path having the least number of edges, i.e, l(u, v) =
min{|P (u, v)| | P (u, v) is a shortest path from u to v}.
Definition 1. ρ-neighborhood. ρ-neighborhood of a node v, denoted by Γρ(v), is the
set of the nodes that are within distance ρ from v. Γρ(v) = {u | d(u, v) ≤ ρ}.
Definition 2. (ρ, λ)-neighborhood. (ρ, λ)-neighborhood of a node v, denoted by
Γρ,λ(v), is the set of all nodes u such that there is a path Q(v, u) such that w(Q) ≤ ρ
and |Q| ≤ λ. Clearly, Γρ,λ(v) ⊆ Γρ(v).
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Definition 3. Shortest Path Diameter (SPD). SPD is denoted by S(G,w) (or S for
short) and defined by S = maxu,v∈V l(u, v).

Definition 4. Local Shortest Path Diameter (LSPD). LSPD is denoted by L(G,w) (or
L for short) and defined by L = maxv∈V L(v), where L(v) = maxu∈ΓW (v)(v) l(u, v).

Notice that L ≤ S ≤ n in any graph. However, there exists graphs, where L is signifi-
cantly smaller than both S and the (unweighted) diameter of the graph,D. For example,
in a chain of n nodes (all edges with weight 1), S = n, D = n, and L = 1.

2.3 Distributed NNT Algorithm

We recall that the basic NNT scheme is as follows. Each node v selects a unique rank
r(v). Then each node finds the nearest node of higher rank and connects to it via the
shortest path.

Rank selection. The nodes select unique ranks as follows. First a leader is elected by a
leader election algorithm. Let s be the leader node. The leader picks a number p(s) from
the range [b− 1, b], where b is a number arbitrarily chosen by s, and sends this number
p(s) along with its ID (identity number) to its neighbors. A neighbor v of the leader
s, after receiving p(s), picks a number p(v) from the open interval [p(s) − 1, p(s)),
thus p(v) is less than p(s), and then transmits p(v) and ID(v) to all of its neighbors.
This process is repeated by every node in the graph. Notice that at some point, every
node in the graph will receive a message from at least one of its neighbors since the
given graph is connected; some nodes may receive more than one message. As soon
as a node u receives the first message from a neighbor v, it picks a number p(u) from
[p(v) − 1, p(v)), so that it is smaller than p(v), and transmits p(u) and ID(u) to its
neighbors. If u receives another message later from another neighbor v′, u simply stores
p(v′) and ID(v′), and does nothing else. p(u) and ID(u) constitute u’s rank r(u) as
follows. For any two nodes u and v, r(u) < r(v) iff i) p(u) < p(v), or ii) p(u) = p(v)
and ID(u) < ID(v).

At the end of execution of the above procedure of rank selection, it is easy to make
the following observations.

Observation 1
1. Each node knows the ranks of all of its neighbors.
2. The leader s has the highest rank among all nodes in the graph.
3. Each node v, except the leader, has one neighbor u, i.e. (u, v) ∈ E, such that

r(u) > r(v).

Connecting to a higher-ranked node. Each node v (except the leader s) executes the
following algorithm simultaneously to find the nearest node of higher rank and connect
to it. Each node v needs to explore only the nodes in ΓW (v)(v) to find a node of higher
rank.

Each node v executes the algorithm in phases. In the first phase, v sets ρ = 1. In the
subsequent phases, it doubles the value of ρ; that is, in the ith phase, ρ = 2i−1. In a
phase of the algorithm, v explores the nodes in Γρ(v) to find a node u (if any) such that
r(u) > r(v). If such a node with higher rank is not found, v continues to the next phase
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Fig. 1. A network with possible congestion in the edges adjacent to v. Weight of the edges (v, ui)
is 1 for all i, and 9 for the rest of the edges. Assume r(v) < r(ui) for all i.

with ρ doubled. By Observation 3 of 1, v needs to increase ρ to at most W (v). Each
phase of the algorithm consists of one or more rounds. In the first round, v sets λ = 1. In
subsequent rounds, values for λ are doubled. In a particular round, v explores all nodes
in Γρ,λ(v). At the end of each round, v counts the number of nodes it has explored. If
the number of nodes remain the same in two successive rounds of the same phase (that
is, v already explored all nodes in Γρ(v)), v doubles ρ and starts the next phase. If at
any point of time v finds a node of higher rank, it then terminates its exploration.

Since all of the nodes explore their neighborhoods simultaneously, many nodes may
have overlapping ρ-neighborhoods. This might create congestion of the messages in
some edges that may result in increased running time of the algorithm, in some cases
by a factor of Θ(n). Consider the network given in Fig. 1. If r(v) < r(ui) for all i,
when ρ ≥ 2 and λ ≥ 2, an exploration message sent to v by any ui will be forwarded
to all other uis. Note that values for ρ and λ for all uis will not necessarily be the same
at a particular time. Thus congestion at any edge (v, ui) can be as much as the number
of such nodes ui, which can be, in fact, Θ(n) in some graphs. However, to improve the
running time of the algorithm, we keep congestions on all edges bounded by O(1) by
sacrificing the quality of the NNT, but only by a constant factor. To do so, v decides
that some lower ranked uis can connect to some higher ranked uis and informs them
instead of forwarding their message to the other nodes (details are given below). Thus
v forwards messages from only one ui and this avoids congestion. As a result, a node
may not connect to the nearest node of higher rank. However, our algorithm guarantees
that distance to the connecting node is not larger than four times the distance to the
nearest node of higher rank. The detailed description is given below.

1. Exploration of ρ-neighborhood to find a node of higher rank:
Initiating exploration. Initially, each node v sets radius ρ ← 1 and λ← 1. v explores
the nodes in Γρ,λ(v) in a BFS-like manner to find if there is a node x ∈ Γρ,λ(v) such
that r(v) < r(x). v sends explore messages < explore, v, r(v), ρ, λ, pd, l > to all
u ∈ Nρ(v). In the message < explore, v, r(v), ρ, λ, pd, l >, v is the originator of the
explore message; r(v) is its rank, ρ is its current phase value; λ is its current round
number in this phase; pd is the weight of the path traveled by this message so far (from
v to the current node), and l is the number of links that the message can travel further.
Before v sends the message to its neighbor u, v sets pd← w(v, u) and l ← λ− 1.

Forwarding explore messages. Any node y may receive more than one explore mes-
sage from the same originator v via different paths for the same round. Any subsequent
message is forwarded only if the later message arrived through a shorter path than the
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previous one. Any node y, after receiving the message < explore, v, r(v), ρ, λ, pd, l >
from one of its neighbors, say z, checks if it previously received another message <
explore, v, r(v), ρ, λ, pd′, l′ > from z′ with the same originator v such that pd′ ≤ pd.
If so, y sends back a count message to z′ with count = 0. The purpose of the count
messages is to determine the number of nodes explored by v in this round. Otherwise,
if r(v) < r(y), y sends back a found message to v containing y’s rank. Otherwise, If
Nρ−pd(y)− {z} = φ or l = 0, y sends back a count message with count = 1 and sets a
marker counted(v, ρ, λ) ← TRUE. The purpose of the marker counted(v, ρ, λ) is to
make sure that y is counted only once for the same source v and in the same phase and
round of the algorithm. If r(v) > r(y), l > 0, and Nρ−pd(y)−{z} 
= φ, y forwards the
message to all of its neighbors u ∈ Nρ−pd(y) − {z} after setting pd ← pd + w(y, u)
and l← l − 1.

Controlling Congestion. If at any time step, a node v receives more than one, say
k > 1, explore messages from different originators ui, 1 ≤ i ≤ k, it takes the following
actions. Let < explore, ui, r(ui), ρi, λi, pdi, li > be the explore message from origi-
nator ui. If there is a uj such that r(ui) < r(uj) and pdj ≤ ρi, v sends back a found
message to ui telling that ui can connect to uj where weight of the connecting path
w(Q(v, v′)) = pdi + pdj ≤ 2ρi. In this way, some of the uis will be replied back a
found message and their explore messages will not be forwarded by v.

Let us be the node with lowest rank among the rest of uis (i.e., those uis which
were not sent a found message by v), and ut be an arbitrary node among the rest of uis
and let t 
= s. Now it must be the case that ρs is strictly smaller than ρt , i.e., us is in
an earlier phase than ut. This can happen if, in some previous phase, ut exhausted its
ρ-value with smaller λ-value leading to a smaller number of rounds in that phase and
quick transition to the next phase. In such a case, we keep ut waiting for at least one
round without affecting the overall running time of the algorithm. To do this, v forwards
explore message of us only and sends back wait messages to all ut.

Each explore message triggers exactly one reply (either found, wait, or count mes-
sage). These reply-back messages move in similar fashion as of explore messages but in
reverse direction and they are aggregated (convergecast) on the way back as described
next. Thus those reply messages also do not create any congestion in any edge.

Convergecast of the Replies of the explore Messages. If any node y forwards the
explore message < explore, v, r(v), ρ, λ, pd, l > received from z for the originator v
to its neighbors in Nρ−pd(y)−{z}, eventually, at some point later, y will receive replies
to these explore messages, which y forwarded to Nρ−pd(y)−{z}. Each of these replies
is either a count message, wait message, or a found message. Once y receives replies
from all nodes in Nρ−pd(y) − {z}, it takes the following actions. If at least one of the
replies is a found message or a wait message, y ignores all of the count messages and
sends the found message or the wait message to z towards the destination v. If all of
the replies are count messages, y adds the count values of these messages and sends a
single count message to v with the aggregated count. Also, y adds itself to the count if
the marker counted(v, ρ, λ) = FALSE and sets counted(v, ρ, λ) ← TRUE. At the
very beginning, y initializes counted(v, ρ, λ) ← FALSE. The count messages (also
the wait and found messages) travel in the opposite direction of the explore messages



A Fast Distributed Approximation Algorithm for Minimum Spanning Trees 363

using the same paths toward v. Thus the count messages form a convergecast as opposed
to the (controlled) broadcast of the explore messages.
Actions of the Originator after Receiving the Replies of the explore messages. At
some time step, v receives replies of the explore messages originated by itself from all
nodes in Nρ(v). Each of these replies is either a count message, wait message, or a
found message. If at least one of the replies is a found message, v is done with explo-
ration and makes the connection as described in Item 2 below. Otherwise, if there is a
wait message, v again initiates exploration with same ρ and λ. If all of them are count
messages: (a) if λ = 1, v initiates exploration with λ← 2 and the same ρ; (b) if λ > 1
and count-value for this round is larger than that of the previous round, v initiates explo-
ration with λ ← 2λ and the same ρ; (c) otherwise v initiates exploration with λ ← 2λ
and ρ← 2ρ.

2. Making Connection:
Let u be a node with higher rank that v found by exploration. If v finds more than one
node with rank higher than itself, it selects the nearest one among them. Let Q(v, u) be
the path from v to u. The path Q(v, u) is discovered when u is found in the exploration
process initiated by v. The edges in Q(v, u) are added in the resulting spanning tree
as follows. To add the edges in Q(v, u), v sends a connect message to u along this
path. During the exploration process, the intermediate nodes in the path simply keeps
tracks of the predecessor and successor nodes for this originator v. Let Q(v, u) =<
v, . . . , x, y, . . . , u >. By our choice of u, note that all the intermediate nodes will have
rank lower than r(v). When the connect message passes through the edge (x, y), node x
uses (x, y) as its connecting edge regardless of x’s rank. If x did not find its connecting
node yet, x stops searching for such nodes as the edge (x, y) serves as x’s connection.
If x is already connected using a path, say < x, x1, x2, . . . , xk >, the edge (x, x1) is
removed from the tree, but the rest of the edges in this path still remains in the tree.
All nodes in path Q(v, u) including v upgrade their ranks to r(u); i.e., they assumes a
new rank which is equal to u’s rank. It might happen that in between exploration and
connection, some node x in path Q(v, u) changed its rank due to a connection by some
origin other than v. In such a case, when the connect message travels through x, if x’s
current rank is larger than r(v), x accepts the connections as the last node in the path
and returns a rank-update message toward v instead of forwarding the connect message
to the next node (i.e., y) toward u. This is necessary to avoid cycle creation.

2.4 Analysis of Algorithm

In this section, we analyze the correctness and performance of the distributed NNT
algorithm. The following lemmas and theorems show our results.

Lemma 1. Let, during exploration, v found a higher ranked node u and the path
Q(v, u). If v’s nearest node of higher rank is u′, then w(Q) ≤ 4d(v, u′).

Proof. Assume that u is found when v explored a (ρ, λ)-neighborhood for some ρ and
λ. Then d(v, u′) > ρ/2, otherwise, v would find u′ as a node of higher rank in the
previous phase and would not explore the ρ-neighborhood. Now, u could be found by
v in two ways. i) The explore message originated by v reached u and u sent back a
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found message. In this case, w(Q) ≤ ρ. ii) Some node y received two explore messages
originated by v and u via the pathsR(v, y) and S(u, y) respectively, where r(v) < r(u)
and w(S) ≤ ρ; and y sent a found message to v (see “Controlling Congestion” in Item
1). In this case, w(Q) = w(R) +w(S) ≤ 2ρ, since w(R) ≤ ρ. Thus for both cases, we
have w(Q) ≤ 4d(v, u′).

Lemma 2. The algorithm adds exactly n− 1 edges to the NNT.

Proof. Let a node v connect to another node u using the pathQ(v, u) = < v, . . ., x, y, z,
. . ., u >. When a connect message goes through an edge, say (x, y) (from x to y), in this
path, the edge (x, y) is added to the tree. We say the edge (x, y) is associated to node
x (not to y) based on the direction of the flow of the connect message. If, previously, x
was associated to some other edge, say (x, y′), the edge (x, y′) was removed from the
tree. Thus each node is associated to at most one edge.

Except the leader s, each node x must make a connection and thus at least one con-
nect message must go through or from x. Then, each node, except s, is associated to
some edge in the tree.

Thus each node, except s, is associated to exactly one edge in NNT; and s cannot be
associated to any node since a connect message cannot be originated by or go through s.

Now, to complete the proof, we need to show that no two nodes are associated to the
same edge. Let x be associated to edge (x, y). When the connect message went through
(x, y) from x to y, r(x) and r(y) became equal. Later if another connect message
increased r(x), then either r(y) also increased to the same value or x became associated
to some edge other than (x, y). Thus, while keeping (x, y) associated to x, it must be
true that r(x) ≤ r(y). Then any new connect message that might make (x, y) associated
to y by passing the connect message from y to x, must pass through x toward some
node with rank higher than r(y) (i.e., the connect message cannot terminate at x). This
will make x associated to some other edge than (x, y). Therefore, no two nodes are
associated to the same edge.

Lemma 3. The edges in the NNT added by the given distributed algorithm does not
create any cycle.

Proof. Each node has a unique rank and it can connect only to a node with higher rank.
Thus if each node can connect to a node of higher rank using a direct edge (as in a
complete graph), it is easy to see that there cannot be any cycle. However, in the above
algorithm, a node u connects to a node of higher rank, v, r(u) < r(v), using shortest
path P (u, v), which may contain more than one edge and in such a path, ranks of the
intermediate nodes are smaller than r(u). Thus the only possibility of creating a cycle
is when some other connecting shortest path goes though these intermediate nodes.
For example, in Fig. 2, the paths P (u, v) and P (p, q) both go through a lower ranked
node x.

In Fig. 2, if p connects to q using path < p, x, q > before u makes its connection, x
gets a new rank which is equal to r(q). Thus u finds a higher ranked node, x, at a closer
distance than v and connects to x instead of v. Note that if x is already connected to
some node, it releases such connection and takes < x, q > as its new connection, i.e., q
is x’s new parent. Now y2 uses either (y2, x) or (y2, v), but not both, for its connection.
Thus there is no cycle in the resulting graph.
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Fig. 2. A possible scenario of creating cycle and avoiding it. Nodes are marked with letters. Edge
weights are given in the figure. Let r(u) = 11, r(v) = 12, r(p) = 13, r(q) = 14, and ranks of
the rest of the nodes are smaller than 11. u connects to v, v connects to p, and p connects to q.

Now, assume that u already made its connection to v, but p is not connected yet.
At this moment, x’s rank is upgraded to r(v) which is still smaller than r(p). Thus p
finds q as its nearest node of higher rank and connects using path < p, x, q >. In this
connection process, x removes its old connecting edge (x, y2) and gets (x, q) as its new
connecting edge. Again, there cannot be any cycle in the resulting graph.

If x receives the connection request messages from both u (toward v) and p (toward
q) at the same time, x only forwards the message for the destination with highest rank;
here it is q. u’s connection only goes up to x. Note that x already knows the ranks of
both q and v from previous exploration steps.

From Lemmas 2 and 3 we have the following theorem.

Theorem 1. The above algorithm produces a tree spanning all nodes in the graph.

We next show that the spanning tree found is an O(log n)-approximation to the MST
(Theorem 2).

Theorem 2. Let theNNT be the spanning tree produced by the above algorithm. Then
the cost of the tree c(NNT ) ≤ 4�logn�c(MST ).

Proof. Let H = (VH , EH) be a complete graph constructed from G = (V,E) as
follows. VH = V and weight of the edge (u, v) ∈ EH is the weight of the shortest
path P (u, v) in G. Now, the weights of the edges in H satisfy triangle inequality. Let
NNTH be a nearest neighbor tree and MSTH be a minimum spanning tree on H . We
can show that c(NNTH) ≤ �logn�c(MSTH) [14].

Let NNT ′ be a spanning tree on G, where each node connects to the nearest node
of higher rank. Then it is easy to show that c(NNT ′) ≤ c(NNTH) and c(MSTH) ≤
c(MST ).

By Lemma 1, we have c(NNT ) ≤ 4c(NNT ′). Thus we get,

c(NNT ) ≤ 4c(NNTH) ≤ 4�logn�c(MSTH) ≤ 4�logn�c(MST ).

Theorem 3. The running time of the above algorithm is O(D + L logn).
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Proof. Time to elect leader is O(D). The rank choosing scheme takes also O(D) time.
In the exploration process, ρ can increase to at most 2W ; because, within distance

W , it is guaranteed that there is a node of higher rank (Observation 3 of 1). Thus, the
number of phases in the algorithm is at most O(logW ) = O(log n).

In each phase, λ can grow to at most 4 ∗ L. When L ≤ λ < 2L and 2L ≤ λ < 4L,
in both rounds, the count of the number of nodes explored will be the same. As a result,
the node will move to the next phase.

Now, in each round, a node takes at most O(λ) time; because the messages travel at
most λ edges back and forth and at any time the congestion in any edge is O(1). Thus
any round takes time at most

log(4L)∑
λ=1

O(λ) = O(L).

Thus time for the exploration process is O(L logW ). Total time of the algorithm
for leader election, rank selection, and exploration is O(D + D + L logn) = O(D +
L logn).

Theorem 4. The message complexity of the algorithm is O(|E| logL logn) =
O(|E| log2 n).

Proof. The number of phases in the algorithm is at most O(logL). In each phase, each
node executes at most O(logW ) = O(log n) rounds. In each round, each edge car-
ries O(1) messages. That is, number of messages in each round is O(|E|). Thus total
messages is O(|E| logL logn).

3 Exact vs. Approximate MST and Near-Optimality of NNT
Algorithm

Comparison with Distributed Algorithms for (Exact) MST. There can be a large
gap between the local shortest path diameter L and Ω̃(

√
n), which is the lower bound

for exact MST computation. In particular, we can show that there exists a family of
graphs where NNT algorithm takes Õ(1) time, but any distributed algorithm for com-
puting (exact) MST will take Ω̃(

√
n) time. To show this we consider the parameterized

(weighted) family of graphs called JK
m defined in Peleg and Rabinovich [8]. (One can

also show a similar result using the family of graphs defined by Elkin [9].) The size of
JK

m is n = Θ(m2K) and its diameter Θ(Km) = Θ(Kn1/(2K)). For every K ≥ 2, Pe-
leg and Rabinovich show that any distributed algorithm for the MST problem will take
Ω(
√
n/BK) time on some graphs belonging to the family. The graphs of this family

have L = Θ(mK) =
√
n. We modify this construction as follows: the weights on all

the highway edges except the first highway (H1) is changed to 0.5 (originally they were
all zero); all other weights remain the same. This makes L = Θ(Km), i.e., same order
as the diameter. One can check that the proof of Peleg and Rabinovich is still valid, i.e.,
the lower bound for MST will take Ω(

√
n/BK) time on some graphs of this family,

but NNT algorithm will take only Ω̃(L) time. Thus we can state:



A Fast Distributed Approximation Algorithm for Minimum Spanning Trees 367

Theorem 5. For every K ≥ 2, there exists a family of n−vertex graphs in which NNT
algorithm takes O(Kn1/(2K)) time while any distributed algorithm for computing the
exact MST requires Ω̃(

√
n) time. In particular, for every n ≥ 2, there exists a fam-

ily of graphs in which NNT algorithm takes Õ(1) time whereas any distributed MST
algorithm will take Ω̃(

√
n) time.

Such a large gap between NNT and any distributed MST algorithm can be also shown
for constant diameter graphs, using a similar modification of a lower bound construction
given in Elkin [9] (which generalizes and improves the results of Lotker et al [19]).

Near (existential) optimality of NNT algorithm. We show that there exists a family
of graphs such that any distributed algorithm to find a H(≤ logn)-approximate MST
takes Ω(L) time (where L is the local shortest path diameter) on some of these graphs.
Since NNT algorithm takes Õ(D+L), this shows the near-tight optimality of NNT (i.e.,
tight up to a polylog(n) factor). This type of optimality is called existential optimality
which shows that our algorithm cannot be improved in general.

To show our lower bound we look closely at the hardness of distributed approximation
of MST shown by Elkin [9]. Elkin constructed a family of weighted graphs Gω to show
a lower bound on the time complexity of any H−approximation distributed MST algo-
rithm (whether deterministic or randomized). We briefly describe this result and show
that this lower bound is precisely the local shortest path diameter L of the graph. The
graph family Gω(τ,m, p) is parameterized by 3 integers τ,m, and p, where p ≤ logn.
The size of the graph n = Θ(τm), the diameter is D = Θ(p) and the local shortest
path diameter can be easily checked to be L = Θ(m). Note that graphs of different size,
diameter, and LSPD can be obtained by varying the parameters τ,m, and p. (We refer
to [9] for the detailed description of the graph family and the assignment of weights.)
We now slightly restate the results of [9] (assuming the CONGEST (B) model):

Theorem 6 ([9]). 1. There exists graphs belonging to the family Gω(τ,m, p) having
diameter at most D forD ∈ 4, 6, 8, . . . and LPSD L = Θ(m) such that any randomized
H-approximation algorithm for the MST problem on these graphs takes T = Θ(L) =
Ω(( n

H·D·B )1/2−1/(2(D−1)) distributed time.
2. If D = O(log n) then the lower bound can be strengthened to Θ(L) =
Ω(
√

n
H·B·log n ).

Using a slightly different weighted family G̃ω(τ,m) parameterized by two parameters
τ and m, where size n = τm2, diameter D = Ω(m) and LSPD L = Θ(m2), one can
strengthen the lower bound of the above theorem by a factor of

√
logn for graphs of

diameter Ω(nδ).
The above results show the following two important facts:

1. There are graphs having diameterD << Lwhere anyH-approximation algorithm
requires Ω(L) time.

2. More importantly, for graphs with very different diameters — varying from a
constant (including 1, i.e., exact MST) to logarithmic to polynomial in the size of n —
the lower bound of distributed approximate-MST is captured by the local shortest path
parameter. In conjunction with our upper bound given by the NNT algorithm which
takes Õ(D + L) time, this implies that the LPSD L captures in a better fashion the
complexity of distributed O(log n)-approximate-MST computation.
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4 Special Classes of Graphs

We show that in unit disk graphs (a commonly used model for wireless networks)
L = 1, and in random weighted graphs, L = O((log n)) with high probability. Thus
our algorithm will run in near-optimal time of Õ(D(G)) on these graphs.

Unit Disk Graph (UDG). Unit disk graph is an euclidian graph where there is an edge
between two nodes u and v if and only if general dist(u, v) ≤ R for some R (R
is typically taken to be 1). Here dist(u, v) is the euclidian distance between u and v
which is the weight of the edge (u, v). For any node v, W (v) ≤ R. Now if there is node
u such that d(u, v) ≤ R, then dist(u, v) ≤ R by triangle inequality. Thus (u, v) ∈ E
and the edge (u, v) is the shortest path from u to v. As a result, for any UDG, L = 1.
For a 2-dimensional UDG, diameter can be as large as Θ(

√
(n)).

Graph with Random Edge Weights. Consider any graph G (topology can be arbi-
trary) with edge weights chosen randomly from an arbitrary distribution (i.e., each edge
weight is chosen i.i.d from the distribution). The following theorem shows that L and
S is small compared to the diameter for such a graph.

Theorem 7. Consider a graph G where the edge weights are chosen randomly from
a (arbitrary) distribution with a constant (independent of n) mean. Then: (1) L =
O(log n) with high probability (whp), i.e., probability at least 1− 1/nΩ(1); and (2) the
shortest path diameter S = O(log n) if D < logn and S = O(D) if D ≥ logn whp.

Proof. Without loss of generality, we can assume that edge weights are randomly drawn
from [0, 1] with mean μ. Otherwise the edge weights can be normalized to this range
without affecting the desired result. For any node v, W (v) ≤ 1. Consider any path with
m = k logn edges, for some constant k. Let the weights of the edges in this path be
w1, w2, · · · , wm. For any i, E[wi] = μ. Since 1

2μk logn ≥ 1 for sufficiently large k,
we have

Pr{
m∑

i=1

wi ≤ 1} ≤ Pr{
m∑

i=1

wi ≤
1
2
μk logn} = Pr{μ− 1

m

m∑
i=1

wi ≥
1
2
μ}.

Using Hoeffding bound [20] and putting k = 6
μ2 ,

Pr{μ− 1
m

m∑
i=1

wi ≥
1
2
μ} ≤ e−mμ2/2 =

1
n3

.

Thus if it is given that the weight of a path is at most 1, then the probability that
the number of edges ≤ 6

μ2 logn is at most 1
n3 . Now consider all nodes u such that

d(v, u) ≤ W (v). There are at most n− 1 such nodes and thus there are at most n− 1
shortest paths leading to those nodes from v.

Thus using union bound, Pr{L(v) ≥ 6
μ2 logn} ≤ n× 1

n3 = 1
n2 .

Using L = max{L(v)} and union bound, Pr{L ≥ 6
μ2 logn} ≤ n× 1

n2 = 1
n .

Therefore, with probability at least 1− 1
n , L is smaller than or equal to 6

μ2 logn.
Proof of part 2 is similar.
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Abstract. Broadcasting algorithms have various range of applications
in different fields of computer science. In this paper we consider random-
ized broadcasting algorithms in power law graphs which are often used to
model large scale real world networks such as the Internet. We prove that
for certain (truncated) power law networks there exists a time efficient
randomized broadcasting algorithm whose communication complexity is
bounded by an asymptotically optimal value.

In order to describe these power law graphs, we first consider the gen-
eralized random graph model G(d) = (V, E), where d = (d1, . . . , dn) is
a given sequence of expected degrees, and two nodes vi, vj ∈ V share an
edge in G(d) with probability pi,j = didj/

n
k=1 dk, independently [7].

We show for these graphs that if the expected minimal degree dmin is
larger than logδ n, δ > 2, and the number of nodes with expected degree
di is proportional to (di − dmin +1)−β , where β > 2 is a constant, then a
simple randomized broadcasting protocol exists, which spreads any infor-
mation r to all nodes of a graph G(d) within O(log n) steps by using at
most O(n max{log log n, log n/ log dmin}) transmissions. Furthermore, we
discuss the applicability of our methods in more general power law graph
models. Please note that our results hold with probability 1 − 1/nΩ(1),
even if n and d are completely unknown to the nodes of the graph.

The algorithm we present in this paper uses a very simple communica-
tion rule, and can efficiently handle restricted node failures or dynamical
changes in the size of the network. In addition, our methods might be
useful for further research in this field.

1 Introduction

Randomized broadcasting algorithms have extensively been studied in various
network topologies. Such algorithms naturally provide robustness, simplicity and
scalability. As an example, consider the so-called push model [11]: In a graph
G = (V,E) we place at some time t an information r on one of the nodes.
Then, in each succeeding round, any informed vertex forwards the information
� The research was performed while the author visited the Department of Mathematics
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to a communication partner over an incident edge selected independently and
uniformly at random. It is known that the push algorithm spreads an information
within O(log n) rounds to all nodes of a random graph G(d), with probability
1 − o(1/n), whenever d1 = · · · = dn > (2 + Ω(1)) logn [16], and this result can
easily be generalized to any random graph G(d) with dmin > (2 + Ω(1)) log n.
However, this algorithm generates Ω(n log n) transmissions of r. Therefore, some
modification of this scheme is needed in order to improve its efficiency on the
random graphs mentioned before.

1.1 Models and Motivation

The study of information spreading in large networks has various fields of ap-
plication in distributed computing. Consider for example the maintenance of
replicated databases on name servers in a large network [11]. There are updates
injected at various nodes, and these updates must be propagated to all the nodes
in the network. In each step, a processor and its neighbor check whether their
copies of the database agree, and if not, they perform the necessary updates. In
order to be able to let all copies of the database converge to the same content,
efficient broadcasting algorithms have to be developed.

Another well known example occurs in the analysis of epidemic disease. Often,
mathematical studies about infection propagation make the assumption that an
infected person spreads the infection equally likely to any member of the popula-
tion [25] which leads to a complete graph for the underlying network. Whenever
the question is, how fast the disease infects the whole community, the problem
reduces to the broadcasting problem in the push model. However, in most of
these papers, spreaders are only active in a certain time window, and the ques-
tion of interest is, whether on certain networks modelling personal contacts an
epidemic outbreak occurs. Several threshold theorems involving the basic repro-
duction number, contact number, and the replacement number have been stated.
See e.g. [21] for a collection of results concerning the mathematics of infectious
diseases. Notably, the analysis of epidemic diseases has recently been extended
in [30] to generalized random graphs with arbitrary degree distributions.

There is an enormous amount of experimental and theoretical study of broad-
casting algorithms in various models and on different network topologies. Several
(deterministic and randomized) algorithms have been developed and analyzed.
In this paper we only concentrate on the efficiency of randomized algorithms,
and study their time and communication complexity using a simple communica-
tion model. The advantage of randomized broadcasting is its inherent robustness
against several kinds of failures and dynamical changes compared to determin-
istic schemes that either need substantially more time [17] or can tolerate only
a relatively small number of faults [27]. Our intention is to develop randomized
broadcasting algorithms with the following properties:

– They can successfully handle restricted communication failures.
– They are fully adaptive and work correctly if the size or the topology of the

network changes slightly during the execution of the algorithm.
– Their runtime and communication complexity is asymptotically minimal.
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When using the push algorithm, the effects of node failures are very limited
and dynamical changes in the size of the network do not really affect its efficiency.
However, as described above, the push algorithm produces a large amount of
transmissions.

Several termination mechanisms noticing when a specific information becomes
available to all nodes so that its transmission can be stopped were investigated
(e.g. [11,23]). Using simple mechanisms for the push model, it is possible to
bound the number of transmissions in a random graph G(d) with dmin = (2 +
Ω(1)) logn to O(n log n).

An idea introduced in [11] consists of so called pull transmissions, i.e., any
(informed or uninformed) node is allowed to call a randomly chosen neighbor,
and whenever this neighbor is informed, the information is sent from the called
to the calling node. However, these kind of transmission makes only sense if new
or updated informations occur frequently in the network. It was observed in
complete graphs that after a constant fraction of the nodes has been informed,
then within O(log logn) additional steps every node of the graph becomes in-
formed as well [11,23]. This implies that in such graphs at most O(n log logn)
transmissions are needed if the distribution of the information is stopped at the
right time.

Of particular interest is the study of the behavior of randomized broadcasting
in large scale real world networks. In [1,2,15,22] it has been observed that in many
real-world networks, including the Web, the Internet, telephone call graphs, and
various social and biological networks, the degrees of the nodes have a so called
power law distribution, i.e., the fraction of vertices with degree d is proportional
to d−β , where β > 2 is a fixed constant (for most of the previously mentioned
networks it holds that β ∈ (2, 3)). In [2], Barabási and Albert suggested to model
complex real world networks by the following dynamic random graph process:
We start with a complete graph consisting of n0 vertices, and then new nodes
are added to the graph one at a time and joined to a fixed number m < n0 of
earlier vertices, selected with probabilities proportional to their degrees. In [4]
it has been shown that the graphs constructed by a similar method is close to a
power law with β = 3, i.e., the fraction of vertices with degree d is proportional
to d−3 for any d ∈ {m, . . . , n1/15}.

Several other dynamic random graph models have been proposed and analyzed
recently (e.g. [1,5,26]) Another approach is to model power law networks by a
static random graph process. Clearly, the classical random graph model of [14,18]
is ill suited to model such networks. Therefore, Chung and Lu proposed a more
general random graph model with arbitrary degree distributions: For a sequence
d = (d1, . . . , dn) let G(d) be the graph in which edges are independently assigned
to each pair of vertices (vi, vj) with probability didj/

∑n
k=1 dk [7]. If now the

degree distribution d obeys a power law, then the resulting graph is well suited
for modelling power law graphs.

We should mention here that the real world networks described before also
possess other properties (e.g. exhibit high levels of clustering, cf. [29,20]) which
are unspecific for the random graphs considered above. Although we do not deal
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with graphs which have the other properties, we hope the techniques and results
stated in this paper might provide insights at a more general level, too.

1.2 Related Work

Most of papers dealing with randomized broadcasting analyze the runtime of the
push algorithm in different graph classes. Pittel [31] proved that it is possible to
broadcast an information within log2(n)+ln(n)+O(1) steps in a complete graph,
by using the push algorithm. Feige et al. determined asymptotically optimal
upper bounds for the runtime of this algorithm in the classical random graph,
bounded degree graphs and the hypercube [16]. Kempe et al. showed that in
certain geometric networks any information is spread to nodes at distance t in
O(ln1+ε t) steps [24].

In [23], Karp et al. combined the push and pull models, and presented a
termination mechanism in order to bound the number of total transmissions
by O(n log logn) in complete graphs. It has also been shown that this result is
asymptotically optimal among these kind of algorithms. They also considered
communication failures and analyzed the performance of the algorithm in the
case when the random connections established in each round follow an arbi-
trary probability distribution. The algorithm works fully distributed, whereby
the nodes are supposed to have an estimation on the size of the network. We
should note that we could not use the mechanisms of [23] for the graph G(d),
especially not in the case when dmin is below some threshold and whenever it
is assumed that the nodes do not have any global information about the the
graph. Therefore, we developed a new termination mechanism for the graphs we
consider in this paper.

It is worth mentioning that the termination mechanism we present in Sec-
tions 2 and 3 can also be used for efficient broadcasting in the classical random
graph model. We show in [12] that, with probability 1− 1/nΩ(1), we can inform
each node of a graph G(d), in which it holds that d1 = · · · = dn > log2 n,
within O(log n) steps and by using at most O(max{n log logn, n logn/ log di})
transmissions.

As mentioned before, we mainly consider the general random graph model of
[7] in this paper. Recently, several properties of these graphs have been analyzed.
In [7], Chung and Lu determined the size and the volume of the connected
components. In [8] they analyzed the distances between two nodes in such graphs.
The largest eigenvalues of the adjacency matrix have been studied in [9], and the
second smallest eigenvalue of the normalized Laplacian is approximated in [10],
whenever dmin *

√∑n
k=1 dk/n·log3 n. In the same paper, Chung et al. proved a

very nice result concerning the distribution of the eigenvalues of the normalized
Laplacian, if dmin is large enough.

1.3 Our Results

We present an adaptive randomized broadcasting algorithm which is able to
distribute an information r, placed initially on a node of a random graph G(d)
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of size n, to all nodes in the network within O(log n) steps by producing at
most O(nmax{log logn, log n

log dmin
}) transmissions of r. Here dmin is assumed to be

larger than logδ n, where δ > 2 is a constant, and the number of vertices with
expected degree di is proportional to (di − dmin + 1)−β, β > 2. Then, we discuss
the applicability of our methods in some variants of the dynamical random power
law graph models of [2] and [1].

Although the description of the algorithm is not simple, it uses a very simple
communication structure, and is robust against limited communication failures
or restricted short time changes in the size of the network. Moreover, since
we do not require any previous knowledge about the size of the network or
about the degrees of the nodes, our algorithm is robust against any kind of
long time changes in the size of the network. In our proofs, we assume a fully
synchronized scenario, however, the algorithm supports restricted asynchronicity
as well. Please note that the results can also be shown for dmin ≥ δ′ logn/n, where
δ′ is a large constant, however, the proofs would be much more complicated, and
we concentrate therefore on the weaker case in this paper.

The rest of the paper is organized in three sections. In Section 2 we present
the algorithm with the properties mentioned above, whereby it is assumed that
the nodes have an estimation of logn/ log dmin. In Section 3 we improve our
algorithm by using an additional trick that enables us to solve the broadcasting
problem efficiently even if nothing is known to the nodes about the graph. Finally,
the last section contains our conclusions and points to some open problems.

2 Broadcasting Algorithm with Partial Knowledge

In this section, we analyze the behavior of a modified push & pull algorithm on
certain (truncated) random power law graphs. As described in the introduction,
the random graph G(d) = (V,E) is defined in the following way: Given n and
the sequence d = (d1, . . . , dn), generate graph G(d) with n vertices by letting
each pair (vi, vj) ∈ V 2 be an edge with probability pi,j = didj/

∑n
k=1 dk, inde-

pendently (cf. [7]). We assume that dmin > logδ n, where δ > 2 is a constant,
which implies that that the graph is connected with high probability1 (e.g. [3]).
Moreover, each node vi has di(1± o(1)) neighbors in G(d), w.h.p. In this paper,
we also assume that the degree distribution satisfies a certain power law, i.e.,
the number of nodes with degree di is proportional to (di − dmin + 1)−β, where
β > 2 is a constant, and dmax = Θ(n1/β).

As mentioned in the introduction, pull transmissions make only sense if new
informations occur frequently in the network so that almost every node places a
call in each round anyway. Now even though we consider applications in which
informations are constantly generated by almost every node, we focus on the
distribution and lifetime of a single information.

First, we describe an algorithm for the case in which we assume that every
node has an estimation of τ = log n/ log dmin (n, d, and β however, are still
1 When we write “with high probability” or “w.h.p.”, we mean with probability at

least 1 − o(1/n).
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unknown). After we show that this algorithm works correctly, we focus on the
general case, in which the nodes do not have any knowledge about the network.

The algorithm we describe in the following paragraphs contains several rounds.
Before the first round, some information r is placed on one of the nodes. In each
succeeding round, every node u chooses a communication partner v from the
set of its neighbors, independently and uniformly at random, and establishes
a communication channel with it. In the current step, any information can be
exchanged in both directions along a communication channel between two com-
munication partners. Whenever a channel is established between two nodes, each
one of them has to decide whether to transmit the specific information to the
other node, without knowing if the vertex at the other end of the edge has al-
ready received the information prior to this step. If a node decides to send r,
then it also transmits its node ID and a constant number of other messages re-
lated to r. The rules, when r is transmitted and when not, are described below.
Concerning the flow of information we distinguish between push and pull trans-
missions. The size of information exchanged in any way is not limited and each
information exchange between two neighbors in a round is counted as a single
transmission.

At the beginning, we initialize at each node u an array T [cmax] (where cmax

is some constant) for storing at most cmax different node IDs, the integer age,
which describes the age of the information, itime, representing the last time step
(known to u) in which a node was newly informed in the system, and a counter
ctr which is set initially to 0. The age is incremented in every succeeding round,
by each informed node, and distributed together with the information and the
integer itime. It should be noted that itime and ctr are local variables and may
differ from node to node.

During the execution of the algorithm, each node can be in one of the states
U (uninformed), A (active), G (going down), or S (sleeping). If a node is in state
U , it means that it has not received the information r yet. In all other states
the node knows r. Now, an arbitrary node u performs in any step t the following
procedure.

1. Choose a neighbor, uniformly at random, and call this node to establish
a communication channel with it. Furthermore, establish a communication
channel with all nodes which call u in this step.

2. If u is in state A or G, then send to all nodes which have established a
communication channel with u the message (r, itime, age, ID(u)).

3. Receive messages from all neighbors which have established a communication
channel with u. Let these messages be denoted by (r, itime1, age1, ID(v1)),
. . . , (r, itimek, agek, ID(vk)) (if any). Then, close all communication chan-
nels.

4. Perform the following local computations:
4.1. If u is in state A,G, or S, and itime is smaller than max

1≤i≤k
itimei, then

set itime = max
1≤i≤k

itimei. If u is not in state U , then increment age by 1.

4.2. If u is in state U and there is a neighbor vi, which transmitted r to u,
then switch state of u to A, and set itime and age to agei + 1.
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4.3. If u is in state A, then:
∗ if u does not receive r in this step, then set ctr = 0 and T [j] = 0 for

any j = 1, . . . , cmax.
∗ if u receives r in this step and there are some i ∈ {1, . . . , k} such

that ID(vi) 
∈ T , then choose such an i (e.g. uniformly at random),
set T [ctr + 1] = ID(vi), and increment ctr by 1. If ctr = cmax, then
switch state of u to G.

4.4. If u is in state G and age is equal to itime+αmax{log itime, τ}, where
α is a large constant, then switch state of u to S.

4.5. If u is in state S and age is smaller than itime + αmax{log itime, τ},
then switch back to state G.

Please note that the nodes are aware of an estimate of the value τ = logn/ log dmin

(the modified algorithm for the case in which nothing is known to the nodes is
given in the next section).

In order to show the runtime and communication efficiency of the algorithm
described above, we first state a combinatorial result w.r.t. the random graph
G(d). For some u, v let Au,v denote the event that u and v are connected by
an edge, and let Au,v,l denote the event that u and v share an edge and u
chooses v in step l (according to the random phone call model described above).
In the next lemma, we deal with the distribution of the neighbors of a node
u in a graph G(d), after it has chosen t neighbors, uniformly at random, in
t = O(log n) consecutive steps. In particular, we show that the probability of
u being connected with some node v, not chosen within these t steps, is not
substantially modified after O(log n) steps.

Lemma 1. Let V = {v1, . . . , vn} be a set of n nodes and let every pair of nodes
vi, vj be connected with probability pi,j, independently, where pi,j and d satisfy
the conditions described at the beginning of this section. If t = O(log n), u, v ∈ V ,
and A(U0, U1, U2) =

∧
0<l≤t

(vi,vj ,l)∈U0

Avi,vj ,l

∧
(vi′ ,vj′ )∈U1

Avi′ ,vj′
∧

(vi′′ ,vj′′ )∈U2

A(vi′′ ,vj′′ ),

for some U0 ⊂ V × V × {0, . . . , t} and U1, U2 ⊂ V × V , then it holds that

Pr [(u, v) ∈ E | A(U0, U1, U2) ] = pu,v(1±O(t/dmin)),

for any U0, U1, U2 satisfying the following properties:

– |U0 ∩ {(vi, vj , l)|vj ∈ V }| = 1 for any vi ∈ V and l ∈ {0, . . . , t},
– |U1 ∩ {(u, u′)|u′ ∈ V }| = Ω(du) and |U1 ∩ {(v, v′)|v′ ∈ V }| = Ω(dv),
– (u, v) 
∈ U1 ∪ U2, and (u, v, i) 
∈ U0 for any i.

The proof of this lemma is similar to the proof of Lemma 1 of [12], and is omit-
ted due to space limitations. Lemma 1 implies that the probability of an edge’s
presence, given certain other edges and non-edges, is not substantially modified
after O(log n) steps. Therefore, even if the occurrences of the edges are not nec-
essarily independent after t = O(log n) steps, in certain cases (as in the lemmas
below) we still can apply some known results which require independency (like
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the Chernoff bounds [6,19]) if the probabilities pu,v are properly approximated
by pu,v(1 − o(1)) or pu,v(1 + o(1)).

Now, by using Lemma 1 we show the desired bounds on the runtime and
communication complexity in six phases. In a first phase we prove that if r is
placed at some node u at time 0, then within O(log n) rounds, at least logq n
nodes become informed, w.h.p., where q is a large constant. The communication
complexity is bounded after this phase by O(logq+1 n).

In the second, third, and fourth phase we study the cases |I(t)| ∈ [logq n, n1−ε],
|I(t)| ∈ [n1−ε, n

24 max{τ,log log n} ], and |I(t)| ∈ [ n
24 max{τ,log log n} ,

n
2 ], respectively,

where I(t) denotes the set of informed nodes at time t and ε ≤ 1/β is a constant.
We show that in all these cases |I(t + 1)| = |I(t)|(1 + Θ(1)). This implies that
after further O(log n) rounds the number of informed nodes becomes larger than
n/2. Additionally, after these rounds the communication complexity is bounded
by O(n). We should note that these cases require different proof techniques, and
hence, we have to consider these cases in different phases.

In the fifth phase, we show that if |H(t)| ∈ [n/
√
dmin, n/2], where H(t) = V \

I(t), then after O(log log n) rounds the number of uninformed nodes drops below
n/
√
dmin. In the sixth phase, we prove that within additional O(log n/ log dmin)

rounds the algorithm informs all vertices.
According to the phases described before, we consider the following lemmas.

Lemma 2. Let I(t) be the set of informed nodes in G(d) at time t, and let
|I(t)| ≤ logq n, where q is a properly chosen constant value. Then, within
O(log n) steps the number of informed nodes becomes larger than logq n, w.h.p.

Proof. Let u be the node at which the information r is placed at time 0. Let
the tree Tt(u) = (V ′, E′) be defined in the following way: V ′ contains the nodes
informed until time t, and there is an edge between two nodes u′, u′′ ∈ V ′ in
Tt(u) if u′′ is informed by u′ before step t+1. If some node gets the information
from several nodes simultaneously, then only one of them (chosen randomly) is
considered to share an edge in Tt(u) with this node.

Let u′ be a node informed within the first logq n nodes. Since dmax = Θ(n1/β)
and β > 2, it holds that du′ <

√
n. Let Iu′(t) denote the set of nodes which have

been informed by u′ before time step t. Then, since vol(I(t)) = o(n1/β logq+1 n),
where vol(I(t)) =

∑
vj∈I(t) dj denotes the volume of I(t), applying Lemma 1

together with the Chernoff bounds2 [6,19] we conclude that, with probability
1 − o(1/n2), there can be at most κ edges between u′ and some other nodes of
I(t) \ Iu′(t) (as long as |I(t)| ≤ logq n), where κ is a constant. Therefore, as long
as |I(t)| ≤ logq n, the probability that the node u′ with |Iu′(t)| ≤ cmax − κ − 1
will be forced by the algorithm to switch to state G is o(1/n2).

We ignore now the probability that a node with less than cmax−κ−1 neighbors
in Tt(u) will switch to state G. Clearly, Tt(u) has less than |I(t)|/(cmax − κ− 2)
nodes with more than cmax − κ − 1 neighbors in Tt(u). Since a node u′ with
|Iu′(t)| ≤ cmax − κ − 1 propagates the information to some uninformed node
2 Due to space limitations, we do not explain the mathematical details behind the

application of Chernoff bounds here.
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with probability 1−O(1/ logδ n), applying Lemma 1 together with the Chernoff
bounds [6,19] (similarly to [16]), we conclude that the number of informed nodes
becomes larger than logq n within O(log n) steps. ��

Lemma 3. Let G(d) be a random graph and let d satisfy the conditions de-
scribed at the beginning of this section. Let |I(t)| ∈ {lnq n, . . . , n1−ε}, where
ε < 1/β is a small constant, and assume that |I(t)|(1 − O(t/ log2 n)) nodes are
in state A. Furthermore, we assume that at most O(|I(t)|/ logj(β−2) n) active
vertices have ctr = j. Then a constant c exists such that |I(t+1)| ≥ (1+c)|I(t)|,
|Ia(t+1)| ≥ |I(t+1)|(1−O((t+1)/ log2 n)), and at most O(|I(t+1)|/ logj(β−2) n)
active vertices have ctr = j after step t+ 1, with probability 1− o(1/n2), where
Ia(t+ 1) represents the set of nodes in state A at time t+ 1.

Proof. We assume for simplicity that the information is only transmitted by
push transmissions. Due to the definition of G(d) there are n(1−O(1/ log2(β−1)))
nodes with expected degree less than dmin + log2 n [7]. Now, since |I(t)| ≤ n1−ε,
a constant ε′ exists such that at most a fraction of 1/nε′ of the nodes having less
than dmin+log2 n neighbors in G(d) are informed. On the other hand, each node
vj of expected degree dj has more than dj(1 − O(1/ log2(β−2) n +

√
logn/dj))

uninformed neighbors among the nodes which have expected degree at most
dmin + log2 n in G(d), w.h.p. [7]. Similarly, with probability 1− o(1/n2), a node
vj has at most O(dj/ log2(β−2) n + log n) neighbors, which are either informed
or have expected degree at least dmin + log2 n.

For simplicity we assume that dj/ log2(β−2) n ≥ logn. Then, by using the
Chernoff bounds [6,19] we conclude that if q is large enough, then at least
|Ia(t)|(1−O(1/ log2(β−2) n)) informed active vertices choose an uninformed ver-
tex in step t + 1, with probability 1 − o(1/n2). Similarly, there can be at most
O(|I(t)|/ logj(β−2) n · 1/ log2(β−2) n) ≤ O(|I(t)|/ log(j+1)(β−2) n) vertices which
have ctr = j + 1 after the t + 1st step. Now, if cmax is large enough, the second
and third claim of the lemma follow.

In order to show the first statement, we apply Lemma 1 together with the
results of [32], and conclude that, with probability 1 − o(1/n2), at most O(1)
vertices of Ia(t) choose the same uninformed node vj of expected degree dj ≤
dmin + log2 n. ��

We assume in the sequel that dmin = no(1).

Lemma 4. Let I(t) be the set of informed nodes in G(d) at time t = O(log n).
We assume that n1−ε ≤ |I(t)| ≤ n/24max{τ,log log n}, where ε < 1/β is a constant.
We also assume that |I(t)|(1 − O(t/ log2 n)) nodes are in state A, and at most
O(|I(t)|/ logj(β−2) n) active vertices have ctr = j. Then, a constant c exists such
that |I(t+ 1)| ≥ |I(t)|(1 + c), |Ia(t+ 1)| ≥ |I(t+ 1)|(1−O((t+ 1)/ log2 n)), and
at most O(|I(t + 1)|/ logj(β−2) n) active vertices have ctr = j after step t + 1,
with probability 1− o(1/n2).

Proof. We only discuss the case β < 3 here. If β ≥ 3, then the proof is
much simpler. Since |I(t)| ≤ n/24max{τ,log log n}, there are at least |Vmin|(1 −
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O(1/24max{τ,log log n})) uninformed vertices of expected degree less than dmin +
log2 n, with probability 1 − o(1/n2), where Vmin = {vj | dj ≤ dmin + log2 n}.
Lemma 1 implies that every node vj has at least dj(1−O(1/ log2(β−2) n)) unin-
formed neighbors in Vmin, with probability 1−o(1/n2). Similarly, vj has at most
O(dj/ log2(β−2) n+logn) neighbors, which are either informed or have expected
degree at least dmin + log2 n.

for simplicity we assume that dj/ log2(β−2) n ≥ logn. Then, an active in-
formed node chooses an uninformed neighbor with probability at least 1 −
O(1/ log2(β−2) n). If cmax is large enough, then we apply the same arguments
as in the proof of Lemma 3, and obtain the second and third statement of the
lemma.

By using Lemma 1 together with the results of [32], we conclude that Θ(|I(t)|)
uninformed nodes of Vmin are chosen by O(1) informed nodes, each, and the
lemma follows. ��

Lemma 5. Let I(t) be the set of informed nodes in G(d) at time t = O(log n).
Assume that |I(t)| ∈ [n/24max{τ,log log n}, n/2]. Then, there exists a constant c
such that |I(t+ 1)| ≥ |I(t)|(1 + c) with probability 1− o(1/n2). Moreover, |I(t+
1)|(1 − O(1/ logn)) vertices transmit r for at least α

2 max{τ, log logn} further
steps.

Proof. Lemma 4 implies that if |I(t)| ≤ n/24max{τ,log log n}, then |I(t)|(1 −
o(1/ logn)) nodes are in state A. Since more than |I(t)| − n1−Ω(1) informed
vertices have itime = Ω(log n), it holds that when |I(t)| > n/24max{τ,log log n}

for the first time, then |I(t)|(1 − o(1/ logn)) informed vertices are in state A,
and have some proper itime = Θ(log n). Therefore, if α is large enough, then all
these vertices will be transmitting for α/2 ·max{log logn, τ} further steps, and
the second statement of the lemma follows.

In order to show the first statement, we denote by Ia,g(t) the set of informed
nodes which are either in state A, or in state G with some proper itime =
Θ(log n). Since |I(t)| ≤ n/2, there are at least n(1 − o(1))/2 uninformed nodes
in Vmin at time t, with probability 1 − o(1/n2). We also know that any vertex
vj has dj(1 − o(1)) neighbors among the nodes which have at most dmin +
log2 n neighbors in G(d). Applying now Lemma 1 together with the Chernoff
bounds [6,19], we conclude that Θ(|I(t)|) informed vertices choose an uninformed
neighbor in step t + 1. Applying the same arguments as in the proof of Lemma
4, we obtain that |I(t+ 1)| ≥ |I(t)|(1 + c). ��

After we informed more than n/2 nodes, we only consider the vertices informed
by pull transmissions as newly informed vertices. Then, we can state the following
lemma.

Lemma 6. Let |H(t)| ∈ [n/
√
dmin, n/2] be the number of uninformed nodes in

G(d) at some time t = O(log n). Let t′′ = ε′′ logn denote the first step in which
|I(t′′)| ≥ n/24max{log n/ log d,log log n}), where ε′′ is a constant, and assume that
there are at most |H(t)|(1 +O( t

log2 n
)) informed nodes in state S, or in state G

with itime ≤ ε′′ logn. Then, after k = O(log logn) additional steps, the number
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of uninformed nodes |H(t + k)| is less than n/
√
dmin, and the number of nodes

which are either in state S or have itime ≤ ε′′ logn is at most |H(t+k)|(1+o(1)).

Proof. Let t0 be the first time step such that |I(t0)| ≥ n/2 and let Dt0 de-
note the set of vertices which already have r, but are either in state S or in
state G with itime < ε′′ logn. From Lemma 4 and 5 we know that |Dt0 | =
o(n/24max{log n/ log d,log log n}). We may therefore assume that at time t0 any node
informed before step t′′ is either in state S or in state G with itime < ε′′ log n.

Now we only consider the vertices vi associated with some di = n1/β−Ω(1).
We know that for all these i there are nΩ(1) vertices with degrees in the range
[di − log2 n, di + log2 n], w.h.p.

Let Vi denote the set of vertices which have their expected degree in the range
[di − log2 n, di + log2 n], where di ∈ {dmin, dmin + 2 log2 n, dmin + 4 log2 n, . . . }.
Since any vj has dj(1 − o(1)) neighbors in Vmin, and |Vmin ∩ (H(t0) ∪ Dt0)| ∈
(|Vmin|/4, 3|Vmin|/4), we can apply Lemma 1 together with the Chernoff bounds
[6,19] to conclude that |Vi ∩ Ia,g(t0 + c)| ≥ |Vi|/2 for some constant c.

Similarly, we can show that if for some t the set Dt contains the informed
nodes being in state S or in state G with itime < ε′′ logn, and |Dt ∩ Vmin| ≤
|H(t)∩ Vmin|(1 + o(1)), then there exists a c such that |H(t+ c− 1)∩ Vi|/|Vi| ≤
max{|H(t)∩ Vmin|/|Vmin|, O(log n)/|Vi|} and the inequality |Dt+c−1 ∩Vi|/|Vi| ≤
max{|Dt∩Vmin|/|Vmin|, O(log n)/|Vi|} is also fulfilled. Combining Lemma 1 with
the Chernoff bounds [6,19] we obtain that at most |(H(t) ∪Dt)∩ Vmin| · |H(t)∩
Vmin|(1 + o(1))/|Vmin| nodes of Vmin remain uninformed after step t + c. This
yields |H(t+ c) ∩ Vmin| ≤ |H(t) ∩ Vmin|2(2 + o(1))/n. Similarly, |Dt+c ∩ Vmin| ≤
|Dt ∩ Vmin|2(2 + o(1))/n. Since we assumed that dmin = no(1), it holds that
O(n1/β log2 n)+ n/

√
dmin. Therefore, we can ignore the vertices with expected

degree n1/β−o(1), and the lemma follows. ��

Lemma 7. Let |H(t)| ≤ n/
√
dmin be the number of uninformed nodes in G(d)

at some time t = O(log n). Then, an arbitrary uninformed node remains unin-
formed after step t+1+c, for some constant c, with probability O(log n/

√
dmin).

Proof. Lemma 6 implies that if t is the first time step in which |H(t)| ≤ n/
√
dmin,

then |Dt| ≤ n(1 + o(1))/
√
dmin. The arguments of the proof of Lemma 6 imply

that, with probability 1−o(1/n2), a constant c exists such that |H(t+ c)∩Vi| ≤
max{ |Vi|√

dmin
, O(log n)} and |Dt+c ∩ Vi| ≤ max{ |Vi|√

dmin
, O(log n)} for any i such

that di ∈ {dmin, dmin + 2 log2 n, . . . }. Lemma 1 implies together with the results
of [32] that |H(t + c) ∩ Vi|(1 − o(1)) − O(log n) uninformed vertices of each Vi

have at least di −O(
√
di logn+ di/

√
dmin + log2 n) neighbors in Ia,g(t+ c), and

the lemma follows. ��

Summarizing the results of Lemmas 2 - 7, we obtain the following theorem.

Theorem 1. Let G(d) = (V,E) be a random graph with the properties described
at the beginning of this section, and assume that every node knows the value
τ = logn/ log dmin. Then, the algorithm described at the beginning of this section
spreads any information r to all nodes of the graph within O(log n) steps, and
by using O(nmax{log logn, τ}) transmissions, w.h.p.
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We assumed in this section that during the algorithm proceeds the nodes are
aware of an estimate of τ . In the next section we present a method which allows
the nodes to determine the desired estimate while the algorithm is executed.

3 Fully Adaptive Broadcasting Algorithm

In the following paragraphs we describe the fully adaptive broadcasting algo-
rithm. Let any node choose a neighbor, uniformly at random, in round 0 and 1,
respectively. Then, we let each node compare the neighbors ID, chosen in round
1, with the ID of the neighbor selected in round 0. If the two IDs at some node w
are the same, then w sends out a special information rw . Additionally, each node
of the graph sends out a special message r′w. These special messages (of type rw

and r′w) perform random walks in the system and some node w′ ∈ V checks how
many of these messages are lying on it at some time t = q′timew′(r), where q′

is a large constant and timew′(r) denotes the time when w′ has got r. Now, if
timew′(r) is large enough (i.e., timew′(r) = Ω(log n)), then any such message lies
on w′ with probability dw′/

∑n
k+1 dk(1±o(1/n2)) [3,13]. Combining the results of

[13] with [28], we conclude that if timew′(r) is large enough, then some nodes of
G(d), which do not possess any r′w message at this time, have Θ(log n/ log dmin)
messages of type rw. Moreover, all nodes (for which timew′(r) is large enough)
with no r′w’s lying on them, will have at most O(log n/ log dmin) messages of type
rw. Please note that in each round there are O(n) transmissions based on the
random walk of the special messages. Since every node chooses a communication
partner in each round anyway, the overall communication complexity does not
increase substantially in the system. Now we modify the algorithm described in
the previous section so that some nodes compute an estimate on logn/ log dmin

during the algorithm proceeds and broadcast the information to the other nodes.
Then, almost all nodes will use this value while being in state G.

Now, we describe informally the fully adaptive algorithm. A formal description
of a similar algorithm can be found in [12]. In this algorithm, every node performs
three phases, each of them consisting of several rounds. In the first phase, when a
node u gets r, then it sets timeu(r) to the current age of r, and the value timeu(r)
will never be updated again. Each node u executes the algorithm described at the
beginning of this section, whereby we introduce the following small modification:
When u switches to state G, then itime will never be updated at u in the first
phase again. This modification implies that u cannot switch from state S to
state G in this first phase.

For the second phase, define si = 2i, i ∈ {0, . . . , q′ log logn}. We call two
numbers, j1 and j2, s2-equivalent, and denote j1 ∼s2 j2, if an i exists such that
si ≤ j1, j2 ≤ si+1. Two nodes w′ and w′′ are s2-equivalent if timew′(r) and
timew′′(r) are s2-equivalent. Now, each node u checks while being in states A
and G (in the first phase), whether cmax different nodes exist, which are s2-
equivalent with u, have not been informed by u but are contacted by u, and
transmit r to u. If u has seen cmax such nodes before it switches to state S,
then u checks after α · itime additional steps the number of rw’s and the number
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of r′w’s on it. If there are no r′w’s on u, then the local variable τ ′′ is set to the
number of rw ’s on u. If there is any r′w on u, then τ ′′ is set to 0. If τ ′′ > log itime,
then the node switches in step 8α�timeu(r)/4� + h to the special state R (if it
is not already in this state) and to state A (even if it was in state R before),
updates itime, sets τ ′ = τ ′′, and starts to transmit r as in the first phase (along
with age and itime), together with τ ′. Here, h depends on τ ′′ and will be defined
later. We should mention that a node in the special state R is, apart from this
special state, in one of the states A, G, or S.

If a node u, which is not in state R, receives r and some value τ ′ from a node
which is in state R, then u switches to R and A, sets its own τ ′ to the received
τ ′, and itime is updated to the actual time. As itime and ctr, the variables τ ′

and τ ′′ are local variables, which may be different from node to node.
If a node in state R and A switches to state G, then it transmits r as long as

age < itime+ατ ′. During the second phase, the received τ ′ is always compared
to the own τ ′ and, if necessary (i.e., the received τ ′ is larger than the own τ ′),
the own τ ′ is updated. As in the first phase, itime is not updated after a node
switches to state G, excepting the following case. If τ ′ has to be reset, and the
own τ ′ is not s2-equivalent with the received τ ′, then the own itime is reset to
the actual time.

As mentioned above, the value of h depends on τ ′′. Define h1 = �timeu(r)/4�
for a node u. If τ ′′ ∈ [log h1+1, 2 logh1] then h = 0. For τ ′′ ∈ [2 log h1+1, 4 logh1]
we set h to αh1/ logh1, and generally, if τ ′′ ∈ [2i log h1 + 1, 2i+1 log h1], then
h = iαh1/ logh1. We further assume that the value h1 is also transmitted in
state R and every node keeps only the largest h1 value ever transmitted to it.

The third phase begins at time 16αh1 for every node being in state R. At this
time, the nodes being in state R switch to the special state R′ and A, and run
the algorithm as described at the beginning of this section, i.e., itime is updated
in state G, if the received τ ′ is larger than and not s2-equivalent with the own τ ′,
or the τ ′s are s2-equivalent and the received itime is larger than the own itime.
Now, a node is in state G as long as age < itime+ ατ ′. Here, τ ′ represents the
own τ ′ value of the node which may be updated according to the rules described
above.

Please note that the algorithm described above is (apart from the existence
of special messages r′w) the same as the fully adaptive algorithm of [12]. Now we
can state the following theorem.

Theorem 2. Let G(d) be a random graph with the properties described at the
beginning of Section 2. The three-phase algorithm described in this section in-
forms all nodes of the graph within O(log n) steps, whereby its communication
complexity is bounded by O(nmax{log logn, τ}), with probability 1− 1/nΩ(1).

The proof of this theorem is omitted due to space limitations. Combining the
techniques of [23] with the methods used in our proofs, it can be shown that the
bound of Theorem 2 is asymptotically tight. The algorithms presented in this
paper can also be used to in a more natural random power law graph model. If
we consider the graph G(d), where dmin ≥ logδ n and the number of vertices with
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degree di is proportional to d−β
i , β > 2 constant, then the result of Theorem 2

holds for this graph, too. We omit the details due to space limitations.
Using a more sophisticated analysis, similar results can be obtained on the

dynamic random graph model D of [1]. If we denote by Gt the graph obtained
after t steps, then two low degree nodes will be connected with probability
Θ(dmin(t)/n), where dmin(t) is the minimum degree in Gt, whenever the number
of edges, which are drawn from the node being assigned to the graph at some time
t′, is large enough (≥ logδ n). Although the edges do not occur independently
from each other, similar techniques to those used in our proofs can be applied to
generalize our results to Gt. Again, we omit the details due to space limitations.

4 Conclusion

In this paper, we analyzed the performance of randomized broadcasting algo-
rithms in certain (truncated) random power law graphs. First, we have shown
that, whenever d satisfies a certain power law distribution, we are able to broad-
cast a message to all nodes of a random graph G(d) within O(log n) steps, by
using O

(
nmax

{
log log n, log n

log dmin

})
transmissions, with probability 1−1/nΩ(1).

Inspecting our proofs, we observe that the assumption dmin ≥ logδ n with δ > 2
is strictly needed (e.g. Lemmas 1 and 7). A careful revision of our lemmas would
also yield the main result for a graph G(d) with dmin ≥ δ′ logn, where δ′ is a
very large constant. In the case when dmin = (2+Θ(1)) log n but dmin ≤ δ′ logn,
the graph is still connected with high probability, however we cannot apply the
techniques of this paper to obtain the desired result.
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Abstract. We will give distributed approximation schemes for the max-
imum matching problem and the minimum connected dominating set
problem in unit-disk graphs. The algorithms are deterministic, run in a
poly-logarithmic number of rounds in the message passing model and the
approximation error can be made O(1/ logk |G|) where |G| is the order
of the graph and k is a positive integer.

1 Introduction

In this paper we will give efficient distributed approximation algorithms for two
important graph-theoretic problems, the Maximum Matching (MM) Problem
and the Minimum Connected-Dominating Set (MCDS) Problem. Our algorithms
work in the message passing model and assume that the underlying network has
a unit-disk graph topology. Both problems are classical problems in graph theory
with many important practical applications. For example, efficient solutions for
the MCDS Problem are particularly interesting because of their applications to
routing in mobile ad-hoc networks (see for example [DW04]).

Studying distributed message passing approximation algorithms for unit-disk
graphs was initiated by Kuhn et. al. in [KMNW05b] where efficient approxi-
mation schemes for the Maximum Independent Set (MaxIS) Problem and the
Minimum Dominating Set (MDS) Problem are given. Research described in the
series of papers [KMW05], [KMNW05b], and [KMNW05a] is the main moti-
vation for our work here. We give efficient distributed approximation schemes
for two additional classical graph-theoretic problems. In addition, both of our
procedures are based on a rather general clustering framework that almost im-
mediately gives efficient solutions to MaxIS and MDS Problems with potential
for further applications to unit-disk graphs. Second motivation for our study
comes from a recent work [CH06] and [CHS06] in which distributed approxima-
tions for MaxIS Problem, MM Problem, and MDS Problem in planar graphs

S. Dolev (Ed.): DISC 2006, LNCS 4167, pp. 385–398, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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are given. Unit-disk graphs form another important class of graphs where sim-
ple clustering methods give efficient distributed approximations. Since unit-disk
graphs are commonly used to model mobile ad-hoc networks or static radio net-
works this line of research is also of clear practical importance. As in the case of
[KMNW05b] or [KMW05], we assume that there is a lower level protocol that
resolves transmission conflicts (MAC) and communication is done in the message
passing model.

1.1 Model and Notation

We consider a standard, distributed, synchronous message-passing model de-
scribed for example in Linial [L92] or in [P00]. In this model a network is repre-
sented by an undirected graph where vertices correspond to processors and edges
to communication links between them. We assume that vertices have unique
identifiers and that communication is synchronized. In a single round of an algo-
rithm, each vertex of the graph can send messages to its neighbors, can receive
messages from its neighbors, and can perform local computations. Although the
above model allows unlimited local computations, we will pay attention not only
to the distributed complexity of a problem but will also indicate the sequential
running time at each processor. We will focus entirely on the time complex-
ity analysis leaving message complexity issues for future research. Although the
above model is certainly an oversimplified version of a real-life system, it per-
fectly captures the most fundamental challenge faced by a distributed algorithm;
the problem of finding a global solution in a network based on local information
about the topology of the graph which is available to each node.

In this paper we will consider graphs with the unit-disk graph topology. A
graph G = (V,E) is called a unit-disk graph if there is a function f : V →
R2 such that uv ∈ E if and only if ||f(u) − f(v)||2 ≤ 1. Although the fact
that G is a unit-disk graph is critical to our analysis, we will assume that no
information about geometrical representation of G is available to nodes. In fact,
if such information is available, distributed running time of our algorithms can
be reduced significantly as it is possible to find a maximal independent set in a
much faster way [KMW05].

Finally, we will use standard graph-theoretic notation and terminology. In
particular, following the convention from [D97], we will denote by |G| the number
of vertices in G and by ||G|| the number of edges.

1.2 Results

We will describe efficient distributed algorithms for the MM and MCDS prob-
lems in unit-disk graphs. All algorithms are deterministic and the running time
is poly-logarithmic in the order of the graph. Depending on the desired approx-
imation ratio the time is a polynomial in log |G| of higher or smaller order. In
the same way, the amount of local computations can be made more or less time
consuming based on the desired approximation error. For the MM Problem, we
give a deterministic distributed algorithm which given a positive integer k and
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real number α ≥ 0 finds in a unit-disk graph G = (V,E) a set M ⊂ E such that
M is a matching in G and |M | ≥ (1−α−O(1/ logk |G|))β(G) where β(G) is the
size of the maximum matching in G (Theorem 2). For the MCDS Problem, we
give a deterministic distributed algorithm which given a positive integer k and
real number α ≥ 0, finds in a connected unit-disk graph G finds a set D ⊂ V (G)
such that D induces a connected subgraph of G, D is a dominating set in G,
and |D| ≤ (1 + α +O(1/ logk |G|))γc(G) where γc(G) is the size of the smallest
connected dominating set in G (Theorem 3). Both algorithms run in a poly-
logarithmic (in |G|) number of rounds and the amount of local computations
is at most TM

α (|G|) or TC
α (|G|), where TM

α (|G|) is the sequential complexity of
finding a (1 − α)-approximation of a maximum matching in unit-disk graphs
and TC

α (|G|) is the sequential complexity of finding a (1+α)-approximation of a
minimum connected dominating set in unit-disk graphs. In the case of maximum
matching α = 0 can be accomplished in polynomial time and although finding
a minimum connected dominating set in unit-disk graphs is NP-complete (see
[L82]), there are very fast constant error approximations and in the case a local
geometric representation of the graph is available, (1 + 1/s)-approximation can
be found in O(|G|O((s log s)2)) time (see [CHLWD03]). In addition, our methods
yield a sequential polynomial time approximation scheme (PTAS) for the MCDS
Problem extending the work of Nieberg and Hurink from [NH05] where a PTAS
for the MDS Problem is given.

1.3 Related Work

There has been recently an explosive growth of interest in complexity issues of
algorithms for geometric graphs. This line of research has roots in computational
geometry (see for example [GGHZZ01]) as well as in wireless networks. Distrib-
uted algorithms in the message passing model for unit-disk graphs have been
recently studied by Kuhn et. al. in [KMW05], [KMNW05a], and [KMNW05b].
In particular, [KMNW05a] contains aO(logΔ(G) log∗ |G|)-time distributed algo-
rithm for the maximal independent set problem. In [KMNW05b] in turn, authors
gave distributed approximation schemes for the MaxIS Problem and the MDS
Problem. All of the results, as well methods described in this work, exploit the
bounded growth property of unit-disk graphs (see [KMW05] for an example of
formalization or Section 2 for a different approach). Although methods use the
same properties which are inherent to unit-disk graphs, the approaches differ
significantly. In particular, algorithms from [KMNW05b] work entirely in an un-
derlying network which has the unit-disk graph property. In contrast, the first
phase of our algorithms works in an auxiliary graph which arises from a max-
imal independent set in a graph and it is this auxiliary graph which is further
clustered to obtain partition of the original graph.

1.4 Organization

In the rest of the paper we shall first give our clustering algorithm (Section 2)
and then discuss algorithms for the MM and MCDS problems (Section 3). Finally
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we conclude with brief remarks on how the methods can be used to give a PTAS
for the MCDS Problem in unit-disk graphs.

2 Clustering Algorithm

In this section, we will give a distributed algorithm that finds a clustering of a
unit-disk graph. By clustering we mean a partition of the vertex set of a graph
with the property that each set in the partition induces a connected subgraph.
Of course, additional properties of the clustering will be important to obtain
approximation algorithms. The clustering procedure works in two phases. In the
first phase we use the O(logΔ(G) log∗ |G|)-time algorithm from [KMNW05a] to
find a maximal independent set I in graph G. In the second phase an auxiliary
graph is constructed from I and we invoke a clustering algorithm to find a a par-
tition of it. The clustering of the auxiliary graph gives the final a clustering of
G. The analysis of our algorithms heavily exploits the so-called bounded growth
property of an auxiliary graph arising from a unit-disk graphs. Consequently the
method described here is limited to unit-disk graphs or some natural general-
izations. The following fact about unit-disk graphs will be key to our analysis.

Lemma 1. Let G be a unit-disk graph and let k be a positive integer. For any
independent set I in G and any geometrical representation of G, the number
of vertices from I which are contained in a ball in R2 of radius k is at most
4(k + 0.5)2.

Although the constant 4 is certainly not best possible it is sufficient for out
considerations and is easy to prove. Indeed, any packing of balls with radius 0.5
into a ball of radius (k +0.5) can have at most 4(k +0.5)2 members. The second
phase of clustering works entirely in the auxiliary graph obtained in the first
phase and only after partition of the auxiliary graph is found we return to the
original unit-disk graph G. We will first describe the second phase and then give
the main clustering algorithm.

2.1 Second Phase of Clustering Algorithm

In this section, we give a clustering algorithm of a C-bounded growth graph (see
the definition below). It is important to mention that our notion of a C-bounded
growth graph is different and maybe less standard than a similar concept con-
sidered in [KMNW05a].

Definition 1. A graph H has a C-bounded growth if for every vertex v from H
and every nonnegative integer k the number of vertices within distance (in H) k
of v is at most Ck2 + 1.

Our algorithm for graphs with C-bounded growth will use the ruling set method
described in [AGLP89]. Let G = (V,E) be a graph with identifiers of vertices
from the set {1, . . . ,m} where m is globally known and satisfies |G| ≤ m ≤
poly(|G|) for some polynomial poly(|G|). A D-ruling set in G is a subset S of V
with two properties:
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– For any two distinct vertices s, s′ from S, the distance (in G) between s and
s′ is at least D.

– For any vertex v ∈ V \ S there is a vertex s ∈ S such that the distance
between s and v is at most D log |G|.

There is an easy distributed algorithm which finds a D-ruling set in any graph.

Theorem 1 ([AGLP89]). There is a distributed algorithm which in any graph
G finds a D-ruling set in O(D log |G|) rounds.

Our algorithm uses parameters ε, D, and F (used in Clustering) which can be
set to specific values yielding different running times and approximation factors.
For 0 < ε < 1, and fixed C, let l∗ be the smallest positive integer with the
property

(1 + ε)l∗ ≥ Cl2∗ + 1. (1)

It is easy to check that
l∗ = O(1/ε2). (2)

In addition, let D be such that

D > 2l∗. (3)

In the next two procedures we will find a clustering of a graph which has C-
bounded growth. First procedure is essentially one iteration of the main algo-
rithm. We will denote the set of vertices which have a neighbor in U by N(U).

ClusterSet
Input: Constant C. Graph H = (V,E) which has C-bounded growth and such
that identifiers of V are bounded by m. Parameters: 0 < ε < 1 (arbitrary) and
D (must satisfy (3)).
Output: A family of subsets of V .

(1) Find a D-ruling set, {v1, v2, . . . , vs} in H .
(2) For every vi in parallel:

(a) Let Ui := {vi}, Ni := N(Ui) \ Ui.
(b) while |Ni| ≥ ε|Ui|

• Ui := Ui ∪Ni. Ni := N(Ui) \ Ui.
(3) Return U1, U2, . . . , Us.

The analysis of CluserSet can be divided into a few lemmas.

Lemma 2. The number of vertices in the D-ruling set obtained in step one of
ClusterSet is at least

|H |/(CD2 log2 |H |+ 1).
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Proof. For every vertex vi, where i = 1, . . . , s from the ruling set, consider the
set Wi of vertices in H which are within distance D log |H | of vi. From Definition
1, |Wi| ≤ CD2 log2 |H | + 1. On the other hand, since vi’s form a D-ruling set,
|H | ≤ |

⋃l
i=s Wi| and so

|H | ≤ s(CD2 log2 |H |+ 1).

Next two lemmas show that Ui’s have small diameter and more importantly the
total number of edges that intersect two different Ui’s is small.

Lemma 3. Let l∗ be such that inequality (1) holds and let r(Ui) denote the
radius of H [Ui]. Then

r(Ui) ≤ l∗.

Proof. Let U (l)
i denote the set Ui in the lth iteration of the while loop from step

2(b). Then |U (0)
i | = 1 and in the lth iteration |U (l)

i | ≥ (1 + ε)l. On the other
hand, by Definition 1, |U (l)

i | ≤ Cl2+1. Consequently, if l∗ is the smallest positive
integer such that (1 + ε)l∗ ≥ Cl2∗ + 1 then l ≤ l∗. Since the radius of G[Ui] is at
most l, we have r(Ui) ≤ l∗.

Lemma 4. Sets Ui returned by ClusterSet are pair-wise disjoint. In addition,
if e(Ui, V \ Ui) denotes the number of edges between Ui and V \ Ui then

s∑
i=1

e(Ui, V \ Ui) ≤ Cε|
l⋃

i=s

Ui|.

Proof of Lemma 4. From Lemma 3 every Ui is such that r(Ui) ≤ l∗. and
so if Ui ∩ Uj is non-empty then the distance between vi and vj is at most 2l∗
which contradicts the fact that vi, vj are in the D-ruling set where D > 2l∗ by
(3). To prove the second part, note that for every Ui returned in step 3, the set
Ni = N(Ui) \ Ui is such that |Ni| < ε|Ui|. Since H has the maximum degree of
at most C, the number of edges between Ui and Ni is at most Cε|Ui|.
Finally, we note that the running time of ClusterSet is O(D logm + 1/ε2).

Lemma 5. The number of rounds of ClusterSet is O(D logm+ 1/ε2).

Proof. There are O(D logm) rounds to find the D-ruling set in step 1. This is
followed by l∗ = O(1/ε2) iterations in step 2.

Our main clustering procedure will call ClusterSet a repeated number of
times. In each call, sets U1, . . . , Ul are obtained and vertices from

⋃
Ui are deleted

from the graph H . Finally, after trimming H with repeated application of Clus-
terSet, the remaining vertices will form one-element clusters.

Clustering
Input: Constant C. Graph H = (V,E) which has C-bounded growth and such
that the identifiers of V are less than or equal to m. Parameters: 0 < ε < 1
(arbitrary), D (must satisfy (3)), F (arbitrary).
Output: A partition P of V .
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(1) Repeat F times:
(a) Call ClusterSet in H . Add all sets Ui obtained from ClusterSet to

family P .
(b) Delete from H vertices from

⋃
Ui and edges incident to these vertices.

(2) For every vertex left in H create a set which contains only this vertex and
add it to P . Return P .

We note the following property of the partition obtained by Clustering.

Lemma 6. Let P = (V1, . . . , Vt) be a partition of V returned by Clustering.
The number of edges of H connecting vertices from different Vi’s is

O

(((
1− 1

CD2 log2 |H |+ 1

)F

+ ε

)
|H |
)
.

Proof. First note that since H is a graph with a constant maximum degree,
||H || ≤ C|H |/2. Consider sets added to P in iterations from step 1. Edges which
have exactly one endpoint in these sets are deleted in step 1(b) and by Lemma
4, the number of them is at most Cε|H |. The remaining edges which must be
counted are the edges of H from step two. To estimate these, we note that by

Lemma 2, the number of vertices in this graph is O
((

1− 1
CD2 log2 |H|+1

)F

|H |
)

.

Consequently, the number of edges of H connecting vertices from different Vi’s

is O
(((

1− 1
CD2 log2 |H|+1

)F

+ ε

)
|H |
)

.

Lemma 7. Clustering runs in O
(
F
(
D logm + 1/ε2

))
rounds.

Proof. There are F iterations of step 1, in which, by Lemma 5, sets are found
in O

(
D logm + 1/ε2

)
rounds.

Corollary 1. Let C be a fixed constant. For a C-bounded growth graph H with
identifiers that are less than or equal to m, there is a distributed algorithm which
finds in O(1/ε6 · log3 m log 1/ε) rounds a partition of V such that the number of
edges between different partition classes is O(ε|H |).

Proof. Let D := 2l∗ + 1 = O(1/ε2) and let F := �(ln 1/ε)(CD2 log2 H + 1)� =
O((log 1/ε)D2 log2 m). Then the number of rounds is O(F logm/ε2) = O(1/ε6 ·
log3 m log 1/ε) (Lemma 7). In addition, the number of edges which connect dif-

ferent clusters is O(ε|H |) by Lemma 6 as
(
1− 1

CD2 log2 |H|+1

)F

= O(ε).

2.2 Main Clustering Algorithm

We will now give the main clustering algorithm for unit-disk graphs. We first
find a maximal independent set I using an algorithm from [KMNW05a] and then
apply Clustering in the auxiliary graph that arises from I. This gives clusters
in the original graph.
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Definition 2 (Auxiliary graph). Let I = {v1, . . . , vl} be a maximal inde-
pendent set in graph G = (V,E). Let Vi be the set of neighbors of vi such
that if w ∈ Vi then vi is the neighbor of w in I with the least identifier, i.e.
Vi = {w ∈ N(vi)|ID(vi) = min{ID(a)|a ∈ N(w) ∩ I}}, and let V̄i = Vi ∪ {vi}.
Let Aux(G) be the graph (W , E) with W = {V̄1, . . . , V̄l} and {V̄i, V̄j} ∈ E when-
ever i 
= j and there is an edge in G between a vertex from V̄i and a vertex
from V̄j .

From Lemma 1, we see that Aux(G) has C-bounded growth with C = 48 as if
there are p vertices within distance k of some vertex v in Aux(G) then there
are is an independent set of size p in a ball of radius 3k. Consequently p ≤
4(3k + 0.5)2 ≤ 48k2 + 1.

Lemma 8. Aux(G) has 48-bounded growth.

In particular the maximum degree of Aux(G) is at most 48.

ClusteringUDG
Input: Unit disk graph G = (V,E), 0 < ε < 1 (arbitrary).
Output: Partition Q of V .

(1) Call Kuhn et. al. algorithm from [KMNW05a] to find a maximal independent
set I. Consider the auxiliary graph Aux(G).

(2) Call Clustering with constants as in Corollary 1 to find a partition P of
Aux(G).

(3) As vertices in Aux(G) correspond to pair-wise disjoint subsets of vertices in
G, for every partition class from P add the union of the subsets of vertices
from G that are contained in this class to Q.

Clusters obtained by ClusteringUDG have additional properties which are
very useful in our analysis. These attributes, however, must be stated in terms
of clusters in Aux(G) rather than clusters in G. In particular, it is not true that
the number of edges connecting different clusters in G is ”small” with respect to
the total number of edges but the property holds in Aux(G). Intuitively, what
we need from clusters in G is that an objective function to be approximated
(for example the size of a connected dominating set) has a small value on the
boundary of each cluster. At this moment let us indicate the running time of
ClusteringUDG and we will use previous lemmas to extract useful properties
when they are needed.

Lemma 9. Let G = (V,E) be a unit-disk graphs with identifiers bounded by
m = poly(|G|). ClusteringUDG runs in O(1/ε6 · log3 |G| log 1/ε) rounds.

Proof. Kuhn et. al. algorithm runs in O(log |G| log∗ |G|) rounds. The complexity
of Clustering is O(1/ε6 · log3 |G| log 1/ε) in Aux(G). Since every vertex in
Aux(G) corresponds to a subgraph of diameter which is less than or equal to
two, the running time in G will be asymptotically the same.
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3 Applications

In this section, we will describe applications to the MM Problem and the MCDS
Problem. Approximations for both problems (as well as to the maximum inde-
pendent set and the minimum dominating set) follow a similar pattern: First find
a clustering using ClusteringUDG and then find an optimal solution locally
in each cluster. Finally, modify local solutions and return the union of them.
Since our main clustering algorithm is executed in the auxiliary graph which
arises from yet another clustering of G obtained from a maximal independent
set, we will have three types of clusters.

– Small clusters: Clusters in graph G which arise from the maximal indepen-
dent set obtained in phase one and correspond to vertices in Aux(G).

– Auxiliary clusters: Clusters in Aux(G) obtained by Clustering.
– Big clusters: Clusters in G obtained by ClusteringUDG. These clusters

correspond in an obvious way to clusters in Aux(G).

∈ MIS in G

small cluster

big cluster
(auxiliary cluster)

Fig. 1. Clusters in UDG

Analysis of algorithms relies on properties of Aux(G) and it will be useful to
develop more terminology related to clusters of Aux(G). Let v be a vertex in
Aux(G). If v is in cluster C of Aux(G) but has a neighbor in a different cluster
of Aux(G) then v will be called a border vertex and the small cluster in G which
corresponds to it will be called a border cluster. We note, that since Aux(G)
has a constant maximum degree, Lemma 6 implies that the number of border
vertices in Aux(G) is much smaller than |Aux(G)|.

3.1 Maximum Matching

In our first application we will approximate a maximum matching. Recall that
if M is a matching in graph G then a vertex is called M -saturated if it is an
endpoint of an edge from M . Otherwise it is called M -free.



394 A. Czygrinow and M. Hańćkowiak

ApproxMaxMatching
Input: Unit-disk graph G = (V,E), 0 < ε < 1, 0 ≤ α < 1.
Output: A matching in G.

(1) Call ClusteringUDG to find a clustering of G with constants as in Corol-
lary 1.

(2) In each cluster C, find a matching MC in the subgraph of G induced by C
which is a (1 − α)-approximation of a maximum matching in G[C].

(3) Return M :=
⋃

C MC .

Note that the second step of the procedure takes polylog(|G|) rounds as the
diameter of each big cluster is polylog(|G|).

Lemma 10. Let G be a unit-disk graph. The matching M returned by Approx-
MaxMatching satisfies

|M | ≥ (1 − α−O(ε))β,

where β is the size of a maximum matching in G.

Proof. With a matching N we can associate the function IN : V (G) → {0, 1}
defined as IN (v) = 1 if v is N -saturated and IN (v) = 0 otherwise. Clearly, we
have 2|N | =

∑
v∈V (G) IN (v).

Let M∗ be a maximum matching in G. We will first obtain a matching M̄
from M∗ as follows. For every border cluster D in a big cluster C, delete all
edges from M∗ which have one endpoint in D and another in V −C. Extend the
obtained matching to a maximal matching M̄ with the property that all edges
from M̄ are contained in G[C] for some big cluster C. We claim that for any big
cluster C ∑

v∈C

IM̄ (v) ≥
∑
v∈C

IM∗(v) − 5sC , (4)

where sC is the number of border clusters in C. Indeed, a subgraph of G induced
by a border cluster D has a maximum independent set with at most 5 vertices
(this is true for a closed neighborhood of any vertex in a unit-disk graph) and so
the number of M̄ -free vertices in D which are possibly M∗-saturated is at most 5.

Since matching MC from step (2) is a (1 − α)-approximation of a maximum
matching in G[C], we have∑

v∈C

IM (v) ≥ (1 − α)
∑
v∈C

IM̄ (v)

and so
|M | ≥ (1 − α)|M̄ |.

Summing (4) over all C’s yields

|M̄ | ≥ |M∗| − 5s/2
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where s is the total number of border clusters. We have s = O(ε|Aux(G)|) and
|M∗| = Ω(|Aux(G)|) as Aux(G) has a constant maximum degree. Therefore,

|M | ≥ (1 − α −O(ε))|M∗|.

Theorem 2. Let k be a positive integer, let 0 ≤ α < 1, and let Tα(m) be the
running time of a sequential (1 − α)-approximation algorithm for the maximum
matching problem in a unit-disk graph of order m. There is a distributed algo-
rithm which finds in a unit-disk graph G a matching M such that

|M | ≥
(
1 − α−O(1/ logk |G|)

)
β

where β is the size of a maximum matching in G. The number of rounds of
the algorithm is poly-logarithmic in |G| and the sequential running time at each
vertex of G is at most Tα(|G|).
Proof. Set ε = 1/ logk |G| and apply Lemma 10 and Lemma 9.
Since it is possible to find a maximum matching in a polynomial time, we can
obtain α = 0 in Theorem 2 and have sequential running time which is polynomial
in |G|.

3.2 Minimum Connected Dominating Set

Algorithm for the connected dominating set is surprisingly simple. It is the
analysis that requires some additional work.

ApproxMinCDS
Input: A connected unit-disk graph G = (V,E), 0 < ε < 1 and 0 ≤ α.
Output: A dominating set in G.

(1) Call ClusteringUDG to find a clustering of G with constants as in Corol-
lary 1.

(2) In every big cluster C find a connected dominating set DC which is a (1+α)-
approximation of a minimum connected dominating set in G[C].

(3) For every two big clusters C, C′ if there is an edge in Aux(G) connecting a
border cluster from C with a border cluster from C′ then connect a vertex
from DC and a vertex from DC′ by a path of length less than or equal to
three. In other words, let DC,C′ be the set of at most four vertices on the
path connecting C with C′.

(4) Return D :=
⋃

C DC ∪
⋃

{C,C′}∈E(Aux(G))DC,C′ .

It is easy to see that step three can be completed and that D is a dominating
set which induces a connected subgraph of G. It is the fact that |D| is close to
the optimal that requires a proof. We will first observe that for any connected
dominating set D there is a connected dominating set D′ such that D′ ∩ C
induces a connected dominating set for any big cluster C and the sizes of D and
D′ do not differ much.
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Lemma 11. Let G be a connected unit-disk graph and let D be a connected
dominating set in G. Then there is a dominating set D′ with the following prop-
erties.

1. D ⊆ D′.
2. For any big cluster C, C ∩D′ induces a connected dominating set in G[C].
3. |D′| − |D| = O(s) where s is the number of border clusters.

Proof. Let D be a connected dominating set. For every border cluster B there
is a vertex vB which dominates all of the vertices from B. Consider the set
D∗ = D∪

⋃
B{vB}. For a big cluster C, let sC be the number of border clusters

contained in C. We first observe that the number of connected components in
graph G[D∗ ∩ C] is O(sC). Indeed, since G[D∗] is connected, every connected
component in G[D∗ ∩ C] contains a vertex from a border cluster in C. Re-
call that for any border cluster B, G[B] cannot have six independent vertices
and so G[D∗ ∩ B] has at most five connected components. Consequently, the
number of connected components in G[D∗ ∩ C] is O(sC). Next, consider graph
Conn(D∗, C) defined as follows. Vertices of Conn(D∗, C) are connected com-
ponents in G[D∗ ∩ C] and we put an edge between w1 and w2 if there is a
path of length at most three in G connecting a vertex from w1 with a vertex
from w2. We claim that Conn(D∗, C) is a connected graph. Indeed, assume that
Conn(D∗, C) is disconnected and let X1, X2 be two connected components in
Conn(D∗, C). Let Y1 and Y2 be the sets of vertices in G[C] such that Yi is the
union of vertices in clusters from Xi. Let P be a shortest path in G[C] connect-
ing a vertex from Y1 with a vertex form Y2. The length of P is at least four.
Let p = u1, u2, u3, u4, . . . , ul with u1 ∈ Y1, ul ∈ Y2 and l ≥ 5. Observe that u3

cannot be contained in a border cluster as if u3 ∈ B then either u3 = vB (the
”center” of B) or u3 is connected with vB. In either case vB ∈ Y1 and there is
a shorter path connecting Y1 with Y2. If u3 /∈ B then u3 must be dominated by
a vertex v from D ∩ C and so there is a path of length at most 3 between u1

and v. Thus v ∈ Y1 and there is a shorter path connecting Y1 with Y2. Contra-
diction shows that Conn(D∗, C) is a connected graph. As a result Conn(D∗, C)
contains a spanning tree in which an edge corresponds to path of length at most
three. Fix one such spanning tree and let D′ be the set of vertices in D∗ in ad-
dition with vertices on each path corresponding to an edge in the spanning tree
of Conn(D∗, C). Clearly D ⊆ D′. In addition G[D ∩ C] is a connected graph.
Finally, the number of vertices in Conn(D∗, C) is O(sC) and so we add O(sC)
vertices to D∗ to obtain D′. Summing over all C’s gives |D′| − |D| = O(s).

Now the next lemma is very easy.

Lemma 12. Let G be a connected unit-disk graph. The set D returned by Ap-
proxMinCDS is a dominating set which induces a connected subgraph of G and
such that

|D| ≤ (1 + α +O(ε))γc,

where γc is the size of a minimum dominating set in G.

Proof. Let D∗ be a connected dominating set of size γc. By Lemma 11, there is
a dominating set D′ such that D∗ ⊆ D′, D′ ∩C induces a connected dominating
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set in G[C] for each C, and |D̄|−|D∗| = O(s). If D is the dominating set returned
by algorithm ApproxMinCDS then DC = D ∩ C is a (1 + α)-approximation
of a minimum connected dominating set in G[C] and so if D∗

C is a minimum
connected dominating set in G[C] then |DC | ≤ (1 + α)|D∗

C |. Since D′ ∩ C is an
optimal set in G[C], we have |D∗

C | ≤ |D′ ∩ C| and so

|D| =
∑
C

|DC | +O(s) ≤
∑
C

(1 + α)|D∗
C | + O(s) ≤

∑
C

(1 + α)|D′ ∩ C| +O(s)

= (1 + α)|D′| +O(s) = (1 + α)|D∗| +O(s) = (1 + α)γc +O(ε|Aux(G)|).
As before γc = Ω(|Aux(G)|) and so

|D| = (1 + α +O(ε))γc.

Theorem 3. Let k be a positive integer, let 0 ≤ α, and let Tα(m) be the running
time of a sequential (1+α)-approximation for the minimum connected dominat-
ing set problem in a unit-disk graph of order m. There is a distributed algorithm
which finds in a connected unit-disk graph G a dominating set D such that G[D]
is connected and

|D| ≤
(
1 + α +O(1/ logk |G|)

)
γc

where γc is the size of the minimum connected dominating set in G. The number
of rounds of the algorithm is poly-logarithmic in |G| and the sequential running
time at each vertex of G is at most Tα(|G|).

4 Additional Remarks

As pointed out by one of the referees, in addition to Theorem 3, the methods
described in the paper yield a sequential PTAS for the MCDS Problem in unit-
disk graphs when the representation of the graph is unknown. Indeed, for a fixed
ε > 0 from (1), the radius of each cluster obtained by Cluster Set (and so the
Clustering) is O(1/ε2) by Lemma 3. Since in a unit-disk graph of diameter
r any indepdenet set has size of at most O(r2) and each independent set is
also a dominating set in the graph, the size of the minimum dominating set is
O(1/ε4). As a result, the size of the minimum connected dominating set in each
cluster is also O(1/ε4). Consequently, to find an optimal solution in each cluster
it is enough to check O(n1/ε4) subsets in a cluster and select an optimal. This
extends ther result of Nieberg and Hurink from [NH05] where a PTAS for the
MDS Problem is given.
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Abstract. This paper determines necessary and sufficient conditions to
implement wait-free and non-blocking contention managers in a shared
memory system. The necessary conditions hold even when universal ob-
jects (like compare-and-swap) or random oracles are available, whereas
the sufficient ones assume only registers.

We show that failure detector ♦P is the weakest to convert any
obstruction-free algorithm into a wait-free one, and Ω∗, a new failure
detector which we introduce in this paper, and which is strictly weaker
than ♦P but strictly stronger than Ω, is the weakest to convert any
obstruction-free algorithm into a non-blocking one.

1 Introduction

Multiprocessor systems are becoming more and more common nowadays. Mul-
tithreading thus becomes the norm and studying scalable and efficient synchro-
nization methods is essential, for traditional locking-based techniques do not
scale and may induce priority inversion, deadlock and fault-tolerance issues when
a large number of threads is involved.

Wait-free synchronization algorithms [1] circumvent the issues of locking and
guarantee individual progress even in presence of high contention. Wait-freedom
is a liveness property which stipulates that every process completes every opera-
tion in a finite number of its own steps, regardless of the status of other processes,
i.e., contending or even crashed. Ideal synchronization algorithms would ensure
linearizability [2,3], a safety property which provides the illusion of instantaneous
operation executions, together with wait-freedom.

Alternatively, a liveness property called non-blockingness1 may be considered
instead of wait-freedom. Non-blockingness guarantees global progress, i.e., that
some process will complete an operation in a finite number of steps, regardless of

1 The term non-blocking is defined here in the traditional way [1]: “some process will
complete its operation in a finite number of steps, regardless of the relative execution
speeds of the processes.” This term is sometimes confused with the term lock-free.
Note that non-blocking implementations provide a weaker liveness guarantee than
wait-free implementations.
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the behavior of other processes. Non-blockingness is weaker than wait-freedom
as it does not prevent some processes from starvation.

Wait-free and non-blocking algorithms are, however, notoriously difficult to
design [4,5], especially with the practical goal to be fast in low contention sce-
narios, which are usually considered the most common in practice. An appealing
principle to reduce this difficulty consists in separating two concerns of a syn-
chronization algorithm: (1) ensuring linearizability with a minimal conditional
progress guarantee, and (2) boosting progress. More specifically, the idea is to fo-
cus on algorithms that ensure linearizability together with a weak liveness prop-
erty called obstruction-freedom [6], and then combine these algorithms with sep-
arate generic oracles that boost progress, called contention managers [7,8,9,10].
This separation lies at the heart of modern (obstruction-free) software transac-
tional memory (STM) frameworks [7].

With obstruction-free (or OF, for short) algorithms, progress is ensured only
for every process that executes in isolation for sufficiently long time. In presence
of high contention, however, OF algorithms can livelock, preventing any process
from terminating. Contention managers are used precisely to cope with such
scenarios. When queried by a process executing an OF algorithm, a contention
manager can delay the process for some time in order to boost the progress of
other processes. The contention manager can neither share objects with the OF
algorithm, nor return results on its behalf. If it did, the contention manager
could peril the safety of the OF algorithm, hampering the overall separation of
concerns principle.

In short, the goal of a contention manager is to provide processes with enough
time without contention so that they can complete their operations. In its sim-
plest form, a contention manager can be a randomized back-off protocol. More
sophisticated contention management strategies have been experimented in prac-
tice [8,9,11]. Precisely because they are entirely devoted to progress, they can
be combined or changed on the fly [10]. Most previous strategies were prag-
matic, with no aim to provide worst case guarantees. In this paper we focus on
contention managers that provide such guarantees. More specifically, we study
contention managers that convert any OF algorithm into a non-blocking or wait-
free one, and which we call, respectively, non-blocking or wait-free contention
managers.

Two wait-free contention managers have recently been proposed [12,13]. Both
rely on timing assumptions to detect processes that fail in the middle of their
operations. This suggests that some information about failures might inherently
be needed by any wait-free contention manager. But this is not entirely clear
because, in principle, a contention manager could also use randomization to
schedule processes, or even powerful synchronization primitives like compare-
and-swap, which is known to be universal, i.e., able to wait-free implement any
other object [1]. In the parlance of [14], we would like to determine whether a
failure detector is actually needed to implement a contention manager with worst
case guarantees, and if it is, what is the weakest one [15]. Besides the theoretical
interest, determining the minimal conditions under which a contention manager
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can ensure certain guarantees is, we believe, of practical relevance, for this might
help portability and optimization.

We show that the eventually perfect failure detector ♦P [14] is the weakest to
implement a wait-free contention manager.2 We also introduce a failure detec-
tor Ω∗, which we show is the weakest to implement a non-blocking contention
manager. Failure detector Ω∗ is strictly weaker than ♦P , and strictly stronger
than failure detector Ω [15], known to be the weakest to wait-free implement
the (universal) consensus object [1].3

It might be surprising that Ω is not sufficient to implement a wait-free or
even a non-blocking contention manager. For example, the seminal Paxos al-
gorithm [16] uses Ω to transform an OF implementation of consensus into a
wait-free one. Each process that is eventually elected a leader by Ω is given
enough time to run alone, reach a decision and communicate it to the others.
This approach does not help, however, if we want to make sure that processes
make progress regardless of the actual (possibly long-lived) object and its OF
implementation. Intuitively, the leader elected by Ω may have no operation to
perform while other processes may livelock forever. Because a contention man-
ager cannot make processes help each other, the output of Ω is not sufficient:
this is so even if randomized oracles or universal objects are available. Intu-
itively, wait-free contention managers need a failure detector that would take
care of every non-crashed process with a pending operation so that the process
can run alone for sufficiently long time. As for non-blocking contention man-
agers, at least one process that never crashes, among the ones with pending
operations, should be given enough time to run alone.

The paper is organized as follows. Section 2 presents our system model and
formally defines wait-free and non-blocking contention managers. These defini-
tions are, we believe, contributions in their own rights, for they capture precisely
the interaction between a contention manager and an obstruction-free algorithm.
In Sect. 3 and 4, we prove our weakest failure detector results. In each case, we
first present (necessary part) a reduction algorithm [15] that extracts the out-
put of failure detector Ω∗ (respectively ♦P) using a non-blocking (respectively
wait-free) contention manager implementation. When devising our reduction al-
gorithms, we do not restrict what objects (or random oracles) can be used by
the contention manager or the OF algorithm. Then (sufficient part), we present
algorithms that implement the contention managers using the failure detectors
and registers. These algorithms are devised with the sole purpose of proving our
sufficiency claims. We do not seek to minimize the overhead of the interaction
between the OF algorithm and the contention manager, nor do we discuss how
the failure detector can itself be implemented with little synchrony assumptions
and minimal overhead, unlike the transformations presented in [12]. However, as
we show in [17], our algorithms can be easily extended to meet these challenges.

2 ♦P ensures that eventually: (1) every failure is detected by every correct (i.e., non-
faulty) process and (2) there is no false detection.

3 Ω ensures that eventually all correct (i.e., non-faulty) processes elect the same correct
process as their leader.
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The proofs of a few minor results are omitted due to the space limitations and
can be found in the full version of the paper [18].

2 Preliminaries

Processes and Failure Detectors. We consider a set of n processes Π =
{p1, . . . , pn} in a shared memory system [1,19]. A process executes the (possibly
randomized) algorithm assigned to it, until the process crashes (fails) and stops
executing any action. We assume the existence of a global discrete clock that
is, however, inaccessible to the processes. We say that a process is correct if it
never crashes. We say that process pi is alive at time t if pi has not crashed by
time t.

A failure detector [14,15] is a distributed oracle that provides every process
with some information about failures. The output of a failure detector depends
only on which and when processes fail, and not on computations being per-
formed by the processes. A process pi queries a failure detector D by accessing
local variable D-outputi—the output of the module of D at process pi. Failure
detectors can be partially ordered according to the amount of information about
failures they provide. A failure detector D is weaker than a failure detector D′,
and we write D 	 D′, if there exists an algorithm (called a reduction algorithm)
that transforms D′ into D. If D 	 D′ but D′ � D, we say that D is strictly
weaker than D′, and we write D ≺ D′.

Base and High-Level Objects. Processes communicate by invoking primitive
operations (which we will call instructions) on base shared objects and seek to
implement the operations of a high-level shared object O. Object O is in turn
used by an application, as a high-level inter-process communication mechanism.
We call invocation and response events of a high-level operation op on the im-
plemented object O application events and denote them by, respectively, inv(op)
and ret(op) (or invi(op) and reti(op) at a process pi).

An implementation of O is a distributed algorithm that specifies, for every
process pi and every operation op of O, the sequences of steps that pi should
take in order to complete op. Process pi completes operation op when pi returns
from op. Every process pi may complete any number of operations but, at any
point in time, at most one operation op can be pending (started and not yet
completed) at pi.

We consider implementations of O that combine a sub-protocol that ensures a
minimal liveness property, called obstruction-freedom, with a sub-protocol that
boosts this liveness guarantee. The former is called an obstruction-free (OF)
algorithm A and the latter a contention manager CM . We focus on lineariz-
able [2,3] implementations of O: every operation appears to the application as
if it took effect instantaneously between its invocation and its return. An im-
plementation of O involves two categories of steps executed by any process pi:
those (executed on behalf) of CM and those (executed on behalf) of A. In each
step, a process pi either executes an instruction on a base shared object or (in
case pi executes a step on behalf of CM ) queries a failure detector.
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Obstruction-freedom [6,7] stipulates that if a process that invokes an opera-
tion op on object O and from some point in time executes steps of A alone4,
then it eventually completes op. Non-blockingness stipulates that if some correct
process never completes an invoked operation, then some other process com-
pletes infinitely many operations. Wait-freedom [1] ensures that every correct
process that invokes an operation eventually returns from the operation.

Interaction Between Modules. OF algorithm A, executed by any process
pi, communicates with contention manager CM via calls tryi and resigni im-
plemented by CM (see Fig. 1). Process pi invokes tryi just after pi starts an
operation, and also later (even several times before pi completes the operation)
to signal possible contention. Process pi invokes resigni just before returning
from an operation, and always eventually returns from this call (or crashes).
Both calls, tryi and resigni, return ok.5

We denote by B(A) and B(CM) the sets of base shared objects, always dis-
joint, that can be possibly accessed by steps of, respectively, A and CM , in
every execution, by every process. Calls try and resign are thus the only means
by which A and CM interact. The events corresponding to invocations of, and
responses from, try and resign are called cm-events. We denote by tryinv

i and
resigninv

i an invocation of call tryi and resigni, respectively (at process pi), and
by tryret

i and resignret
i —the corresponding responses.

Executions and Histories. An execution of an OF algorithm A combined
with a contention manager CM is a sequence of events that include steps of A,
steps of CM , cm-events and application events. Every event in an execution is
associated with a unique time at which the event took place. Every execution
e induces a history H(e) that includes only application events (invocations and
responses of high-level operations). The corresponding CM-history HCM(e) is
the subsequence of e containing only application events and cm-events of the
execution, and the corresponding OF-history HOF(e) is the subsequence of e
containing only application events, cm-events, and steps of A. For a sequence s
of events, s|i denotes the subsequence of s containing only events at process pi.

We say that a process pi is blocked at time t in an execution e if (1) pi is alive
at time t, and (2) the latest event in HCM(e)|i that occurred before t is tryinv

i

or resigninv
i . A process pi is busy at time t in e if (1) pi is alive at time t, and

(2) the latest event in HCM(e)|i that occurred before t is tryret
i . We say that a

process pi is active at t in e if pi is either busy or blocked at time t in e. We say
that a process pi is idle at time t in e if pi is not active at t in e.6 A process
resigns when it invokes resign on a contention manager.

4 i.e., without encountering step contention [20].
5 An example OF algorithm that uses this model of interaction with a contention

manager is presented in [18]. A discussion about overhead of wait-free/non-blocking
contention managers that explains when calls to try/resign can be omitted for effi-
ciency reasons can be found in [17].

6 Note that every process that has crashed is permanently idle.
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High-Level Object O
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Fig. 1. The OF algorithm/contention manager interface

We say that pi is obstruction-free in an interval [t, t′] in an execution e, if pi is
the only process that takes steps of A in [t, t′] in e and pi is not blocked infinitely
long in [t, t′] (if t′ = ∞). We say that process pi is eventually obstruction-free
at time t in e if pi is active at t or later and pi either resigns after t or is
obstruction-free in the interval [t′,∞) for some t′ > t. Note that, since algorithm
A is obstruction-free, if an active process pi is eventually obstruction-free, then
pi eventually resigns and completes its operation.

Well-Formed Executions. We impose certain restrictions on the way an OF
algorithm A and a contention manager CM interact. In particular, we assume
that no process takes steps of A while being blocked by CM or idle, and no
process takes infinitely many steps of A without calling CM infinitely many
times. Further, a process must inform CM that an operation is completed by
calling resign before returning the response to the application.

Formally, we assume that every execution e is well-formed, i.e., H(e) is lin-
earizable [2,3], and, for every process pi, (1) HCM(e)|i is a prefix of a sequence
[op1][op2], . . ., where each [opk] has the form invi(opk),tryinv

i , tryret
i , . . . , tryinv

i ,
tryret

i , resigninv
i , resignret

i ,reti(opk); (2) in HOF(e)|i, no step of A is executed
when pi is blocked or idle, (3) in HOF(e)|i, invi can only be followed by tryinv

i ,
and reti can only be preceded by resignret

i ; (4) if pi is busy at time t in e, then
at some t′ > t, process pi is idle or blocked. The last condition implies that
every busy process pi eventually invokes tryi (and becomes blocked), resigns
or crashes. Clearly, in a well-formed execution, every process goes through the
following cyclical order of modes: idle, active, idle, . . ., where each active period
consists itself of a sequence blocked, busy, blocked, . . ..
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Non-blocking Contention Manager. We say that a contention manager CM
guarantees non-blockingness for an OF algorithm A if in each execution e of A
combined with CM the following property is satisfied: if some correct process is
active at a time t, then at some time t′ > t some process resigns.

A non-blocking contention manager guarantees non-blockingness for every OF
algorithm. Intuitively, this will happen if the contention manager allows at least
one active process to be obstruction-free (and busy) for sufficiently long time,
so that the process can complete its operation. More precisely, we say that a
contention manager CM is non-blocking if, for every OF algorithm A, in every
execution of A combined with CM the following property is ensured at every
time t:

Global Progress. If some correct process is active at t, then some correct
process is eventually obstruction-free at t.

We show in [18] that a contention manager CM guarantees non-blockingness for
every OF algorithm if and only if CM is non-blocking.

Wait-Free Contention Manager. We say that a contention manager CM
guarantees wait-freedom for an OF algorithm A if in every execution e of A
combined with CM , the following property is satisfied: if a process pi is active
at a time t, then at some time t′ > t, pi becomes idle. In other words, every
operation executed by a correct process eventually returns.

A wait-free contention manager guarantees wait-freedom for every OF algo-
rithm. Intuitively, this will happen if the contention manager makes sure that
every correct active process is given “enough” time to complete its operation,
regardless of how other processes behave. More precisely, a contention manager
CM is wait-free if, for every OF algorithm A, in every execution of A combined
with CM , the following property is ensured at every time t:7

Fairness. If a correct process pi is active at t, then pi is eventually obstruction-
free at t.

We show in [18] that a contention manager CM guarantees wait-freedom for
every OF algorithm if and only if CM is wait-free.

In the following, we seek to determine the weakest [15] failure detector D to
implement a non-blocking (resp. wait-free) contention manager CM . This means
that (1) D implements such a contention manager, i.e., there is an algorithm that
implements CM using D, and (2) D is necessary to implement such a contention
manager, i.e., if a failure detector D′ implements CM , then D 	 D′. In our
context, a reduction algorithm that transforms D′ into D uses the D′-based
implementation of the corresponding contention manager as a “black box” and
read-write registers.

7 This property is ensured by wait-free contention managers from the literature [12,13].



406 R. Guerraoui, M. Kapa�lka, and P. Kouznetsov

3 Non-blocking Contention Managers

Let S ⊆ Π be a non-empty set of processes. Failure detector ΩS outputs, at
every process, an identifier of a process (called a leader), such that all correct
processes in S eventually agree on the identifier of the same correct process in
S.8

Failure detector Ω∗ is the composition {ΩS}S⊆Π,S �=∅: at every process pi,
Ω∗-outputi is a tuple consisting of the outputs of failure detectors ΩS . We po-
sition Ω∗ in the hierarchy of failure detectors of [14] by showing in [18] that
Ω ≺ Ω∗ ≺ ♦P .

To show that Ω∗ is necessary to implement a non-blocking contention man-
ager, it suffices to prove that, for every non-empty S ⊆ Π , ΩS is necessary to
implement a non-blocking contention manager. Let CM be a non-blocking con-
tention manager using failure detector D. We show that Ω∗ 	 D by presenting
an algorithm TD→ΩS (Algorithm 1) that, using CM and D, emulates the output
of ΩS .

Algorithm 1: Extracting ΩS from a non-blocking contention manager (code for
processes from set S; others are permanently idle)
uses: L—register
initially: ΩS-outputi ← pi, L ← some process in S

Launch two parallel tasks: Ti and Fi

parallel task Fi1.1

ΩS-outputi ← L1.2

parallel task Ti1.3

while true do1.4

issue tryi and wait until busy (i.e., until call tryi returns)1.5

L ← pi // announce yourself a leader1.6

The algorithm works as follows. Every process pi ∈ S runs two parallel tasks Ti

and Fi. In task Ti, process pi periodically (1) gets blocked by CM after invoking
tryi (line 1.5), and (2) once pi gets busy again, announces itself a leader for set
S by writing its id in L (line 1.6). In task Fi, process pi periodically determines
its leader by reading register L (line 1.2).9

Thus, no process ever resigns and every correct process in S is permanently
active from some point in time. Intuitively, this signals a possible livelock to CM
which has to eventually block all active processes except for one that should
run obstruction-free for sufficiently long time. By Global Progress, CM cannot
block all active processes forever and so if the elected process crashes (and so

8 ΩS can be seen as a restriction of the eventual leader election failure detector Ω [15]
to processes in S. The definition of ΩS resembles the notion of Γ -accurate failure
detectors introduced in [21]. Clearly, ΩΠ is Ω.

9 If a process is blocked in one task, it continues executing steps in parallel tasks.
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becomes idle), CM lets another active process run obstruction-free. Eventually,
all correct processes in S agree on the same process in S. Processes outside S
are permanently idle and permanently output their own ids: they do not access
CM .

This approach contains a subtlety. To make sure that there is a time after
which the same correct leader in S is permanently elected by the correct processes
in S, we do not allow the elected leader to resign (the output of ΩS has to
be eventually stable). This violates the assumption that processes using CM
run an obstruction-free algorithm, and, thus, a priori, CM is not obliged to
preserve Global Progress. However, as we show below, since CM does not “know”
how much time a process executing an OF algorithm requires to complete its
operation, CM has to provide some correct process with unbounded time to run
in isolation.

Theorem 1. Every non-blocking contention manager can be used to implement
failure detector Ω∗.

Proof. Let S ⊆ Π , S �= ∅ and consider any execution of Algorithm 1. If S
contains no correct process, then ΩS-outputi (for every process pi ∈ S) trivially
satisfies the property of ΩS . Now assume that there is a correct process in S. We
claim that CM eventually lets exactly one correct process in S run obstruction-
free while blocking forever all the other processes in S.

Suppose not. We obtain an execution in which every correct process in S is
allowed to be obstruction-free only for bounded periods of time. But the CM-
history of this execution corresponds to an execution of some OF algorithm
A combined with CM in which no active process ever completes its operation
because no active process ever obtains enough time to run in isolation. Thus, no
active process is eventually obstruction-free in that execution. This contradicts
the assumption that CM is non-blocking.

Therefore, there is a time after which exactly one correct process pj ∈ S is
periodically busy (others are blocked or idle forever) and, respectively, register
L permanently stores the identifier of pj . Thus, eventually, every correct process
in S outputs pj : the output of ΩS is extracted. ��

We describe an implementation of a non-blocking contention manager using Ω∗

and registers in Algorithm 2 (we prove its correctness in [18]). The algorithm
works as follows. All active processes, upon calling try, participate in the leader
election mechanism using Ω∗ in lines 2.3–2.5. The active process pi that is elected
a leader returns from try and is (eventually) allowed to run obstruction-free until
pi resigns. Once pi resigns, the processes elect another leader. Failure detector
Ω∗ guarantees that if an active process is elected and crashes before resigning,
another active process is eventually elected.

Theorem 2. Algorithm 2 implements a non-blocking contention manager.
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Algorithm 2: A non-blocking contention manager using Ω∗ = {ΩS}S⊆Π,S �=∅
uses: T [1, . . . , n]—array of single-bit registers
initially: T [1, . . . , n] ← false

upon tryi do2.1

T [i] ← true2.2

repeat2.3

S ← { pj ∈ Π | T [j] = true }2.4

until ΩS-outputi = pi2.5

upon resigni do2.6

T [i] ← false2.7

4 Wait-Free Contention Managers

We prove here that the weakest failure detector to implement a wait-free con-
tention manager is ♦P . Failure detector ♦P [14] outputs, at each time and
every process, a set of suspected processes. There is a time after which (1) every
crashed process is permanently suspected by every correct process and (2) no
correct process is ever suspected by any correct process.

We first consider a wait-free contention manager CM using a failure detector
D, and we exhibit a reduction algorithm TD→♦P (Algorithm 3) that, using CM
and D, emulates the output of ♦P .

Algorithm 3: Extracting ♦P from a wait-free contention manager
uses: R[1, . . . , n]—array of registers
initially: ♦P-outputi ← Π − {pi}, k ← 0, R[i] ← 0

Launch n(n − 1) parallel instances of CM : Cjk, j, k ∈ {1, . . . , n}, j �= k
Launch 2n − 1 parallel tasks: Tij , Tji, j ∈ {1, . . . , n}, i �= j, and Fi

parallel task Fi3.1

while true do R[i] ← R[i] + 1 // ‘‘heartbeat’’ signal3.2

parallel task Tij , j = 1, . . . , i − 1, i + 1, . . . , n3.3

while true do3.4

xj ← R[j]3.5

♦P-outputi ← ♦P-outputi − {pj} // stop suspecting pj3.6

issue tryij
i (in Cij) and wait until busy3.7

issue resignij
i (in Cij) and wait until idle3.8

♦P-outputi ← ♦P-outputi ∪ {pj} // start suspecting pj3.9

wait until R[j] > xj // wait until pj takes a new step3.10

parallel task Tji, j = 1, . . . , i − 1, i + 1, . . . , n3.11

while true do issue tryji
i (in Cji) and wait until busy3.12
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We run several instances of CM . These instances use disjoint sets of base
shared objects and do not directly interact. Basically, in each instance, only two
processes are active and all other processes are idle. One of the two processes,
say pj , gets active and never resigns thereafter, while the other, say pi, per-
manently alternates between being active and idle. To CM it looks like pj

is always obstructed by pi. Thus, to guarantee wait-freedom, the instance of
CM has to eventually block pi and let pj run obstruction-free until pj resigns
or crashes. Therefore, when pi is blocked, pi can assume that pj is alive and
when pi is busy, pi can suspect pj of having crashed, until pi eventually ob-
serves pj’s “heartbeat” signal, which pj periodically broadcasts using a regis-
ter. This ensures the properties of ♦P at process pi, provided that pj never
resigns.

As in Sect. 3, we face the following issue. If pj is correct, pi will be eventu-
ally blocked forever and pj will thus be eventually obstruction-free. Hence, in
the corresponding execution, obstruction-freedom is violated, i.e., the execution
cannot be produced by any OF algorithm combined with CM . One might argue
then that CM is not obliged to preserve Fairness with respect to pj . However,
we show that, since CM does not “know” how much time a process executing
an OF algorithm requires to complete its operation, CM has to provide pj with
unbounded time to run in isolation.

More precisely, the processes in Algorithm 3 run n(n−1) parallel instances of
CM , denoted each CM jk, where j, k ∈ {1, . . . , n}, j �= k. We denote the events
that process pi issues in instance CM jk by tryjk

i and resignjk
i . Besides, every

process pi runs 2n − 1 parallel tasks: Tij , Tji, where j ∈ {1, . . . , n}, i �= j, and
Fi. Every task Tij executed by pi is responsible for detecting failures of process
pj . Every task Tji executed by pi is responsible for preventing pj from falsely
suspecting pi. In task Fi, pi periodically writes ever-increasing “heartbeat” values
in a shared register R[i].

In every instance CM ij , there can be only two active processes: pi and pj .
Process pi cyclically gets active (line 3.7) and resigns (line 3.8), and process
pj gets active once and keeps getting blocked (line 3.12). Each time before pi

gets active, pi removes pj from the list of suspected processes (line 3.6). Each
time pi stops being blocked, pi starts suspecting pj (line 3.9) and waits until pi

observes a “new” step of pj (line 3.10). Once such a step of pj is observed, pi

stops suspecting pj and gets active again.

Theorem 3. Every wait-free contention manager can be used to implement fail-
ure detector ♦P.

Proof. Consider any execution e of TD→♦P , and let pi be any correct process.
We show that, in e, ♦P-outputi satisfies the properties of ♦P , i.e., pi eventually
permanently suspects every non-correct process and stops suspecting every cor-
rect process. (Note that if a process pi is not correct, then ♦P-outputi trivially
satisfies the properties of ♦P .)
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Algorithm 4: A wait-free contention manager using ♦P
uses: T [1, . . . , N ]—array of registers (other variables are local)
initially: T [1, . . . , N ] ← ⊥
upon tryi do4.1

if T [i] = ⊥ then T [i] ← GetTimestamp()4.2

repeat4.3

sacti ← { j | T [j] �= ⊥ ∧ pj /∈ ♦P-outputi }4.4

leaderi ← argminj∈sacti
T [j]4.5

until leaderi = i4.6

upon resigni do4.7

T [i] ← ⊥4.8

Let pj be any process distinct from pi. Assume pj is not correct. Thus pi is
the only correct active process in instance CM ij . By the Fairness property of
CM , pi is eventually obstruction-free every time pi becomes active, and so pi

cannot be blocked infinitely long in line 3.7. Since there is a time after which
pj stops taking steps, eventually pi starts suspecting pj (line 3.9) and suspends
in line 3.10, waiting until pj takes a new step. Thus, pi eventually suspects pj

forever.
Assume now that pj is correct. We claim that pi must eventually get perma-

nently blocked so that pj would run obstruction-free from some point in time
forever. Suppose not. But then we obtain an execution in which pi alternates
between active and idle modes infinitely many times, and pj stays active and
runs obstruction-free only for bounded periods of time. But the CM-history
of this execution could be produced by an execution e′ of some OF algorithm
combined with CM in which pj never completes its operation because pj never
runs long enough in isolation. Thus, Fairness is violated in execution e′ and this
contradicts the assumption that CM is wait-free. Hence, eventually pi gets per-
manently blocked in line 3.7. Since each time pi is about to get blocked, pi stops
suspecting pj in line 3.6, there is a time after which pi never suspects pj.

Thus, there is a time after which, if pj is correct, then pj stops being suspected
by every correct process, and if pj is non-correct, then every correct process
permanently suspects pj. ��

We describe an implementation of a wait-free contention manager using ♦P
and registers in Algorithm 4 (we prove its correctness in [18]). The algorithm
relies on a (wait-free) primitive GetTimestamp() that generates unique, locally
increasing timestamps and makes sure that if a process gets a timestamp ts, then
no process can get timestamps lower than ts infinitely many times (this primitive
can be implemented in an asynchronous system using read-write registers). The
idea of the algorithm is the following. Every process pi that gets active receives a
timestamp in line 4.2 and announces the timestamp in register T [i]. Every active
process that invokes try repeatedly runs a leader election mechanism (lines 4.3–
4.6): the non-suspected (by ♦P) process that announced the lowest (non-⊥)
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timestamp is elected a leader. If a process pi is elected, pi returns from tryi and
becomes busy. ♦P guarantees that eventually the same correct active process
is elected by all active processes. All other active processes stay blocked until
the process resigns and resets its timestamp in line 4.8. The leader executes
steps obstruction-free then. Since the leader runs an OF algorithm, the leader
eventually resigns and resets its timestamp in line 4.8 so that another active
process, which now has the lowest timestamp in T , can become a leader.

Theorem 4. Algorithm 4 implements a wait-free contention manager.
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Abstract. Long-lived renaming allows processes to repeatedly get dis-
tinct names from a small name space and release these names. This paper
presents two long-lived renaming algorithms in which the name a process
gets is bounded above by the number of processes currently occupying a
name or performing one of these operations. The first is asynchronous,
uses LL/SC objects, and has step complexity that is linear in the num-
ber of processes, c, currently getting or releasing a name. The second is
synchronous, uses registers and counters, and has step complexity that
is polylogarithmic in c. Both tolerate any number of process crashes.

1 Introduction

Renaming is an interesting and widely-studied problem that has many applica-
tions in distributed computing. For one-shot renaming, each of the n processes
in the system can perform GetName to get a distinct name from a small name
space, {1, . . . ,m}. For long-lived renaming, a process that has gotten a name, x,
can also perform RelName(x), so that it or another process can get this name
later. In this more general version of the renaming problem, each process can
alternately perform GetName and RelName any number of times (starting with
GetName). After a process performs GetName, its name stays the same until after
it next performs RelName. If a process performs GetName again, it may get the
same name it got previously, or it may get a different name.

One application of long-lived renaming is the repeated acquisition and release
of a limited number of identical resources by processes [12], something that
commonly happens in most operating systems. In this case, names correspond
to resources that are acquired and released by processes. Each process that
wants to acquire a resource performs GetName to get a name, which is essentially
permission for exclusive use of the resource. When a process no longer needs the
resource, it performs RelName.

Another application of renaming is to improve the time or space complexity
of an algorithm when only few processes participate [5]. For example, the time
complexity of an algorithm may depend on the maximum number of processes
that could participate, because it iterates over all processes in the system. Then
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a faster algorithm can be obtained by having each participating process first get
a new name from a small name space and iterating over this smaller space. For
some algorithms, such as those that implement shared objects, a process may
participate for only short, widely spaced periods of time. Better performance can
be achieved if each process performs GetName whenever it begins participating
and performs RelName when it has finished participating for a while [21].

In one-shot renaming, the number of processes, k, that are getting or have
gotten a name grows as an execution proceeds. In many applications, the final
value of k is not known in advance. To avoid using an unnecessarily large name
space, the size of the name space should be small initially and grow as k grows.

In long-lived renaming, we say that a process is participating from the time
it begins a GetName operation until it completes its subsequent RelName opera-
tion. In particular, a process participates forever if it fails before releasing the
last name that it got. The number of participating processes can increase and de-
crease during an execution of long-lived renaming. When the number is small, a
process should get a small name, even though other processes may have received
much larger names earlier in the execution (and may still be participating).

An m(k)-renaming algorithm [5] is a renaming algorithm in which a process al-
ways gets a name in the range {1, . . . ,m(k)}, where k is the number of processes
that participate while it performs GetName. Note that, by the pigeonhole prin-
ciple, m(k)-renaming is impossible unless m(k) ≥ k. The special case when
m(k) = k is called strong renaming.

The cost of performing renaming is also an issue. Renaming algorithms in
which the time complexities of GetName and RelName are bounded above by
a function of the number of participating processes, k, are called adaptive. A
renaming algorithm whose time complexity only depends on the number of
processes, c, concurrently performing GetName or RelName, but not on the num-
ber of names that are in use, is called fully-adaptive. This is even better, because
k can be much larger than c.

For some renaming algorithms, each process is assumed to have an identifier,
which is a name from a large original name space. Other renaming algorithms also
work when the original name space is infinite or when processes are anonymous
(i.e. they have no original names).

Related Work. The renaming problem has been studied extensively in asynchro-
nous systems beginning with Attiya, Bar-Noy, Dolev, Peleg, and Reischuk [5],
who studied one-shot renaming in asynchronous message passing systems. They
proved that strong one-shot renaming is impossible, even if only one process can
fail. They also proved that a process cannot decide on a new name until it has
received messages (either directly or indirectly) from at least half of the other
processes. Thus, in this model, adaptive one-shot renaming is impossible and
one-shot renaming is impossible unless more than half of the processes in the
system participate. In addition, they give two algorithms for one-shot renaming
which assume that more than n/2 processes participate. The size of the name
space in their algorithms also depends on n.
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For synchronous message passing systems, Chaudhuri, Herlihy, and Tuttle
[19,13] gave an algorithm for one-shot strong renaming with O(log k) rounds in
which a process may send a message to any subset of other processes. They also
proved a matching lower bound for comparison-based algorithms. Attiya and
Djerassi-Shintel [6] studied the complexity of one-shot strong-renaming in semi-
synchronous message passing systems that are subject to late timing faults. They
obtained an algorithm with O(log k) rounds of broadcast from a synchronous
message passing algorithm and proved an Ω(log k) lower bound for comparison
based algorithms or when the original name space is sufficiently large compared
to k.

Bar-Noy and Dolev [11] showed how to transform the asynchronous message
passing algorithms of Attiya, Bar-Noy, Dolev, Peleg, and Reischuk [5], to shared-
memory, using only reads and writes. They obtained a one-shot k2+k

2 -renaming
algorithm that uses O(n2) steps per operation and a one-shot (2k −1)-renaming
algorithm that uses O(n · 4n) steps per operation.

Burns and Peterson [12] proved that long-lived m-renaming is impossible in
an asynchronous shared memory system using only reads and writes unless m ≥
2k − 1. They also gave the first long-lived (2k − 1)-renaming algorithm in this
model, but its time complexity depends on the size of the original name space.
Herlihy and Shavit [18] proved the same lower bound onm for one-shot renaming.
Herlihy and Rasjbaum [17] extended this result to systems that also provide set-
consensus primitives.

In asynchronous shared memory systems using only reads and writes, the
fastest adaptive one-shot (2k − 1)-renaming algorithm has O(k2) step complex-
ity [3]. There are also an adaptive one-shot (6k − 1)-renaming algorithm with
O(k log k) step complexity [8] and an adaptive one-shot O(k2)-renaming algo-
rithm with O(k) step complexity [22,8]. For adaptive long-lived renaming,O(k2)-
time suffices for O(k2)-renaming [1,4,9,20], but the fastest (2k − 1)-renaming al-
gorithm has O(k4) step complexity [7]. There are no fully-adaptive one-shot or
long-lived renaming algorithms in this model.

With a single object that supports Fetch&Increment, fully-adaptive one-shot
strong renaming is very easy: The object is initialized to 1. To get a name, a
process simply performs Fetch&Increment and uses the responses as its new
name [13].

For long-lived renaming, the only fully-adaptive algorithms use much stronger
primitives. Moir and Anderson [22] presented a fully-adaptive long-lived strong
renaming algorithm that uses an n-bit object storing the characteristic vector of
the set of occupied names. This object supports two operations, SetFirstZero
and bitwise-AND. SetFirstZero sets the first 0 bit in the object to 1 and returns
the index of this bit. This index becomes the new name of the process that
performed the operation. To release this name, the process sets this bit back
to 0 by performing bitwise-AND with an n-bit string that has a single 0 in
the corresponding position. A similar algorithm can be obtained using an n-bit
Fetch&Add object in a synchronous system. These algorithms have constant time
complexity. However, they use very large objects.
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There are a number of adaptive, long-lived strong renaming algorithms from
smaller, standard objects. For example, consider an array of n Test&Set objects,
each initialized to 0. To get a name, a process performs Test&Set on the array
elements, in order, until it gets response 0. Its name is the index of the element
from which it gets this response. To release the name i, a process performs
Reset on the i’th array element. This algorithm, presented in [22], performs
GetName in O(k) time and RelName in constant time. A similar algorithm uses
a dynamically allocated doubly-linked list implemented using Compare&Swap, in
which each node has a counter containing the number of larger names that are
currently occupied, being acquired or being released [16].

The same idea can be used to obtain an adaptive long-lived strong renaming
algorithm in a synchronous shared memory with �log2(U + 1)�-bit registers,
where U is the size of the original name space. This is because a Test&Set
object can be implemented from a �log2(U + 1)�-bit register in a synchronous
system in constant time: a process competes for an unset Test&Set object by
writing its name to a corresponding register.

Adaptive long-lived strong renaming can also be performed in O(log k) time.
Use a sequence of O(log n) complete binary trees. The first tree has height 1
and the height of each subsequent tree increases by 1. The leaves of these trees
correspond to the new names and a process gets a name by acquiring a leaf. Each
node in the tree contains a counter that denotes the number of free leaves in the
subtree rooted at that node. To acquire a leaf, a process accesses the counters
at the root of each tree until it finds one with a free leaf. It then proceeds down
the tree to find a free leaf, using the value of the counter at each node to guide
its search and decrementing the counters on this path as it descends. To release
its name, the process starts at the corresponding leaf and walks up the tree,
incrementing the counter in each node it visits, until it reaches the root. In a
synchronous system, each counter can be implemented by an O(log n)-bit object
that supports Fetch&Decrement and Increment. In an asynchronous system,
a bounded version of Fetch&Decrement is needed, which does not change the
value of the object when it is 0. (See [22] for details.)

Our Results. In this paper, we present two new fault tolerant and fully-adaptive
algorithms for long-lived strong renaming. They are the first such algorithms that
do not rely on storing a representation of the set of occupied names in a single
(very large) object. The first algorithm is asynchronous and uses Θ(logU)-bit
LL/SC objects, where U is the size of the original name space. Its step complexity
is O(c), where c is the number of processes concurrently performing GetName or
RelName. The second algorithm is synchronous, uses O(log n)-bit counters and
registers, and has O(log3 c/ log log c) step complexity. Both algorithms tolerate
any number of process crashes.

The key to both algorithms is an interesting sequential data structure that
supports GetName and RelName in constant time. We then apply a universal
adaptive construction by Afek, Dauber and Touitou [2] to obtain our fully-
adaptive asynchronous renaming algorithm. This is presented in Section 3. In
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Section 4, we develop our fully-adaptive synchronous algorithm. Directions for
future work are discussed in Section 5.

2 Models

We consider models of distributed systems in which n deterministic processes run
concurrently and communicate by applying operations to shared objects. Our im-
plementations make use of (multi-writer) registers, counters, and LL/SC objects.
A register stores an integer value and supports two operations: � ← read(R),
which reads register R and assigns the value to the local variable �, and
write R ← �, which writes the value of � into register R. A counter, C, sup-
ports read, write, � ← Fetch&Increment(C), and � ← Fetch&Decrement(C).
These last two operations assign the current value of C to � and then incre-
ment and decrement C, respectively. An LL/SC object, O, supports write and
� ← Load-Linked(O), which reads the value in object O and assigns it to �.
It also supports Store-Conditional O ← �, which stores the value of � to
O only if no store to O has occurred since the same process last performed
Load-Linked(O). In addition, this operation returns a Boolean value indicating
whether the store occurred. We assume that all operations supported by these
objects occur atomically.

In asynchronous systems, an adversarial scheduler decides the order in which
processes apply operations to shared objects. The adversary also decides when
processes begin performing new instances of GetName and RelName. In synchro-
nous systems, the order chosen by the adversary is restricted. Time is divided into
rounds. In each round, every process that is performing an instance of GetName
or RelName (and has not crashed) applies one operation. The order chosen by the
adversary can be different for different rounds. We assume that the adversary
only begins new instances of GetName or RelName in a round if no other instances
are in progress. We also assume that the adversary does not begin an instance
of GetName and an instance of RelName in the same round. These assumptions
can be removed by having a flag which processes update frequently to indicate
they are still working on the current batch of operations. Other processes wait
until a batch is finished before starting a new batch. This is discussed in more
detail in the full version of the paper.

In both models, we measure the complexity of an instance of GetName or
RelName by the number of operations it applies. A process that crashes simply
performs no further operations. Our algorithms tolerate any number of process
crashes.

3 Asynchronous Renaming

Afek, Dauber, and Touitou [2] have shown that, using LL/SC objects, fast
sequential implementations of an object suffice for obtaining fully-adaptive
implementations:
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Theorem 1. If an object has a sequential implementation in which an update
takes a constant number of steps, then it also has a fully-adaptive implementation
from LL/SC objects in an asynchronous system such that an update takes O(c)
steps, where c is the number of processes that update the object concurrently.

This is a special case of their universal construction, which maintains a queue
of operations to be performed on the object. To perform an operation, a process
records the operation it wants to perform and enqueues its identifier. Then it
repeatedly helps the processes at the head of the queue to complete their op-
erations, until its own operation is completed. Processes use Load-Linked and
Store-Conditional to agree on the results of each operation and how the value
of the object changes.

We consider a renaming object whose value is the subset of free names in
{1, . . . , n}. Here n is the number of processes in the system and, thus, an upper
bound on the number of names that will ever be needed. This object supports
two operations, GetName and RelName. If F is the set of free names, then an
instance of GetName removes and returns a name from F which is less than or
equal to the maximum number of participating processes at any point during
the execution of the instance. RelName(x) returns x to F . It can only be applied
by the last process that received x from a GetName operation.

Next, we describe a data structure for representing F and constant time se-
quential algorithms for performing GetName and RelName. From these, we get
our first fully-adaptive, long-lived, strong renaming implementation, by applying
Theorem 1.

Theorem 2. In an asynchronous system in which processes communicate us-
ing LL/SC objects, there is a fully-adaptive implementation of long-lived strong
renaming which performs GetName and RelName in O(c) steps.

The LL/SC objects used by this implementation must be able to store process
identifiers. If these identifiers are from an original name space of size U , then
the LL/SC objects must have at least �log2 U� bits.

Data Representation. The subset F ⊆ {1, . . . , n} of free names is represented by
two arrays of n registers, D and L, and two counters,M and F . (In the sequential
implementation, which is related to Hagerup and Raman’s quasidictionary [15],
the counters M and F can be replaced by registers.) The values in M , F , and
the entries of D are in {0, 1, . . . , n}. The entries in L are in {1, . . . , n}. The array
D is used as a direct access table. We say that name i is occupied if D[i] = 0. If
i is occupied and p was the last process that wrote 0 to D[i], then we say that
p occupies name i. The following invariant will be maintained:

At any point, if a process p has received name i as its response
from a call of GetName and, since then, has not called RelName(i),
then i is occupied by p.

(1)

A name that is neither occupied nor free is called reserved. Reserved names occur
while processes are performing GetName and RelName, and because of process
failures. A name i > M is free if and only if it is unoccupied.
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The variable F is the number of free names less than or equal to M and L[1..F ]
is an unsorted list of the free names less than or equal to M . In particular,

1 ≤ L[j] ≤ M for all 1 ≤ j ≤ F (2)

is an invariant of our data structure. We use L to denote the set of names in
L[1..F ]. Another important invariant is the following:

D
[
L[j]

]
= j for all 1 ≤ j ≤ F. (3)

This ensures that all free names are unoccupied, there are F different names in
L, and, if i ∈ L, then D[i] is a pointer to a location in L, between 1 and F , that
contains the name i. The function InL(i) checks whether name i is in L using
a constant number of operations. Specifically, if i ∈ L, then InL(i) returns D[i],
the unique index 1 ≤ j ≤ F such that L[j] = i. Otherwise, it returns 0.

Note that i ∈ F if and only if either (1 ≤ i ≤ M and i ∈ L) or
(i > M and D[i] > 0). There are two other invariants that are maintained
by the data structure:

M ≤ the number of participating processes, and (4)

the number of occupied names + the number of reserved names ≤ M. (5)

The data structure is illustrated in Figure 1. Blank entries denote arbitrary
values in {1, . . . , n}.

Initially, M and F are both 0 and all entries of D are positive, so F =
{1, . . . , n}. Furthermore, no processes are participating and there are no occupied
or reserved names. Hence, all the invariants are satisfied.

To prove correctness of GetName and RelName, we must prove that they always
maintain the invariants. Furthermore, the name a process receives as its response
from a call of GetName must be at most the maximum number of participating
processes at any point during its execution of this instance of GetName.

GetName. The sequential procedure for getting names is quite straightforward.
First, a process that wants to get a name, takes the tentative name M + 1 and
increments M . If this name is unoccupied, the process gets it. If it is occupied,
there must be a free name less than or equal to M , since, by Invariant 5, there
are at most M names that are occupied or reserved. Thus L is not empty. In
this case, the process decrements F and gets the name that was at the end of
the unsorted list. Finally, in both cases, the process occupies the name, x, it got
by writing 0 into the corresponding entry, D[x], in the direct access table.

Lemma 1. No step of GetName causes any invariant to become invalid. The
name returned by a call of GetName is bounded by the maximum number of
participating processes at any point during its execution.

The step complexity of GetName is O(1). A process that fails after incrementing
M , but before writing 0 to some element of D, may decrease the number of free
names, but does not increase the number of occupied names.
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Function GetName
local: x, j, z
x ← 1 + Fetch&Increment(M)
z ← read(D[x])
if z = 0 then

j ← Fetch&Decrement(F )
x ← read(L[j])

end
write D[x] ← 0
return(x)

6M

3F

4 5 6 7 8 9 10 11 121 2 3

0 0 0 0 00

2 5 3

D

L

Function RelName(x) /* sequential */
Input: name x
local: m, f , i, j

write D[x] ← n
m ← read(M)
f ← read(F )
if x ≤ m then

/* append x to L[1..F ] */

f ← f + 1
write D[x] ← f
write L[f ] ← x
write F ← f

end
j ← InL(m)
if j > 0 then

/* remove name m from L */

write F ← f − 1
i ← read(L[f ])
write D[i] ← j
write L[j] ← i

end
write M ← m − 1

Fig. 1. The functions GetName and RelName and an example of the data structure

Releasing Names Sequentially. The sequential algorithm for releasing a name
consists of two phases. In the first phase, a process changes the status of its name,
x, from occupied to free. It begins this phase by writing any positive number, for
example n, into D[x]. This changes x from being occupied to being unoccupied.
If x > M , then x is now free. Otherwise, the process has to append x to the end
of the list L[1..F ]. This is accomplished by writing x into L[F +1], writing F +1
into D[x] and then incrementing F . In the second phase, M is decremented.
Before doing so, if it is present, the name M must be removed from L. Suppose
that it is in location L[j] and that L[F ] = i. First F is decremented. Then D[i] is
updated to point to location j. Finally, i is copied into L[j], overwriting the value
M that was stored there. The order in which these operations are performed is
important to ensure that the data structure invariants are maintained.

Lemma 2. If a process occupying the name x calls the sequential version of
RelName(x), then none of its steps causes any invariant to become invalid.

The step complexity of this sequential version of RelName is O(1). A process that
fails after overwriting the 0 in the direct access table entry corresponding to its
name, but before decrementing M , decreases the number of occupied names, but
might not increase the number of free names.
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4 Synchronous Renaming

For synchronous renaming, the data representation is the same as in Section
3. The sequential version of GetName also works when multiple processes begin
performing new instances at the same time. Recall that, in our model, no in-
stances of GetName and RelName are performed concurrently. The correctness of
GetName follows, as in the sequential case, from Lemma 1.

Unfortunately, the sequential version of RelName does not work if there are
multiple processes simultaneously trying to release their names. For example,
several processes could write their names to the same location in L. The solution
to this problem is to assign distinct ranks to the processes that want to add
their names to L. Then the process with rank i can write its name into location
L[F + i].

The function Rank can be implemented using a counter, to which processes
perform write(1) and then Fetch&Increment. Similarly, CountAlive, which
counts the number of processes that perform it simultaneously, can be imple-
mented using a counter which is set to 0, incremented, and then read by each of
those processes.

If processes crash after they perform Rank, but before they write their names
into L, there will be garbage interspersed between the names that have been
written. One way to handle this is to write 0’s in the portion of L that will be
written to before processes write their names there. Afterwards, the names that
have been written can be compacted, by removing the 0’s that remain. To do this
and to solve other similar problems encountered when parallelizing RelName, we
use three auxilliary functions, WriteAll, Count, and Compact. They are based
on the synchronous DoAll algorithm by Georgiou, Russell, and Shvartsman [14].

WriteAll performs the set of instructions, write dest(i) ← val(i), for
1 ≤ i ≤ s, in a fault tolerant way. Here dest(i) denotes a destination
register and val(i) denotes the value to be written there. For example,
WriteAll(L[i+ f ] ← 0, 1 ≤ i ≤ s) writes 0’s to the s locations following L[f ].
Georgiou, Russell, and Shvartsman [14, Theorem 8] give an implementation of
WriteAll from multi-writer registers which takeO(log2 s/ log log s) steps to com-
plete, provided at least s/2 of the processes that are simultaneously executing it
do not fail. However, if too many processes fail, the remaining processes could
take too long to complete all s tasks.

To ensure that RelName remains fully-adaptive, we modify the function
WriteAll(dest(i) ← val(i), 1 ≤ i ≤ s) so that it returns whenever fewer than
s/2 processes remain. This is accomplished by having processes perform “if
CountAlive < s/2 then return” after every constant number of steps. If
WriteAll terminates in this way, there are no guarantees about which, if any,
of the s tasks have been performed. In this case, the call returns ∞ and we say
that it fails. Otherwise, WriteAll returns s.

Note that it does not suffice for processes to wait for a convenient place in
the code, such as the end of a phase, to check whether too many processes have
crashed. For example, if there is one process that wants to perform GetName just
after all but one of the s processes performing RelName crash, then the number
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of participating processes, c, is 2. If the process has to wait to start performing
GetName until the one surviving process completes a phase (whose complexity
depends on s), the resulting implementation will not be fully-adaptive.

The function Count(z(i), 1 ≤ i ≤ s) returns the number of values of
i ∈ {1, . . . , s} for which the predicate z(i) is true, provided that at least s/2
of the processes that simultaneously begin executing this function, complete it.
Otherwise, it returns ∞ and we say that it fails. All processes that complete
a particular instance of Count return the same value. The implementation of
Count is very similar to WriteAll and it has the same performance [23, Theo-
rem 5.9].

The function Compact(A, z(i), 1 ≤ i ≤ s) compacts the elements A[i] of the
array A[1..s] such that the predicate z(i) is true, so that these elements are
stored contiguously starting from the beginning of A. If at least s/2 of the
processes that simultaneously begin executing this function, complete it, then
the processes return the number of i ∈ {1, . . . , s} for which z(i) is true. If not,
the call fails, returning the value ∞, and the contents of A[1..s] can be arbitrary.
Compact has the same performance as WriteAll.

Lemma 3. If val(i), dest(i), and z(i) can be computed by a process in a constant
number of steps, then there are implementations of Compact(A, z(i), 1 ≤ i ≤ s),
Count(z(i), 1 ≤ i ≤ s), and WriteAll(dest(i) ← val(i), 1 ≤ i ≤ s) that have
O(log2 s/ log log s) step complexity and return within a constant number of steps
when fewer than s/2 of the processes which simultaneously began executing the
same instance remain.

4.1 Releasing Names

The procedure for releasing names consists of two phases. In the first phase, a
process changes the status of its name x. If x > M , then it can simply write n
(or any other value larger than 0) into D[x] and the name becomes free right
away. Otherwise, the process has to insert the name into list L. This is achieved
by a call to the procedure InsertInL(x). If several processes call InsertInL,
but some of them fail, then the number of names that are inserted into L will
be at least the number of these processes that complete their calls. Each name
inserted into L will be a name that was occupied by one of the calling processes.
However, it is not necessarily the case that the inserted names include all those
that were occupied by the processes completing their calls.

In the second phase, the processes fix the invariants that involve M . For
the upper bound on M in Invariant (4), we have to reduce M by at least s,
if s processes complete their call to RelName (and thus stop participating).
To avoid violating the lower bound on M in Invariant (5), we cannot reduce
M by more than �, if � processes successfully complete the first phase. More-
over, before we can reduce M from m to m′, we have to remove all names in
{m′ + 1, . . . ,m} from the list L to maintain Invariant (2). This procedure of
removing the desired names from L and reducing M is performed by the pro-
cedure RemoveLargeNames. The implementation guarantees that if � processes
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Function RelName(x)

/* synchronous */
Input: name x
local: m, success

m ← read(M)
if x ≤ m then

InsertInL(x)
else

write D[x] ← n
end
RemoveLargeNames

Function InsertInL(x)
Input: name x
local: f , i, s
register: R

f ← read(F)

repeat
s ← CountAlive

WriteAll(L[f + i] ← 0, 1 ≤ i ≤ s)
i ← Rank

write L[f + i] ← x
a ← Compact(L[f + 1..f + s], L[f + i] > 0,

1 ≤ i ≤ s)
WriteAll D L[f + i] ← f + i, 1 ≤ i ≤ a

until CountAlive ≥ a/2
write F ← f + a

call RemoveLargeNames during their call to RelName and s of them finish, then
M is reduced by at least s and at most �.

Lemma 4. Suppose a set of processes, each occupying a name with value at
most M , simultaneously call InsertInL. If � of these processes complete that call,
then at least � names are added to L. The invariants remain true throughout the
execution of the call. At any point during the execution, if �′ of these processes
have not failed, then the call terminates within O(log3 �′/ log log �′) steps.

Lemma 5. Suppose a set of � processes simultaneously call RemoveLargeNames.
If s of these processes complete their call, then m − � ≤ m′ ≤ m − s,
where m and m′ are the values of M immediately before and after the call to
RemoveLargeNames. The invariants remain true throughout the execution of the
call. At any point during the execution, if �′ of these processes have not failed,
then the call terminates within O(log3 �′/ log log �′) steps.

The correctness of RelName follows from these lemmas. In the remainder of this
section, we show how to implement InsertInL and RemoveLargeNames.

Inserting into L. In Procedure InsertInL, processes first write their names
to distinct locations following the end of the list L[1..F ] and update the entries
in the direct access table D to point to these names. Multiple attempts may
be needed, due to process failures. Once they succeed, the processes increment
register F , which moves these names into L.

In each attempt, a process first uses CountAlive to find the number of sur-
viving processes, s, that want to free their names. Then, using WriteAll, array
elements L[F +1], . . . , L[F + s] are initialized to 0. Next, each of these processes
writes its name into L[F + i], where i is a unique rank between 1 and s as-
signed to it by Rank. Since some of these processes may have failed prior to
writing their names, a, the number of names that were written, may be less
than s. Compact is performed to compact L[F +1..F + s], so that these a names
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are stored in L[F + 1..F + a]. Finally, another WriteAll is performed, setting
D
[
L[F + i]

]
= F + i, for i = 1, . . . , a, to ensure that Invariant (3) will hold

after F is increased to F + a. If fewer than a/2 processes complete the attempt,
another attempt is made with s decreased by at least a factor of 2.

If at least a/2 processes complete the attempt, then neither of the calls to
WriteAll nor the call to Compact failed. In this case, F is incremented by a,
moving the a names that were appended to L into L. Note that a is the number
of processes that write their names into L[F + 1..F + s] during the last attempt
and, hence, it is an upper bound on the number of processes that complete the
call.

By Lemma 3, each attempt that starts with s processes takes O(log2 s/
log log s) steps. Since s decreases by at least a factor of 2 each subsequent at-
tempt, there are at most log s attempts, for a total of O(log3 s/ log log s) steps,
from this point on. If, at any point during an attempt, more than three quarters
of the processes that started the attempt have failed, then within a constant
number of steps, the attempt will fail.

Removing Large Names from L. Procedure RemoveLargeNames is called simulta-
neously by every process performing RelName, after they no longer occupy their
names. Thus, processes with names greater than M must wait before they be-
gin RemoveLargeNames, until the processes that are performing InsertInL are
finished.

First, consider an execution in which s processes call RemoveLargeNames and
none of them crash. In this case, M will be reduced to M − s after all the large
names, that is, those which are greater than M − s, are removed from L. Names
M − s or less will be called small.

After processes store the value of F in their local variable f , they determine
the number, a, of large names in L[1..f ] using Count. Next, they copy the last a
names in L[1..f ] to a temporary array H1 using WriteAll. Then, they remove
the large names from H1 using Compact. At this point, H1[1..b] consists of all
the small names in the last a locations of L[1..f ]. When F is decreased to f − a,
these small names are no longer in L and become reserved, instead of free.

The number of large names that remain in L is exactly equal to b, the number
of small names in H1. These large names are all between M − s + 1 and M , so
they and their locations in L[1..f − a] can be found from D[M − s+1..M ] using
WriteAll and Compact. They are stored in the temporary arrays H2[1..b] and
G[1..b], respectively.

The final steps are to overwrite each of the b large names in L[1..f − a] with
a different name in H1[1..b] and then decrement M by s. But, to ensure that
Invariant (3) is not violated, the direct access table entries, D[j], of the names
j ∈ H1[1..b] should first point to the b different locations in L[1..f − a] that
contain large names. This is done using WriteAll. Then each name j ∈ H1[1..b]
can be written to location L[D[j]], also using WriteAll.

Difficulties arise when processes crash. One problem is that this changes s
and, hence, some large names become small names. If too many processes fail
when the small names in L[f − a + 1..f ] are copied into H1[1..b], the phase is
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Function RemoveLargeNames

local: f , a, b, e, e′, i, j, m
register: G[1 . . . n], T [1 . . . n], H1[1 . . . n], H2[1 . . . n]

m ← read(M)
f ← read(F )
repeat

s ← CountAlive

a ← Count InL(m − s + 1) > 0, 1 ≤ i ≤ s
WriteAll(H1[i] ← L[f − a + i], 1 ≤ i ≤ a)
b ← Compact(H1, H1[i] ≤ m − s, 1 ≤ i ≤ a)

until b �= ∞
write F ← f − a
repeat

repeat
s ← CountAlive

WriteAll(G[i] ← D[m − s + i], 1 ≤ i ≤ s)
b ← Compact(G, InL(m − s + i) > 0, 1 ≤ i ≤ s)
WriteAll H2[i] ← L G[i] , 1 ≤ i ≤ b
e ← WriteAll D H1[i] ← G[i], 1 ≤ i ≤ b

until e �= ∞
e ← WriteAll L G[i] ← H1[i], 1 ≤ i ≤ b
if e = ∞ then

repeat
s ← CountAlive

WriteAll(T [i] ← H1[i], 1 ≤ i ≤ s)
h ← Compact(T, InL(G[i]) = 0, 1 ≤ i ≤ s)
WriteAll(T [h + i] ← H2[i], 1 ≤ i ≤ s)
Compact(T [h + 1..h + s], InL(G[i]) = 0, 1 ≤ i ≤ s)
e′ ← Compact(T, T [i] ≤ m − s, 1 ≤ i ≤ s)

until e′ �= ∞
repeat

s ← CountAlive

b ← WriteAll(H1[i] ← T [i], 1 ≤ i ≤ min{e′, s})
until b �= ∞

end
until e �= ∞
write M ← m − s

simply repeated with s decreased by at least a factor of 2. The same is true for
the second phase, in which large names in L[1..f − a] are copied into H2, their
locations are copied into G, and the direct entry table entries for elements in H1

are made to point to these locations.
However, a failure of the call to WriteAll, in which small names in H1 over-

write large names in L[1..f − a] means that an unknown subset of these writes
have occurred. In this case, H1 has to be fixed up before starting again from the
beginning of the second phase, with s decreased by at least a factor of 2.

Only the small name H1[j] can overwrite the large name H2[j] in L. Therefore,
exactly one ofH1[j] andH2[j] is in L[1..f−a]. So, to fix upH1, the first s elements
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of each of H1 and H2 are copied to a temporary array T , using WriteAll. Then
names in L[1..f−a] and large names are removed from T using Compact. Because
processes can fail during the construction of T , all this has to be repeated, with
s decreased by at least a factor of 2, until none of the calls to WriteAll and
Compact fail.

Finally, a sufficiently long prefix of T is copied back into H1. This is also
repeated, with s decreased by at least a factor of 2, until it does not fail.

Theorem 3. In a synchronous system in which processes communicate using
counters and registers, there is a fully-adaptive implementation of long-lived
strong renaming which performs GetName and RelName in O(log3 c/ log log c)
steps.

5 Conclusions

In this paper, we described the first fault-tolerant fully-adaptive implementations
of long-lived strong renaming that do not use base objects with Ω(n) bits. One al-
gorithm is asynchronous and uses LL/SC objects in addition to registers. Because
processes help one another to get new names, the original names of processes are
used for identification purposes. The other algorithm is synchronous, but uses
counters and registers. Moreover, its step complexity is substantially smaller:
polylogarithmic instead of linear in c. This algorithm never uses the original
names of processes, so it also works for systems of anonymous processes.

Fully adaptive one-shot renaming is very easy to implement using a counter.
Hence, it was natural to use a shared memory system with counters when trying
to get a fully-adaptive long-lived renaming implementation. Two specific open
questions arise from this work: First, can more efficient or simpler fully-adaptive
long-lived renaming algorithms be obtained using other strong memory prim-
itives, for example Compare&Swap? Second, are there fully-adaptive renaming
algorithms or more efficient adaptive renaming algorithms using only registers?

Acknowledgements

We are grateful to Hagit Attiya for helpful discussion. This research was sup-
ported by NSERC, the Scalable Synchronization Group at Sun Microsystems,
and the German Research Foundation (grant WO1232/1-1).

References

1. Y. Afek, H. Attiya, A. Fouren, G. Stupp, and D. Touitou. Long-lived renaming
made adaptive. In Proceedings of the 18th Annual ACM Symposium on Principles
of Distributed Computing, pages 91–104, May 1999.

2. Y. Afek, D. Dauber, and D. Touitou. Wait-free made fast. In Proceedings of
the Twenty-Seventh Annual ACM Symposium on the Theory of Computing, pages
538–547, May 1995.



Fully-Adaptive Algorithms for Long-Lived Renaming 427

3. Y. Afek and M. Merritt. Fast, wait-free (2k − 1)-renaming. In Proceedings of
the 18th Annual ACM Symposium on Principles of Distributed Computing, pages
105–112, 1999.

4. Y. Afek, G. Stupp, and D. Touitou. Long lived adaptive splitter and applications.
Distributed Computing, 15:67–86, 2002.

5. H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and R. Reischuk. Renaming in an
asynchronous environment. Journal of the ACM, 37(3):524–548, 1990.

6. H. Attiya and T. Djerassi-Shintel. Time bounds for decision problems in the
presence of timing uncertainty and failures. Lecture Notes in Computer Science,
725:204–214, 1993.

7. H. Attiya and A. Fouren. Polynomial and adaptive long-lived (2k − 1)-renaming.
Lecture Notes in Computer Science, 1914:149–159, 2000.

8. H. Attiya and A. Fouren. Adaptive and efficient algorithms for lattice agreement
and renaming. SIAM Journal on Computing, 31(2):642–664, 2001.

9. H. Attiya and A. Fouren. Algorithms adaptive to point contention. Journal of the
ACM, 50(4):444–468, 2003.

10. H. Attiya and J. Welch. Distributed Computing Fundamentals, Simulations, and
Advanced Topics (2nd Ed.). Wiley, 2004.

11. A. Bar-Noy and D. Dolev. Shared-memory vs. message-passing in an asynchronous
distributed environment. In Proceedings of the 8th Annual ACM Symposium on
Principles of distributed computing, pages 307–318, Aug. 1989.

12. J. Burns and G. Peterson. The ambiguity of choosing. In Proceedings of the 8th
Annual Symposium on Principles of Distributed Computing, pages 145–158, Aug.
1989.

13. S. Chaudhuri, M. Herlihy, and M. Tuttle. Wait-free implementations in message-
passing systems. Theoretical Computer Science, 220(1):211–245, 1999.

14. C. Georgiou, A. Russell, and A. A. Shvartsman. The complexity of synchronous
iterative do-all with crashes. Distributed Computing, 17:47–63, 2004.

15. T. Hagerup and R. Raman. An efficient quasidictionary. In Proceedings of SWAT,
volume 2368 of Lecture Notes in Computer Science, pages 1–18, 2002.

16. M. Herlihy, V. Luchangco, and M. Moir. Space- and time-adaptive nonblocking
algorithms. Electr. Notes Theor. Comput. Sci, 78, 2003.

17. M. Herlihy and S. Rajsbaum. Algebraic spans. Math. Struct. in Comp. Science,
10:549–573, 2000.

18. M. Herlihy and N. Shavit. The topological structure of asynchronous computability.
Journal of the ACM, 46(6):858–923, Nov. 1999.

19. M. Herlihy and M. Tuttle. Lower bounds for wait-free computation in message-
passing systems. In Proceedings of the 9th Annual ACM Symposium on Principles
of Distributed Computing, pages 347–362, Aug. 1990.

20. M. Inoue, S. Umetani, T. Masuzawa, and H. Fujiwara. Adaptive long-lived O(k2)-
renaming with O(k2) steps. Lecture Notes in Computer Science, 2180:123–133,
2001.

21. M. Moir. Fast, long-lived renaming improved and simplified. Science of Computer
Programming, 30(3):287–308, Mar. 1998.

22. M. Moir and J. Anderson. Wait-free algorithms for fast, long-lived renaming.
Science of Computer Programming, 25(1):1–39, Oct. 1995.

23. A. A. Shvartsman. Achieving optimal CRCW PRAM fault-tolerance. Information
Processing Letters, 39(2):59–66, 1991.



Constructing Shared Objects That Are Both
Robust and High-Throughput

Danny Hendler∗ and Shay Kutten∗∗

Faculty of Industrial Engineering and Management,
Technion, Haifa, Israel

Abstract. Shared counters are among the most basic coordination
structures in distributed computing. Known implementations of shared
counters are either blocking, non-linearizable, or have a sequential bottle-
neck. We present the first counter algorithm that is both linearizable, non-
blocking, and can provably achieve high throughput in semisynchronous
executions. The algorithm is based on a novel variation of the software
combining paradigm that we call bounded-wait combining. It can thus be
used to obtain implementations, possessing the same properties, of any ob-
ject that supports combinable operations, such as stack or queue. Unlike
previous combining algorithms where processes may have to wait for each
other indefinitely, in the bounded-wait combining algorithm a process only
waits for other processes for a bounded period of time and then ‘takes des-
tiny in its own hands’.

In order to reason rigorously about the parallelism attainable by
our algorithm, we define a novel metric for measuring the throughput
of shared objects which we believe is interesting in its own right. We
use this metric to prove that our algorithm can achieve throughput of
Ω(N/ log N) in executions where process speeds vary only by a constant
factor, where N is the number of processes that can participate in the
algorithm.

We also introduce and use pseduo-transactions - a technique for con-
current execution that may prove useful for other algorithms.

1 Introduction

At the heart of many distributed systems are shared objects - data structures
that may be concurrently accessed by multiple processes. The most widely-used
correctness condition for shared objects is linearizability, introduced by Herlihy
and Wing [14]. Intuitively, linearizability requires that each operation appears
to take effect instantaneously at some moment between its invocation and re-
sponse. Lock-free implementations of shared objects require processes to coordi-
nate without relying on mutual exclusion. They are considered more robust, as
they avoid the inherent problems of locking, such as deadlock, convoying, and
priority inversion.
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A shared counter is an object that holds an integer and supports the
fetch&increment operation for atomically incrementing the counter and return-
ing its previous value. Shared counters are among the most basic coordination
structures in distributed computing. Consequently, efficient implementations of
shared counters received considerable attention in the literature. In spite of these
efforts, existing counter implementations are either non-linearizable, blocking, or
inherently sequential. This paper presents the first counter algorithm that is both
linearizable, nonblocking, and highly parallel.

If the hardware supports the fetch&increment primitive, then the simplest
way to implement a counter, shared by N processes, is by using the following
trivial algorithm: all processes share a single base object on which they perform
the fetch&increment operation to get a number. Although this central counter is
both linearizable and nonblocking (it is, in fact, wait-free [11]), it has a sequential
bottleneck. Specifically, the worst-case time complexity of this implementation
is Ω(N): if all processes attempt to apply their operations simultaneously to the
central counter, the last to succeed incurs a delay linear in N while waiting for
all other earlier processes to complete their operations.

Fich et al. [4] proved an Ω(N) time lower bound on obstruction-free [12]
implementations of a wide class of shared objects, that includes counters, stacks
and queues. This lower bound establishes that no nonblocking counter algorithm
can improve on a central counter in terms of worst-case time complexity. This
does not preclude, however, the existence of nonblocking counter algorithms
that achieve better worst-case time complexity in semisynchronous executions.
Indeed, the worst-case time complexity of our algorithm in such executions is
O(logN), yielding maximal throughput of Ω(N/logN).

To allow parallelism, researchers proposed using highly-distributed coordina-
tion structures such as counting networks. Counting networks were introduced by
Aspnes et al. [2]. Though they are wait-free and allow parallelism, the counting
networks of [2] are non-linearizable. Herlihy et al. demonstrated that counting
networks can be adapted to implement wait-free linearizable counters [13]. How-
ever, the first counting network they present is blocking while the others do not
provide parallelism, as each operation has to access Ω(N) base objects.

A well-established technique for constructing highly parallel shared objects is
that of combining. Goodman et al. [5] and Yew et al. [19] used combining for im-
plementing fetch&add. In both these algorithms, the current value of the counter
is stored at the root of a binary tree. A process applies its operation starting
from its leaf and climbing along the path to the root. Whenever two processes
meet at an internal node, they combine their operations by generating a single
request for adding the sum of both requests. One of these processes proceeds
in climbing the tree while the other is blocked and waits at the node. When a
process reaches the root, it adds to the central counter the sum of all the requests
with which it combined and then starts a process of propagating responses back
to the blocked processes. Combining trees can be used to implement linearizable
counters and allow high parallelism but are blocking.
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Shavit and Zemach introduce diffracting trees [18] to replace the ”static” tree
used in software combining with a collection of randomly created dynamic trees.
Diffracting trees can be used to implement shared counters that are linearizable
and allow parallelism but are blocking. Hoai Ha et al. introduce another version
of (blocking) adaptive combining trees [8].

We introduce a variation on the software combining paradigm, that we call
bounded-wait combining. Unlike in previous software combining algorithms,
where processes may have to wait indefinitely for other processes, in bounded-
wait combining, a process only waits for other processes for a bounded period
of time and then ‘takes destiny in its own hands’. As long as process speeds do
not differ by more than some known fixed factor, processes wait for each other,
eliminating contention for memory and achieving high parallelism. When the ex-
ecution is asynchronous, however, processes fall back to an asynchronous modus
operandi where high parallelism cannot be guaranteed but progress is. The re-
sult is the first implementation of a linearizable counter that is both nonblocking
and provably achieves high parallelism in semisynchronous executions.

Our algorithm uses Greenwald’s two-handed emulation mechanism [7] to im-
plement a construct we term pseudo-transactions. Pseudo-transactions are weaker
than ordinary transactions in that they are not atomic but they permit higher par-
allelism. Though they cannot replace transactions in general, we believe pseudo-
transactions may prove useful also for other algorithms.

Geenwald’s two-handed emulation is known to be sequential. However, We use
it to implement pseudo-transactions by allowing different processes to operate on
different two-handed emulation objects in parallel. The two-handed emulation
mechanism uses the double compare-and-swap (DCAS) primitive. DCAS can be
emulated efficiently by single-word compare-and-swap (CAS) by using, e.g., the
algorithm of Harris et al. [9].

Bounded-wait combining can be adapted to work for any combinable opera-
tion [6,15] and can thus be used to implement nonblocking and highly parallel
linearizable stacks and queues. We are not aware of any other stack or queue
algorithm to possess these properties.

Hendler et al. presented the elimination-backoff stack, a nonblocking lineariz-
able stack algorithm [10]. Their empirical results show that their algorithm
achieves high parallelism in practice; nevertheless, it does not provide any deter-
ministic guarantee of parallelism. Moir et al. used ideas similar to these of [10]
to obtain a queue algorithm that possesses the same properties [17].

In order to be able to reason rigorously about the parallelism attainable by
our algorithm, we define a novel metric for the throughput of shared objects that
may be interesting in its own right. By throughput, we mean the ratio between
the number of operations that complete in an execution and the execution’s
duration. The key to this metric is a definition of time that assigns identical times
to events that access different base objects and may be executed concurrently.
To the best of our knowledge, this is the first formal metric for the throughput
of shared objects. We use this metric to prove that our algorithm can achieve
maximal throughput of Ω(N/ logN) in semisynchronous executions.
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Model and Definitions. We consider a standard model of an asynchronous shared
memory system, in which a finite set of asynchronous processes communicate by
applying operations to shared objects [3].

Shared objects are implemented from base objects, such as read/write reg-
isters, provided by the system. A configuration specifies the value of each base
object and the state of each process. An initial configuration is a configuration in
which all the base objects have their initial values and all processes are in their
initial states. To apply their operations, processes perform a sequence of steps.
Each step consists of some local computation and one shared memory event,
which is an application of a synchronization primitive (such as read, write, or
read-modify-write) to a base object.

An execution is a sequence of events that starts from an initial configuration,
in which processes apply events and change states (based on the responses they
receive from these events) according to their algorithm.

An operation instance is an application of a specific operation with specific
arguments to a specific object made by a specific process. If the last event of an
operation instance Φ has been applied in an execution, we say that Φ completes in
E. We define by completed(E) the number of operation instances that complete
in E. We say that a process p is active after execution E if p is in the middle of
performing some operation instance Φ, i.e. p has applied at least one event while
performing Φ in E, but Φ does not complete in E. If p is active after E, then it
has exactly one enabled event, which is the next event p will apply.

An execution E is k-synchronous if the speeds of any two processes that
participate in it vary by a factor of at most k. Formally, we say that E is k-
synchronous if, for any two distinct processes p and q and for any execution
E = E0E1E

′, if p has an enabled event after E0 and E1 contains k + 1 events
by q then E1 contains at least one event by p.

In addition to read and write, our algorithm uses the compare-and-swap (CAS)
and the and double-compare-and-swap (DCAS) primitives. (The algorithm can
be implemented on systems that support only read, write and CAS by using a
DCAS emulation from CAS. See, e.g., [9].)

CAS(w, old, new) writes the value new to memory location w only if its
value equals old and, in this case, returns true to indicate success; otherwise it
returns false and does not change the value of w. DCAS operates similarly on
two memory locations.

The rest of the paper is organized as follows. Section 2 provides an overview
of the algorithm. Section 3 describes the synchronous part of the algorithm in
more detail. Section 4 describes the procedures that forward operation requests
and dispatch responses. Section 5 introduces our throughput metric. Concluding
remarks are brought in Section 6

2 An Overview of the BWC Algorithm

In this section, we provide a high-level description of the bounded-wait combining
(henceforth, BWC) algorithm. It can be used to provide a linearizable, nonblock-
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constant LEFT=0, RIGHT=1, FREE=⊥
structure Range {int from, int till}, typedef RRQ queue of Ranges
structure Reqs {int dir, int num}, typdef REQQ queue of Reqs
structure Node {
Node* parent, Node* children[2], int reqs initially 0,
int reqsTaken[2] initially {0,0}, REQQ pending initially EMPTY, RRQ resp initially EMPTY,
boolean inPhase initially false,boolean collected initially false, int slock initially FREE,
int phaseTop initially null

}
Node* nodes[2N-1]

Fig. 1. The structure of BWC combining-tree nodes

ing and high-throughput implementation of any combinable operation [6,15]. For
the sake of presentation simplicity, however, we describe it in the context of im-
plementing a shared counter, supporting the Fetch&increment operation.

The algorithm uses a binary tree denoted T . The value of the counter is
stored at T ’s root. Each leaf of T is statically assigned to a single process. Every
node of T consists of an instance of the Node structure shown in Figure 1, with
the parent and children fields storing pointers to a node’s parent and children,
respectively. (Other node fields are described in the appropriate context.)

The BWC algorithm is parameterized: it uses an asynchrony tolerance para-
meter k that determines the extent to which processes are willing to wait for
other processes. Each node contains a synchronous lock, which we simply call
an slock. Whenever node n’s slock equals the id of some process q, we say that
n is owned by q; otherwise, we say that n is free. A leaf node is always owned
by the process to which it is assigned. Slocks are respected by processes in k-
synchronous executions, but are disregarded in asynchronous executions (i.e. in
executions that are not k-synchronous).

For simplicity of pseudo-code presentation, we assume that variable scoping
is dynamic, i.e. called procedures are in the scope of the calling procedure’s
local variables. The pseudo-code of the main procedure is shown in Figure 2.
Initially, the algorithm behaves ‘optimistically’, in the sense that it operates
under the assumption that the execution is k-synchronous. Whenever a process
executes this part of the algorithm (implemented by the SynchPhase procedure,
see Section 3), we say that it operates in a synchronous mode. As long as process
speeds do not vary ‘too much’, processes operate in synchronous modes only and
the algorithm guarantees low memory contention and high throughput.

While operating synchronously, computation proceeds in synchronous phases.
In phase i, a subset of the participating processes construct a subtree T i of T ,
that we call a phase subtree. For every process q that participates in phase i, T i

contains all the nodes on the path from q’s leaf node to the root.
Participating processes then use T i as an ad-hoc combining tree. Each process

q, participating in phase i, owns a path of nodes in T i starting with q’s leaf node
and ending with the highest node along the path from q’s leaf to the root whose
slock q succeeded in acquiring. We denote q’s path in T i by Pq

i .
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After T i is constructed, it is used as follows. Each participating process q
starts by injecting a single new operation request at its leaf node. Processes then
cooperatively perform the task of forwarding (and combining) these requests up
T i. Process q is responsible for the task of forwarding requests from the sub-trees
rooted at the nodes along Pq

i . It may have to wait for other processes in order
to complete this task. If the execution remains k-synchronous then, eventually,
all collected requests arrive at the highest node of Pq

i . If that node is not the
root, then q now has to wait, as the task of forwarding these requests farther up
T i is now the responsibility of another process whose path ends higher in T i.

Finally, the operation requests of all participating processes arrive at the root.
Once this occurs, the single process r whose path Pr

i contains the root increases
the counter value stored at the root by the total number of requests collected.
Process r then initiates the task of dispatching operation responses (which are
natural numbers in the case of the Fetch&Inc operation) down T i. We call r
the phase initiator. If the execution remains k-synchronous then eventually a
response arrives at the leaf of each participating process.

A challenge in the design of the algorithm was that of achieving high through-
put in k-synchronous executions while guaranteeing progress in all executions.
To that end, the BWC algorithm is designed so that processes can identify sit-
uations where processes with which they interact are ‘too slow’ or ‘too fast’. A
detailed description of the SynchPhase procedure appears in Section 3.

After waiting for a while in vain for some event to occur, a process q may
conclude that the execution is not k-synchronous. If and when that occurs, q
falls back on an asynchronous mode. Once one or more processes start operating
in asynchronous modes, high contention may result and high throughput can no
longer be guaranteed but progress is.

The asynchronous part of the BWC algorithm is simple and its pseudo-code
is omitted from this extended abstract for lack of space and can be found in
the full paper. We now provide a short description. When process q shifts to an
asynchronous mode, it injects an operation request at its leaf node, if it hadn’t
done so while operating synchronously. Process q then climbs up the tree from
its leaf to the root. For every node n along this path, q forwards the requests
of n’s children to n. After it reaches the root, q descends down the same path
to its leaf node, dispatching responses along the way. Process q does not respect
node slocks while traversing this path in both directions. However, it releases the

Fetch&Inc()
1 boolean injected=false
2 int rc=SynchPhase()
3 if (rc �= ASYNCH)
4 return rc
5 else
6 return AsynchFAI()

Fig. 2. The main procedure of the BWC algorithm
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slock of every node it descends from. (This guarantees that if the system reaches
quiescence and then becomes semisynchronous, processes will once more operate
in synchronous modes.)

Process q keeps going up and down this path until it finds a response in its
leaf node. We prove that the BWC algorithm guarantees global progress even in
asynchronous executions, hence it is nonblocking.

Actual operation-requests combining and response-propagation is performed
by the FwdReqs and SendResp combining procedures (see Section 4). The BWC
algorithm allows different processes to apply these procedures to different nodes
of T concurrently. In asynchronous executions, it is also possible that multiple
processes concurrently attempt to apply these procedures to the same node. E.g.,
multiple processes may concurrently attempt to apply the FwdReqs procedure
to node n for combining the requests of n’s children into n.

The correctness of the algorithm relies on verifying that each such procedure
application either has no effect, or procedure statements are applied to n in order
without intervening writes resulting from procedures applications to other nodes.
Moreover, the data-sets accessed by procedures that are applied concurrently to
different nodes are, in general, not disjoint: a procedure applied to node n may
have to read fields stored at n’s parent or children. To permit high throughput,
these reads must be allowed even if other processes apply their procedures to
these nodes concurrently. It follows that procedures applied to nodes cannot be
implemented as transactions. The BWC algorithm satisfies these requirements
through an infrastructure mechanism that we call pseudo-transactions. We now
describe the pseudo-transactions mechanism in more detail.

2.1 Pseudo-transactions

Transactions either have no effect or take effect atomically. In contrast, con-
current reads are allowed while a pseudo-transaction executes but intervening
writes are prohibited. Intuitively, pseudo-transactions suffice for the BWC algo-
rithm because the information stored to node fields ‘accumulates’. Thus reads
that are concurrent with writes may provide partial data but they never provide
inconsistent data. A formal definition of pseudo-transactions follows.

Definition 1. We say that a procedure P is applied to an object n as a pseudo-
transaction if each application of P either has no effect or the statements of P
are applied to n in order and no field written by a statement of P is written by
a concurrently executing procedure.

The following requirements are met to ensure the correctness, liveness, and high-
parallelism of the BWC algorithm:

1. Combining correctness: The combining procedures FwdReqs and
SendResp are applied to nodes as pseudo-transactions.

2. Node progress: Progress is guaranteed at every node. In other words, after
some finite number of statements in procedures applied to n are performed,
some procedure applied to n terminates.
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The BWC algorithm meets the above requirements by using the following two
mechanisms. First, We treat each node (in conjunction with the FwdReqs and
SendResp combining procedures) as a separate object. We apply Greenwald’s
two-handed emulation to each of these objects separately [7]. A detailed descrip-
tion of two-handed emulation is beyond the scope of this paper, and the reader is
referred to [7]. We provide a short description of the emulation in the following.

Greenwald’s two-handed emulation uses the DCAS operation to ensure that
the statements of an applied procedure execute sequentially. To apply a proce-
dure to object n, a process first tries to register a procedure-code and procedure
operands at a designated field of n by using DCAS. Then, the process tries to
perform the read and write operations of the procedure one after the other. Each
write to a field of n uses DCAS to achieve the following goals: (1) verify that
the write has not yet been performed by another process, (2) increment a virtual
“program counter” in case the write can be performed, and (3) perform the write
operation itself.

In addition to using two-handed emulation, we have carefully designed the
node structure so that applications of the FwdReqs or SendResp combining pro-
cedures to different nodes never write to the same field (see Section 4 for more
details).

Two-handed emulation guarantees that a combining procedure applied to
node n either has no effect (if its registration failed) or its statements are per-
formed with no intervention from other procedures applied to n. As procedures
applied to different nodes never write to the same field, combining procedures
are applied as pseudo-transactions and requirement 1. above is satisfied.

Applying two-handed emulation to an object n results in a nonblocking im-
plementation, on condition that procedures applied to other nodes cannot fail
DCAS operations performed by a procedure applied to n. Since procedures ap-
plied to different nodes never write to the same field, none of them can fail the
other. Thus, Requirement 2. is also satisfied.

3 The Synchronous Modus Operandi

This part of the algorithm is implemented by the SynchPhase procedure (see
pseudo-code in Figure 3) which iteratively switches over the mode local variable.
Variable mode stores a code representing the current synchronous mode.

In the following description, q is the process that performs SynchPhase. The
local variable n stores a pointer to the current node, i.e. the node currently
served by q. Initially, n points to q’s leaf. In some of the modes (UP, FOR-
WARD REQUESTS and AWAIT RESP), q may have to wait for other pro-
cesses. Before shifting to any of these modes, the local variable timer is initialized
to the number of iterations q should wait before it falls back to an asynchronous
mode. In the ROOT WAIT mode, q waits so that other processes can join the
phase it is about to initiate. In all of these cases, timer is initialized to some
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appropriately selected function of k and logN . In the specification of these wait-
ing times, M denotes the maximum number of events applied by a process in a
single iteration of the SynchPhase procedure which is clearly a constant number.

We prove in the full paper that this selection of waiting periods guarantees
that no process shifts to an asynchronous mode in k-synchronous executions. We
now describe the synchronous modes.
UP: This is q’s initial mode. Process q starts from its leaf node and attempts
to climb up the the path to the root in order to join a phase. To climb from a
non-root node to its parent m, q first verifies that m is free (statement 15), in
which case it performs a CAS operation to try and acquire m’s slock (statement
16). If it succeeds, q sets its current node n to m and reiterates. If m is not
free, q checks the m.inPhase flag (statement 18) which indicates whether or not
m is part of the current phase’s subtree. If it is set then q checks whether n
was added to the phase subtree by m’s owner (statement 19). It both conditions
hold, then q managed to join the current phase and all the nodes along the
path from its leaf to n will join that phase’s subtree. In this case, q shifts to
the PHASE FREEZE mode and stores a pointer to its highest node along this
path (statements 20, 21). Otherwise, if q acquired the root node slock, then q is
about to be the initiator of the next phase. It stores a pointer to the root node,
sets the number of iterations to wait at the root to Θ(logN), and shifts to the
ROOT WAIT mode (statements 12 - 14). If none of the above conditions hold, q
decrements timer and, if it expires, concludes that the execution is asynchronous
and returns the ASYNCH code (statements 23, 24).
ROOT WAIT: q waits in this mode for the iterations timer to expire in order
to allow other processes to join the phase subtree. While waiting, q performs a
predetermined number of steps, in each of which it applies a single shared mem-
ory event. Finally, q shifts to the PHASE FREEZE mode (statements 25-28).
PHASE FREEZE: in this mode, q freezes the nodes along its path from phase-
Top to its leaf and the children of these nodes. Freezing a node adds it to the
phase’s subtree. To determined which of n’s children is owned by it, q uses the
LEAF DIR macro that, given an internal node n and a process id, returns LEFT
or RIGHT (statement 29). For every node n, if the child of n not owned by q
is not free, q sets that child’s inPhase flag, sets n’s inPhase flag, and descends
to n’s child on the path back to its leaf (statements 31-33, 40). When q gets
to the parent of its leaf, it injects a single request to its leaf, sets the itera-
tions counter, sets a flag indicating that a request was injected, and shifts to the
FORWARD REQUESTS mode (statements 35-38).
FORWARD REQUESTS: in this mode, q forwards and combines requests
along the path starting with the parent of its leaf and ending with q.topPhase.
For each node n along this path, q checks for each child ch of n whether ch is
in the current phase’s subtree and whether requests need be forwarded from it
(statement 42). If so and if ch’s collected flag is set, requests from the subtree
rooted at ch were already forwarded and combined at ch. In this case q calls the
FwdReqs procedure to forward these requests from ch to n and sets the local
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SynchPhase()
1 Node* n=LEAF(myID), int phaseTop, int mode=UP, int timer=Mk(k + 13) log N + 1
2 boolean chCollected[2]={false,false}
3 do forever
4 switch(mode)
5 case UP: UpMode() 6 case ROOT WAIT: RootWait()
7 case PHASE FREEZE: PhaseFreeze() 8 case FORWARD REQUESTS: ForwardRequests()
9 case AWAIT RESP: AwaitResp() 10 case PROP RESP: PropResp() od

UpMode()
11 if (ROOT(n))
12 phaseTop=n
13 timer=2M(k + 1) log N
14 mode=ROOT WAIT
15 else if (n.parent.slock=FREE)
16 if (CAS(n.parent.slock, FREE, myID))
17 n=n.parent
18 else if (n.parent.inPhase)
19 if (n.inPhase)
20 phaseTop=n
21 mode=PHASE FREEZE
22 else
23 timer=timer-1
24 if (timer=0) return ASYNCH

RootWait()
25 if (timer > 0)
26 read n.slock
27 timer=timer-1
28 else mode=PHASE FREEZE

PhaseFreeze()
29 int whichChild=LEAF DIR(n, myID)
30 Node *ch=n.children[whichChild]
31 if (n.children[1-whichChild].slock �= FREE)
32 n.children[1-whichChild].inPhase=true
33 n.inPhase=true
34 if (ch=LEAF(myID))
35 ch.reqs=ch.reqs+1
36 injected=true
37 timer=M(k + 1) log N
38 mode=FORWARD REQUESTS
39 else
40 n=ch

ForwardRequests()
41 (for i=LEFT; i≤RIGHT; i++)
42 if (n.children[i].inPhase ∧¬ chCollected[i])
43 if (n.children[i].collected)
44 FwdReqs(n, i)
45 chCollected[i]=true
46 else
47 timer = timer -1
48 if (timer = 0) return ASYNCH
49 else continue do-forever (statement 3)
50 n.collected=true
51 if (n �= phaseTop)
52 n=n.parent
53 else if (ROOT(n))
54 mode=PROP RESP
55 else
56 timer=3Mk log N
57 mode=AWAIT RESP

AwaitResp()
58 if (¬ EMPTY(n.resp))
59 mode=PROP RESP
60 else
61 timer=timer-1
62 if (timer=0) return ASYNCH

PropResp()
63 if (n = LEAF(myID))
64 Range r=DEQ R(resp)
65 if (RLEN(r) > 0) return r.first
66 else return ASYNCH
67 SendResp(n)
68 n.inPhase=false, n.collected=false, n.slock=FREE
69 n=n.children[LEAF DIR(n,myID)]

Fig. 3. Pseudo-code for the synchronous part of the algorithm with asynchrony toler-
ance k

flag chCollected corresponding to ch in order to not repeat this work (statements
43-45). If ch’s collected flag is not set, q decrements timer and continues to wait
for that event to occur; if the timer expires, q returns the ASYNCH code (state-
ments 47 - 49). If and when q succeeds in forwarding requests from each of n’s
children that is in the phase, it sets n’s collected flag and climbs up. Eventually,
it shifts to either the PROP RESP mode or the AWAIT RESP mode, depending
on whether or not it is the current phase’s initiator (statements 50-57).

AWAIT RESP: In this mode, q, when not the initiator of the current phase,
awaits for the owner of node n’s parent to deliver responses to n. If and when
this event occurs, q shifts to the PROP RESP mode (statements 58, 59). If timer
expires, q returns the ASYNCH code (statement 62).
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PROP RESP: In this mode, q propagates responses along the path from
q.phaseTop down to its leaf node. For each node n along this path, q propagates
n’s responses to its children and then frees n (statements 67-69). Eventually, q
descends to its leaf. If a response awaits there, it is returned as the response of
SynchPhase. Otherwise, q returns ASYNCH (statements 63-66).

4 The Combining Process

The combining process is implemented by the FwdReqs and SendResp proce-
dures. The pseudo-code of these procedures appears in Figure 4. As discussed in
Section 2.1, the code actually performed is a transformation of the code shown
in Figure 4 according to Greenwald’s two-handed emulation technique, as indi-
cated by the 2he attribute. The FwdReqs procedure forwards requests from a
child node to its parent. The SendResp procedure dispatches responses from a
parent node to its children. The two procedures use the following node fields.

reqs: For a leaf node n, this is the number of requests injected to n. If n is an
internal node other than the root, this is the number of requests forwarded to
n. If n is the root, this is the current value of the counter.

reqsTaken: This is an array of size 2. For each child m of n, it stores the number
of requests forwarded from m to n.

pending: This is a queue of Reqs structures. Each such structure consists of a
pair: a number of requests and the direction from which they came. This queue
allows a process serving node n to send responses in the order in which the
corresponding requests were received. This allows maintaining the linearizability
of the algorithm. In k-synchronous executions, the pending queue contains at
most 2 entries. In asynchronous executions it contains at most n entries, as
there are never more than n simultaneous operations applied to the counter.

resp: This is a producer/consumer queue storing response ranges that were
received at n and not yet sent to its children. The producing process (the one that
serves the parent node) enqueues new response ranges and the consumer process
(the one that serves the child node) dequeues response ranges. The producer and
consumer processes never write to the same field simultaneously. The resp queue
contains at most a single range in k-synchronous executions. In asynchronous
executions it contains at most n ranges. We now describe the pseudo-code of
these two procedures that are performed as pseudo-transactions. Here, q is the
process executing the code.

The FwdReqs procedure receives two parameters. A pointer n to the node to
which requests need to be forwarded, and an integer, dir, storing either LEFT
or RIGHT, indicating from which of n’s children requests need to be forwarded
to n. Let m denote the child node of n that is designated by the dir parameter.
Process q first initializes a pointer to m (statement 1). Then q computes the
number of requests in m that were not yet forwarded to n and stores the result
in delta (statement 2). If there are such requests, q proceeds to forward them.
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2he FwdReqs(NODE* n, int dir)
1 Node* child = n.children[dir]
2 int delta=child.reqs - n.reqsTaken[dir]
3 if (delta > 0)
4 n.reqs=n.reqs+delta
5 n.reqsTaken[dir]=n.reqsTaken[dir]+delta
6 ENQ REQS(n.pending, <dir,delta>
7 if (ROOT(n))
8 ENQ R(n.resp, n.reqs-delta+1, delta)

2he SendResp(NODE* n)
9 do twice
10 if (¬ EMPTY(n.resp))
11 Range fResp=FIRST R(n.resp)
12 int respsLen=RLEN(fResp)
13 RRQ fReqs=FIRST REQS(n.pending)
14 int reqsLen=REQS LEN(fReqs)
15 int send=min(respLen, reqsLen)
16 int dir=REQS DIR(fReqs)
17 ENQ R(n.children[dir].resp, fResp.start, send)
18 DEQ R(n.resp, send)
19 DEQ REQS(n.pending, send)
20 od

Fig. 4. Pseudo-code for the combining procedures

Forwarding the requests is implemented as follows. Process q first increases
n’s reqs field by delta (statement 4) to indicate that delta additional requests
were forwarded to n. It then increases n’s reqsTaken entry corresponding to
m by delta (statement 5). This indicates that delta additional requests were
forwarded from m to n. Finally, q adds an entry to n’s pending queue specifying
that delta more responses need to be sent from n to m. If n is the root node,
then the operations represented by the forwarded requests are applied to the
central counter at the root when n.reqs is increased by statement 4. In that
case, q immediately adds the corresponding range of counter values to n’s queue
of response ranges (statements 7-8).

The SendResp procedure receives a single parameter - n - a pointer to the node
from which responses need be sent. Process q executes the loop of statements
9-20 twice. If the responses queue is not empty, the length of its first range is
computed and stored to the respLen local variable (statements 11, 12). Then the
length of the next requests entry is computed and stored to reqsLen (statements
13, 14). The minimum of these two values is stored to send (statement 15). This
number of responses is now sent in the direction specified by the dir field of
the first requests entry (statements 16, 17). Finally, send responses and requests
are removed from the n.resp and n.pending queues, respectively. The loop of
statements 9-20 is executed twice. This is enough to propagate the responses for
all the requests forwarded to a node in a synchronous phase.

For presentation simplicity, the reqs and reqsTaken fields used in the pseudo-
code of Figure 4 are unbounded counters. To ensure the correctness of the com-
bining process, however, it is only required that the difference between the values
of these fields be maintained. This difference cannot exceed N , since this is the
maximum number of concurrent operations on the counter. It follows that the
code can be modified to use bounded fields that count modulo 2N + 1.

5 A Metric for the Throughput of Concurrent Objects

We now present a metric for quantifying the throughput of concurrent objects.
This metric allows us to reason about the throughput of concurrent objects
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rigorously. The key to the metric is a definition of time that assigns identical
times to events that may be executed concurrently.

Let E be an execution. Consider a subsequence of events of E applied by some
process p. As processes are sequential threads of execution, the times assigned
to the events applied by p must be strictly increasing. Consider a subsequence
of events in E, all of which access the same base object o. Here it is less obvious
how to assign times to these events. If the value of o is never cached, then the
times assigned to these events must be strictly increasing as accesses of o are
necessarily serialized. However, if o may be cached, then it is possible for o to
be read concurrently by multiple processes accessing their local caches. Thus an
alternative assignment of times, where consecutive reads of the same base object
may be assigned identical times, is also possible.

For the analysis of the BWC algorithm, we chose to apply the stricter def-
inition where time must strictly increase between accesses of the same object.
We define the throughput of an execution as the ratio between the execution’s
duration and the number of operation instances that complete in it. It follows
that the throughput of an algorithm can only increase if the alternative (less
strict) assignment of times were to be used. Formal definitions of execution time
and throughput follow.

The subsequence of events applied by process p in E is denoted by E|p. The
subsequence of events that access a base object o in E is denoted by E|o. We
assign times to execution events. Assigned times constitute a non-decreasing
sequence of integers starting from 0. Times assigned to the subsequence of
events applied by any specific process p are monotonically increasing. Similarly,
times assigned to the subsequence of events that access any specific object o are
monotonically increasing. This is formalized by the following definitions.

Definition 2. Let e be an event applied by process p that accesses base object o
in execution E and let E = E1eE2. The synchronous time assigned to e in E,
denoted by time(E,e), is defined to be the maximum of the following numbers:

– the synchronous time assigned to the last event of E1 (or 0 if E1 is empty),
– the synchronous time assigned to p’s last event in E1 plus 1 (or 0 if E1|p is

empty),
– the synchronous time assigned to the last event in E1 that accesses o plus 1

(or 0 if E1|o is empty).

Definition 3. The synchronous duration of an execution E, denoted by
time(E), is 0 if E is the empty execution or time(E, el) + 1 otherwise, where
el is the last event of E. The throughput of a (non-empty) execution E is
defined to be completed(E) / time(E).

Based on the above definitions, we prove the following theorem.

Theorem 1. The throughput of the BWC algorithm with asynchrony tolerance
parameter k in k-synchronous executions in which all processes start their oper-
ations concurrently is Ω(N/ logN).
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To prove theorem 2, we first show that the selection of the waiting times
with which the timer variable is set guarantees that processes always operate in
synchronous modes in k-synchronous executions. We then show that as long as
all processes operate in synchronous modes and the execution is k-synchronous,
every operation instance completes in O(logN) time. The proof is omitted from
this extended abstract for lack of space and can be found in the full paper.

We also prove the following theorem in the full paper.

Theorem 2. The BWC algorithm is a nonblocking linearizable counter imple-
mentation.

Intuitively, the linearizability of the BWC algorithm follows from the fact that
the counter value is stored at the root node and that responses are dispatched
from each node n in the order in which the corresponding requests were received
at n. We show that, as long as all processes operate in synchronous modes, the
BWC algorithm is wait-free. If some processes fall back on asynchronous modus
operandi, then we show that the Node progress property (see Section 2.1)
guarantees overall progress.

6 Concluding Remarks

In this paper we present Bounded-Wait Combining (BWC), the first nonblock-
ing linearizable counter algorithm that can provably achieve high parallelism in
semisynchronous executions. Bounded-Wait Combining can be used to obtained
implementations, possessing the same properties, of objects such as stack and
queue. We define a novel metric of the throughput of concurrent algorithms and
use it to analyze our algorithm. We also introduce and use pseudo-transactions
- a concurrent execution technique that, though weaker than ordinary transac-
tions, permits higher parallelism. We believe that both our throughput metric
and the pseudo-transactions construct may prove useful in the design and analy-
sis of other algorithms.

Our algorithm guarantees the nonblocking property in all executions. How-
ever, to guarantee high throughput, it is required that processes know in advance
an upper bound on the ratio between the fastest and slowest processes. (The re-
quirement for knowledge of timing information is similar to that made in the
known bound model [1,16].) We believe the BWC algorithm can be extended to
adjust adaptively to an unknown system bound on the speed ratio. Also, the
tree used by the BWC algorithm is static and of height Θ(logN), regardless of
the number of processes participating in the computation. It follows that the
time it takes to apply an operation is Θ(logN) even if a process runs solo. It
would be interesting to see whether the algorithm can be made ‘dynamic’ from
this respect while maintaining its properties. We leave these research problems
for future work.

Acknowledgements. We thank the anonymous reviewers for many useful com-
ments.
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Abstract. Single-writer k-quorum protocols achieve high availability without
incurring the risk of read operations returning arbitrarily stale values: in partic-
ular, they guarantee that, even in the presence of an adversarial scheduler, any
read operation will return the value written by one of the last k writes. In this
paper, we expand our understanding of k-quorums in two directions: first, we
present a single-writer k-quorum protocol that tolerates Byzantine server fail-
ures; second, we extend the single-writer k-quorum protocol to a multi-writer
solution that applies to both the benign and Byzantine cases. For a system with
m writers, we prove a lower bound of (2m − 1)(k − 1) + 1 on the staleness
of any multi-writer protocol built over a single-writer k-quorum system and pro-
pose a multi-writer protocol that provides an almost matching staleness bound of
(2m − 1)(k − 1) + m .

1 Introduction

Quorum systems have been extensively studied, with applications that include mu-
tual exclusion, coordination, and data replication in distributed systems [1,2,3,4]. sys-
tems [1,2,3,4]. A traditional, or strict, quorum system is simply a collection of servers
organized in sets called quorums. Quorums are accessed either to write a new value to a
write quorum or to read the values stored in a read quorum: in strict quorums, any read
quorum intersects with a write quorum.

Important quality measures of quorum systems are availability, fault tolerance, load,
and quorum size. lower size have measures are conflicting in strict quorum systems [5].
For instance, the majority quorum system provides the highest availability of all strict
quorum systems when the failure probability of individual nodes is lower than 0.5, but
it also suffers from high load and large quorum size—and this tension holds true in
general [6]. When the failure probability of individual nodes is higher than 0.5, the
quorum system with highest availability is the singleton, in which one node handles all
requests in the system.

Probabilistic [7] and signed [8] quorum systems have been proposed to achieve
high availability while guaranteeing system consistency (non-empty intersection of
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quorums) with high probability. These probabilistic constructions offer much better
availability than the majority system at the cost of providing only probabilistic guar-
antees on quorum intersection. If a probabilistic quorum system is used to implement
a distributed register with read and write operations, then, with high probability, a read
operation will return the value most recently written.

To achieve a high probability of quorum intersection, probabilistic constructions as-
sume, either implicitly (probabilistic quorum systems [7]) or explicitly (signed quorum
systems [8]), that the network scheduler is not adversarial. If the scheduler is adver-
sarial, both constructions can return arbitrarily old values, even if servers fail only by
crashing. If instead servers can also be subject to Byzantine failures, the situation is
a bit more complicated. Signed quorum systems are simply not defined under these
circumstances; probabilistic Byzantine quorum systems [7] must instead be configured
to prevent read operations from returning values fabricated by Byzantine servers. Note
that returning a fabricated value can be much more problematic than returning an ar-
bitrarily old value, especially if readers are required to write back what they read (as
it is common to achieve strong consistency guarantees): in this case, the system can
become contaminated and quickly loose its consistency guarantees1. Fortunately, the
parameters of probabilistic quorums systems can be chosen to eliminate the possibil-
ity of contamination; unfortunately, doing so results in a loss of all the gains made in
availability.

k-quorum systems, which we have recently introduced [9], guarantee that a read op-
eration will always return one of the last k written values – even if the scheduler is
adversarial. If the scheduler is not adversarial and read quorums are chosen randomly,
as is the case with probabilistic systems, k-quorums can guarantee a high probabil-
ity of intersection with the quorum used by the latest write. In a sense, k-quorums
have some of the best features of both strict systems and probabilistic constructions
and they can be thought of as a middle ground between them. Like probabilistic con-
structions, they achieve high availability by performing their writes to small quorums,
(called partial-write-quorums), and therefore weaken the intersection property of tra-
ditional strict quorum systems; unlike probabilistic constructions, however, k-quorums
can still provide deterministic intersection guarantees: in particular, they require the
set of servers contacted during k consecutive writes—the union of the corresponding
partial write quorums—to form a traditional strict write quorum. Using this combina-
tion, k-quorum systems can bound the staleness of the value returned by a read, even in
the presence of an adversarial scheduler: a read operations that contacts a random read
quorum of servers is guaranteed to return one of the values written by the last k preced-
ing writes; furthermore, during periods of synchrony the returned value will, with high
probability, be the one written by the last preceding write.

In the absence of an adversarial scheduler, probabilistic systems can have higher
availability than k-quorum systems. k-quorums make a tradeoff between safety and
liveness. By allowing for lower availability than probabilistic systems, they guaran-

1 This is not a problem if the returned values are simply old values because in that case
timestamps can be used to prevent old values from overwriting newer values. Timestamps
cannot be used with fabricated values because the timestamps of the fabricated values can
themselves be fabricated.



Byzantine and Multi-writer K-Quorums 445

tee a bound on the staleness of returned values even in the presence of an adversarial
scheduler. In the absence of an adversarial scheduler, k-quorum systems have higher
availability than strict quorum systems when the frequency of write operations is not
high (in a sense well defined in [9]). In the same paper, we also propose k-consistency
semantics and provide a single-writer implementation of k-atomic registers over servers
subject to crash failures.

Our previous paper left several important questions unanswered—in particular, it did
not discuss how to handle Byzantine failures, nor how to provide a multi-writer/multi-
reader construction with k-atomic semantics. The first question is particularly important
in light of the contamination problem that can affect probabilistic Byzantine quorum
systems. Answering these questions is harder than in strict quorum systems because the
basic guarantees provided by k-quorum systems are relatively weak and hard to lever-
age. For example, in the presence of multiple writers it is hard for any single writer to
guarantee that k consecutive writes (possibly performed by other writers) will constitute
a quorum: because of the weaker k consistency semantics, a writer cannot accurately
determine the set of servers to which the other writers are writing.

In this paper, we answer both questions. We begin by showing a protocol that im-
plements single-writer k-atomic semantics and tolerates f Byzantine servers and any
number of crash-and-recover failures as long as read and write quorums intersect in at
least 3f + 1 servers. Like its crash-only counterpart, the protocol can provide better
availability than strict quorum systems when writes are infrequent, and unlike prob-
abilistic solutions, can bound the staleness of the values returned by read operations.
Byzantine faults add another dimension to the comparison with probabilistic solutions:
the cost, in terms of loss of availability, of preventing reads from returning a value that
has never been written by a client, but has instead been generated by Byzantine servers
out of thin air. We show that, for equally sized quorums, this cost is considerably higher
for probabilistic constructions than for k-quorum systems.

We then investigate the question of k-atomic semantics in a multi-writer/multi-reader
setting by asking whether it is possible to obtain a multi-writer solution by using a
single writer solution as a building block—that is, by restricting read and write oper-
ations in the multi-writer case to use the read and write partial quorums of the single
writer solution. This approach appears attractive, because, if successful, would result in
a multi-writer system with availability very close to that of a single writer system.

We first show a lower bound on the price that any such system must pay in terms of
consistency: we prove that no m-writer protocol based on a solution that achieves k-
atomic semantics in the single writer case can provide better than

(
(2m−1)(k−1)+1

)
-

atomic semantics. We then present an m-writer protocol that provides
(
(2m − 1)(k −

1) + m
)
-atomic semantics, using a construction that, through a clever use of vector

timestamps, allows readers and writers to disregard excessively old values.

2 System Model

We consider a system of n servers. Each server (or node) can crash and recover. We
assume that servers have access to a stable storage mechanism that is persistent across
crashes. We place no bound on the number of non-Byzantine failures and, when
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considering Byzantine faults, we assume that there are no more than f Byzantine
servers—all remaining servers can crash and recover.

Network Model. We consider an asynchronous network model that may indefinitely
delay, or drop, messages. We require that the protocols provide staleness guarantees
irrespective of network behavior.

For purposes of availability, we assume there will be periods of synchrony, during
which, if enough servers are available, operations execute in a timely manner.

Access Model. A read or write operation needs to access a read or a (partial) write
quorum in order to terminate successfully. If no quorum is available the operation has
two options: it can either abort or remain pending until enough servers become available
(not necessarily all at the same time). The operation can abort unless it has already taken
actions that can potentially become visible to other clients.

Clients operations may have timeliness constraints. This does not contradict the
asynchrony assumption we make about the network but simply reflects the expecta-
tion that operations should execute in a timely manner if the system is to be considered
available. A client considers any operation that does not complete in time to have failed,
independent of whether these operations abort or eventually complete. Note that an op-
eration may be aborted and fail before being actually executed if the operation remains
locally queued for too long after being issued.

We assume for simplicity that clients do not crash in between operations, although
our protocols can be extended to tolerate client crash and recovery by incorporating a
logging protocol.

Finally, we assume that writes are blocking. In other words, a writer will not start
the next write until the current write has finished. While this assumption is not overly
restrictive, we need to make it for a technical reason, as our protocols require a write
operation to know exactly where the previously written values have been written to.

Availability. Informally, a system is available at time t if operations started at t execute
in a timely manner. Consider an execution ρ in a given time interval (possibly infinite)
in which a number of operations are started. The system’s availability for execution ρ is
the ratio of the number of operations that complete in a timely manner in ρ to the total
number of operations in ρ. If the number of operations is infinite, then the system’s
availability is the limit of the ratio, if it exists.

The read and write access patterns are mappings from the natural numbers to the
set of positive real numbers (denoting the duration between the requests). The failure
pattern of a given node is a mapping from the positive real numbers (denoting global
time) to {up, down}; the system’s failure pattern is a set of failure patterns, one for
each node.

Given probability distributions on the access patterns (read or write) and failure pat-
terns, the system’s availability is the expected availability for all pairs of access patterns
and failure patterns.

For the purposes of estimating availability, we assume that nodes crash and recover
independently, with mean time to recover (MTTR) α and mean time between failures
(MTBF) β. We also assume the periods between two consecutive reads or writes to
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be random variables with means MTBR and MTBW respectively and that MTBW is
large compared to MTBF; in other words, writes are infrequent. We define the sys-
tem’s availability in periods in which the network is responsive; i.e. in periods in which
the roundtrip delay is negligible compared to MTBF and MTTR. In other words, the
availability we are interested in depends on whether nodes are up or down, and not on
how slow is the network: indeed, in the presence of an adversarial network scheduler
measuring availability becomes meaningless, since the scheduler could always cause it
to be equal to zero. We assume that the time allowed for successful completion of an
operation is negligible compared to MTBF and MTTR.

Relaxed Consistency Semantics. The semantics of shared objects that are implemented
with quorum systems can be classified as safe, regular or atomic [10]. For applications
that can tolerate some staleness, these notions of consistency are too strong and one can
use define relaxed consistency semantics as follows [9]:

1. k-safe: A read that does not overlap with a write returns the result of one of the
latest k completed writes. The result of a read overlapping a write is unspecified.

2. k-regular: A read that does not overlap with a write returns the result of one of
the latest k completed writes. A read that overlaps with a write returns either the
result of one of the latest k completed writes or the eventual result of one of the
overlapping writes.

3. k-atomic: A read operation returns one of the values written by the last k preceding
writes in an order consistent with real time (assuming there are k initial writes with
the same initial value).

3 K-quorums for Byzantine Faults

We define a k-quorum construction that tolerates f Byzantine servers, while providing
k-atomic semantics, as a triple

(
W ,R, k

)
, where W is the set of write quorums, R is

the set of read quorums, and k is a staleness parameter such that, for any R ∈ R, and
W ∈ W , |R ∩W | ≥ 3f + 1 and |R|, |W | ≤ (n− f).
Server side protocol Figure 1 shows the server-side protocol. Each server smaintains in
the structure current data information about the last write the server knows of, as well
as the k − 1 writes that preceded it. READ REQUEST messages are handled using
a “listeners” pattern [11]. The sender is added to s’s Reading set, which contains the
identities of the clients with active read operations at s. A read operation r is active at
s from when s receives r’s READ REQUEST to when it receives the corresponding
STOP READ. On receipt of a WRITE message, s acknowledges the writer. Then, if
the received information is more recent than the one stored in current data, s updates
current data and forwards the update to all the clients in Reading; otherwise, it does
nothing.

Writer’s Protocol. Figure 2 shows the client-side write protocol. Each write operation
affects only a small set of servers, called a partial write quorum, chosen by the writer
so that the set of its last k partial write quorums forms a complete write quorum. The
information sent to the servers contains not just a new value and timestamp, but also ad-
ditional data that will help readers distinguish legitimate updates from values fabricated
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by Byzantine servers. Specifically, the writer sends to each server in the partial write
quorum, k tuples—one for each of its last k writes. The tuple for the i-th of these writes
includes: i) the value vi; ii) the corresponding timestamp tsi; iii) the set Ei of servers
that were not written to in the last k − 1 writes preceding i; and iv) a hash of the tuples
of the k − 1 writes preceding i. The write ends once the set of servers from which the
writer has received an acknowledgment during the last k writes forms a complete write
quorum2.

Thus, the value, timestamp, E, and hash information for write i are not only written
to i’s partial write quorum, but will also be written to the partial write quorums used for
the next k − 1 writes. By the end of these k writes this information will be written to
a complete write quorum which is guaranteed to intersect any read quorum in at least
3f + 1 servers.

Reader’s Protocol. The reader contacts a read quorum of servers and collects from each
of them the k tuples they are storing. The goal of the read operation is twofold: first, to
identify a tuple ti representing one of the last k writes, call it i, and return to the reader
the corresponding value vi; second, to write back to an appropriate partial write quorum
(one comprised of servers not in Ei) both ti and the k−1 tuples representing the writes
that preceded i—this second step is necessary to achieve k-atomicity.

The read protocol computes three sets based on the received tuples. The Valid set
contains, of the most recent tuples returned by each server in the read quorum, only
those that are also returned by at least f other servers. The tuples in this set are legiti-
mate: they cannot have been fabricated by Byzantine servers.

The Consistent set also contains a subset of the most recent tuples returned by each
server s in the read quorum. For each tuple ts in this set, the reader has verified that the
hash of the k − 1 preceding tuples returned by s is equal to the value of h stored in ts.

The Fresh set contains the 2f +1 most recent tuples that come from distinct servers.
Since a complete write quorum intersects a read quorum in at least 2f + 1 correct
servers, legitimate tuples in this set can only correspond to recent (i.e. not older than k
latest) writes.

The intersection of these three sets includes only legitimate and recent tuples that can
be safely written back, together with the k − 1 tuples that precede them, to any appro-
priate partial write quorum. The reader can choose any of the tuples in this intersection:
to minimize staleness, it is convenient to choose the one with the highest timestamp.

Because of space limitations, we must refer the reader to our extended technical
report [12] for the proofs of the following theorems.

Theorem 1. The single-writer Byzantine k-quorum read protocol in Figure 3 never
returns a value that has not been written by the writer.

Theorem 2. The single-writer Byzantine k-quorum read protocol in Figure 3 never
returns a value that is more than k-writes old.

If the network is behaving asynchronously, or if the required number of servers is
not available, then our protocols will just stall until the systems comes to a good con-

2 Byzantine servers may never respond. The writer can address this problem by simply contact-
ing f extra nodes for each write while still only waiting for a partial quorum of replies. For
simplicity, we abstract from these details in giving the protocol’s pseudocode.
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1 static Reading = ∅
2 static c u r r e n t d a t a [ 1 . . k ] ;
3 wh i l e ( t r u e ) {
4 ( msg , s e n d e r ) = r e c i e v e M e s s a g e ( ) ;
5
6 i f ( msg i n s t a n c e o f READ REQUEST)
7 Reading ∪ = {sender} ;
8 sen d c u r r e n t d a t a t o s e n d e r .
9 e l s e i f ( msg i n s t a n c e o f STOP READ )

10 Reading = Reading \ {sender} ;
11 e l s e i f ( msg i n s t a n c e o f WRITE )
12 / / say msg i s WRITE

〈T uple[tsnew, . . . , tsnew − k + 1]〉
13 i f ( tsnew.ts > c u r r e n t d a t a [ 1 ] . t s )
14 c u r r e n t d a t a [ 1 . . k ] =

T uple[tsnew, . . . , tsnew − k + 1] ;
15 sen d ACK( tsnew ) t o s e n d e r ;
16 fo rward c u r r e n t d a t a t o a l l i n Reading .
17 e l s e
18 sen d ACK( tsnew ) t o s e n d e r ;
19 }

Fig. 1. K-quorum protocol for non-Byzantine
servers

1 static ts : = 0 ;
2 static Tu p l e [ ] ;
3 void Write ( v a l u e v )
4 begin
5 ts : = ts + 1 ;
6 h = h ash ( Tu p l e [ ts − 1, . . . , ts − k + 1 ] ) ;
7 / / E i s t h e s e t o f s e r v e r s NOT u sed f o r t h e

p r e v i o u s k − 1 w r i t e s

8 E = P \ j=ts−1
j=ts−k+1 Wj

9 Tu p l e [ts ] = (v, ts, E, h) ;
10 d e l e t e Tu p l e [ ts − k ] t o sav e sp ace
11
12 Fi n d a s e t P W , su ch t h a t :

13 |P W ∪j=ts−1
j=ts−k+1Wj | = Qw

14 sen d WRITE〈T uple[ts, . . . , ts − k + 1]〉 t o a l l
s e r v e r s i n P W .

15
16 / / w a i t f o r ack n o w l ed g emen t s
17 Wts = ∅
18 do
19 r e c v ACK(ts) f rom s e r v
20 Wts = Wts ∪ {serv}
21 u n t i l ( | ∪j=ts

j=ts−k+1 Wj | ≥ Qw − f )

22 return
23 end

Fig. 2. K-quorum write protocol tolerating up
to f Byzantine servers

figuration. If, during periods of synchrony, all non-Byzantine nodes recover and stay
accessible, then our protocols eventually terminate.

Theorem 3. If the network behaves synchronously and all non-Byzantine nodes re-
cover and stay accessible, then the Byzantine k-quorum protocol for the writer in Fig-
ure 2 eventually terminates.

Theorem 4. If the network behaves synchronously and all non-Byzantine nodes re-
cover and stay accessible, then the Byzantine k-quorum protocol for the reader in Fig-
ure 3 eventually terminates.

Theorem 5. The construction for Byzantine k-quorum systems shown in Figures 1, 2, 3
provides k-atomic semantics.

3.1 Comparison to Probabilistic Quorum Systems

In the Byzantine version of probabilistic quorum systems—(f, ε)-masking quorum sys-
tems [7]—write operations remain virtually unchanged: values are simply written to
a write quorum chosen according to a given access strategy. Read operations contact
a read quorum, also chosen according to the access strategy, and return the highest
timestamped value that is reported by more than p servers, where p is a safety para-
meter3. Choosing any value of p lower than f + 1 can be hazardous as, under these
circumstances, read operations may return a value that was never written by a client,
but instead fabricated by Byzantine nodes. While the probability of an individual read

3 The original paper [7] uses k to denote this safety parameter. We use p to avoid confusion
with the staleness parameter of k-quorum systems. We also use f to denote the threshold on
Byzantine faults instead of the original b.
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1 / / p r o t o c o l f o r a r e a d e r
2 r e c e i v e d [ ] / / s t o r e s t h e r e s p o n s e s from s e r v e r s
3 C a n d i d a t e V a l u e s / / h o l d s t h e s e t o f c a n d i d a t e v a l u e s
4 Read ( )
5 begin
6 ch o o se a r e a d quorum R .
7 sen d READ REQUEST t o s e r v e r s i n R .
8
9 r e c e i v e d [ i ] = n u l l , 1 ≤ i ≤ |R|

10 C a n d i d a t e V a l u e s = ∅
11 / / r e c e i v e v a l u e s from a l l t h e s e r v e r s i n R
12 wh i l e ( |{i : received[i] �= null}| < |R| ) ;
13 b eg i n
14 r e c e i v e Tu p l e [ tss, . . . , tss − k + 1 ] f rom s e r v e r s ;
15 r e c e i v e d [ s ] = Tu p l e [tss, . . . , tss − k + 1 ] ;
16 i f ( i s V a l i d ( Tu p l e [tss, . . . , tss − k + 1 ] ) )
17 add Tu p l e [ tss ] t o t h e s e t C a n d i d a t e V a l u e s
18 end
19
20 / / t r y t o ch o o se a v a l u e
21 / / i f u n s u c c e s s f u l , w a i t f o r more r e s p o n s e s .
22 tshighest = Larg es t Ti mes t amp ( r e c e i v e d ) ;

23 t r y C h o o s i n g ( ) ;
24 wh i l e ( v a l u e c h o s e n == n u l l )
25 b eg i n
26 r e c e i v e Tu p l e [ tss, . . . , tss − k + 1 ] f rom s e r v e r s ;
27 i f ( tss ≤ tshighest )

28 r e c e i v e d [ s ] = Tu p l e [tss, . . . , tss − k + 1 ] ;
29 t r y C h o o s i n g ( ) ;
30 end
31
32 sen d STOP READ t o s e r v e r s i n R .
33
34 / / w r i t e back t h e ch o sen v a l u e t o a p a r t i a l−w r i t e−quorum
35 Fi n d a p a r t i a l−w r i t e−quorum , PW, s u i t a b l e f o r v a l u e c h o s e n .
36 sen d WRITE〈chosenvalue〉 t o PW
37 − w a i t f o r ack s from PW
38
39 return v a l u e c h o s e n
40 end
41
42 void tryChoosing ( )
43 begin
44 ( 1 ) Fresh = { Tu p l e [tss, . . . , tss − k ] ∈ Received | tss i s one o f t h e 2 f +1 l a r g e s t t ime−stamped

e n t r i e s i n Received r e c e i v e d from d i f f e r e n t s e r v e r s }
45 ( 2 ) Val i d = { Tu p l e [tss, . . . , tss − k ] ∈ Received | Tu p l e [tss ] o c c u r s i n t h e r e s p o n s e s o f a t l e a s t

f + 1 s e r v e r s }
46 ( 3 ) C o n s i s t e n t = { Tu p l e [ tss, . . . , tss − k ] ∈ Received | t h e hash , h , i n Tu p l e [tss ] mat ch es
47 h ash ( Tu p l e [tss − 1, . . . , tss − k ] ) }
48 ( 4 ) if ( V alid ∩ F resh ∩ Consistent �= ∅ )
49 v a l u e c h o s e n = v ∈ V alid ∩ F resh ∩ Consistent , w i t h t h e l a r g e s t t i mes t amp .
50 end

Fig. 3. K-quorum read protocol tolerating up to f Byzantine servers

operation returning a fabricated value can be low, if enough reads occur in the system,
the probability that one of them will do so becomes significant, even in the absence
of an adversarial scheduler. Byzantine k-quorums are immune from such dangers: read
operations may return slightly stale values, but never fabricated values. This property
allows for the safe use of write backs to achieve stronger consistency guarantees.

Availability. Although it is possible to tune probabilistic Byzantine quorum systems
by choosing p > f so that they never return fabricated values, such a choice of p

cannot guarantee that the read availability always increases with n: if p > q2

n , then read
availability actually tends to 0 as n increases, because even a reader able to contact a
read-quorum is highly unlikely to receive at least p identical responses [7]. To ensure
that, with high probability, there are at least f +1 identical responses in a read quorum,
probabilistic Byzantine quorum systems would have to choose large quorum sets—
requiring the size of the quorum q to be significantly larger than

√
nf . Thus, if the

number of Byzantine failures f is large, then the quorum size for probabilistic quorum
systems needs to be large in order to avoid fabricated values.
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In summary, if probabilistic Byzantine systems are to have high availability when
the scheduler is not adversarial, they run the risk of returning fabricated values, and
if a value that is dependent on a fabricated value is written to the system, the system
becomes contaminated. Also, if they are designed for high availability and the sched-
uler happens to be adversarial, probabilistic Byzantine systems can always be forced to
return fabricated values.

Our system provides high availability for both reads and writes while guaranteeing
that we always return one of the latest k values written to the system. There are two main
reasons for the higher availability of k-quorums. First, each of their write operations
also writes tuples for the preceding k − 1 writes, causing a write to become visible at
more locations than in a probabilistic quorum system with similar quorum sizes and
load. Second, k-quorums reads are content to return one of the last k writes, not just
the latest one. Read operations will therefore be likely to yield Valid, Consistent, and
Fresh sets with a non-empty intersection. In (f, ε)-masking quorums a read can return a
legitimate value only if the read quorum intersects with a single write-quorum in more
than p nodes. This is a much rarer case and the availability of probabilistic quorum
systems is consequently lower.

Probability of returning the latest value. The definition of k-atomicity only bounds the
worst-case staleness of a read. However, since the choice of read quorums is not de-
pendent on any other quorums chosen earlier, k-quorums can also use a random access
strategy to choose read quorums, as in [7]. A random access strategy guarantees that,
when the network is not adversarial, a read which does not overlap with a write returns,
with high probability, the latest written value.

Let r and wp denote, respectively, the sizes of the read quorum and of the partial-
write-quorums. We can use Chernoff bounds in a manner similar to [7] to establish the
following theorem, whose proof is contained in our extended technical report [12].

Theorem 6. If the read quorum is chosen uniformly at random, then at times when the
network is non-adversarial, the probability that a read does not return the latest written

value is at most e
−wp(r−f)

2n (1− (f+1)n
wp(r−f) )

2

.

This probability can be high if f is small relative to n.

4 Multi Writer k-Quorums

We now study the problem of building a multi-writer k-quorum system using single-
writer k-quorum systems. This problem is interesting because the resulting multi-writer
system will have almost the same availability as the underlying single-writer systems.

A single-writer multi-reader k-quorum system implements two operations.

1. val sw-kread( wtr ): returns one of the k latest written values, by the writer wtr.
2. sw-kwrite( wtr, val ): writes the value val to the k-quorum system. It can only be

invoked by the writer wtr

We assume that the read and write availability of the single-writer k-quorum system is
asr = 1 − εsr and asw = 1 − εsw respectively.
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4.1 A Lower Bound

We show that using k-atomic single-writer systems as primitives for a multi-writer sys-
tem with m writers, one cannot achieve more than

(
(2m − 1)(k − 1) + 1

)
-atomic

guarantees.
We assume that the the multi-writer solution uses the single writer solution through

the sw-kread and sw-kwrite functions. We use these functions as black boxes, and we
assume that an invocation of sw-kread on a given register will return any one of the last
k writes to that register.

Since we are interested in a multi-writer solution that has the same availability as the
underlying single writer system, we should rule out solutions that require a write in the
multi-writer system to invoke multiple write operations of the single writer system. In
other words, a write operation in the multi-writer system should be able to successfully
terminate if a read quorum and a partial write quorum of the single writer system are
available. We require that a read quorum be available because otherwise writers would
be forced to write independently of each other with no possibility for one writer to see
other writes. We do not require that a read and a write quorum be available at the same
time. So, without loss of generality, we assume that the implementation uses only m
single-writer registers, one for each writer. The implementation of a write operation of
a the multi-writer register can issue a write operation to the issuing writer’s register
but not to the other writers’ registers; it can also issue read operations to any of the m
registers. The read operations on the multi-writer register can only issue read operations
on the single-writer registers.

In our lower bound proof, we assume that writers execute a full-information protocol
in which every write includes all the history of the writer, including all the values it
ever wrote and all the values it read from other writers. If the lower bound applies to
a full-information protocol, then it will definitely apply to any other protocol, because
a full-information protocol can simulate any other protocol by ignoring portions of the
data read. Also, we assume that a reader and a writer read all single-reader registers in
every operation, possibly multiple times; a protocol that does not read some registers
can simply ignore the results of such read operations.

For a writer wtr, we denote with vwtr,i the i’th value written by wtr. If a client reads
vx,i, then it will also read vx,j , j ≤ i. We denote with tswtr a vector timestamp that
captures the writer’s knowledge of values written to the system. tswtr[u] is the largest i
for which wtr has read a value vu,i. In what follows, we will simply denote values with
their indices. So, we will say that a writer writes a vector timestamp instead of writing
values whose indices are less than or equal to the indices in the vector timestamp.

We now describe a scenario where a reader would return a value that happens to be(
(2m− 1)(k − 1) + 1

)
writes old.

Consider a multi-writer read operation, where the timestamps for all the m values
that the reader receives are similar—specifically, the timestamps

Rcvd =

⎧⎪⎨⎪⎩
〈k − 1, 0, 0, . . . , 0〉,
〈0, k − 1, 0, . . . , 0〉,
〈0, 0, k − 1, . . . , 0〉,

.

.

.
〈0, 0, 0, . . . , k − 1〉

⎫⎪⎬⎪⎭
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< 1, 0, 0, . . . , 0 >  

< 3, 0, 0, . . . , 0 >  
< 2, 0, 0, . . . , 0 >  

< k−1, 0, 0, . . . , 0 >  

. .
 .

< 0, 1, 0, . . . , 0 >  

< 0, 3, 0, . . . , 0 >  
< 0, 2, 0, . . . , 0 >  

. .
 .

< 0, k−1, 0, . . . , 0 >  

< 0, 0, 0, . . . , 3 >  

< 0, 0, 0, . . . , k−1 > 

< 0, 0, 0, . . . , 2 >  
< 0, 0, 0, . . . , 1 >  

k−1 
more writes

k−1 
more writes

k−1 
more writes

k−1 
more writes  3

Phase

Phase

  2

T
IM

E

Phase
  0

Phase
  1

< 0,?, ?, . . . , ? >  

Writer 1

< ?, 0, ?, . . . , ? >  

Writer 2 

. .
 .

Writer m

< ?,?, ?, . . . , 0 >  

. .
 .

Read Occurs Now

Fig. 4. Write ordering in the multi-writer k quorum system

where the timestamp for the value received from the i-th writer contains information up
to the (k − 1)-th write by that writer, but only contains information about the 0-th write
for all remaining writers.

Since all the m timestamp values are similar, the reader would have no reason to
choose one value over the other. Let us assume, without loss of generality, that the
reader who reads such a set of timestamp returns the value with the timestamp

〈k − 1, 0, 0, . . . , 0〉

written by the first writer.
We now show a set of writes to the system wherein the value returned would be(

(2m− 1)(k − 1) + 1
)

writes old. The writes to the system occur in 4 phases.
In phase 0, each of the m writers performs a write operation such that the writer’s

entry in the corresponding timestamp reads 0. For the sake of this discussion, the non-
positive values stored in the other entries of the timestamp are irrelevant. We refer to
this write as the 0-th write.

In phase 1, writer 1 – whose value is being returned by the read – performs (k − 1)
writes. During each of these writes, the reads of the k-atomic register of other writers
returns their 0-th write. The timestamp vector associated with each of these writes is
shown in Figure 4.

In phase 2, each of the remaining (m − 1) writers perform (k − 1) writes. Since
the underlying single-writer system only provides k-atomic semantics, also during this
phase all reads to the underlying single-writer system returns the 0-th write for that
writer. Hence the timestamp vector associated with these writes would be as shown in
Figure 4.
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At the end of phase 2, each writer has performed k − 1 writes. The total number of
writes performed in this phase is (m − 1)(k − 1).

Finally, in phase 3, each writer performs another k − 1 writes. There are a total of
m(k − 1) writes in this phase. The exact timestamps associated with these writes are
not important.

At the end of phase 3, the multi-writer read takes place. Since the underlying single-
writer system only provides k-atomic semantics, all the reads to the underlying single-
writer system during the read are only guaranteed to return a value which is not any
older than the (k − 1)-th write. Thus Rcvd could be the set of values received by the
reader where the reader chooses

〈k − 1, 0, 0, . . . , 0〉

which is
(
1 + (m− 1)(k − 1) +m(k − 1)

)
writes old.

4.2 Multiple Writer Construction

We present a construction for a m-writer, multi-reader register with relaxed atomic se-
mantics using single-writer, multi-reader registers with relaxed atomic semantics. Using
k-atomic registers, our construction provides

(
(2m−1)(k−1)+m

)
-atomic semantics,

which is almost optimal.
The single-writer registers can be constructed using the k-quorum protocols from [9],

if servers are subject to crash and recover failures, or using the construction from Sec-
tion 3 if servers are subject to Byzantine failures. In particular, using the single-writer
k-atomic register implementation for Byzantine failures described in Section 3, we ob-
tain an m-writer

(
(2m− 1)(k − 1) +m

)
-atomic register for Byzantine failures.

The Construction. The multi-write construction uses m instances of the single-writer
k-atomic registers, one for each writer wi.

It uses approximate vector timestamps to compare writes from different writers. Each
writer wi, 1 ≤ i ≤ m, maintains a local virtual clock ltsi, which is incremented by 1
for each write so that its value equals the number of writes performed by writer wi.

At a given time, let gts be defined by

∀i : gts[i] = ltsi

where the equality holds at the time of interest. The vector gts represents the global
vector timestamp and it may not be known to any of the clients or servers in the system.
The read and write protocols are shown in Figure 5.

Write Operation. To perform a write operation, the writer first performs a read to obtain
the timestamp information about all the writers (lines 4-5). Since the registers used are
k-atomic, each of the received timestamp information is guaranteed to be no more than
k writes old for any writer.

A writer wtri executing a write would calculate (lines 8-9) an approximate vector
timestamp ats, whose i-th entry is equal to ltsi and whose remaining entries can be
at most k older than the local time stamps of the entries at the time the write operation
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1 static ltsi = 0 ;
2 void mw-write ( writeri , val )
3 begin
4 f o r j = 1 t o m
5 〈valj , tsj〉 = sw−r e a d ( writerj )

6
7 / / E s t i m a t e t h e ap p r o x t ime−stamp
8 ∀j �= i : ats [ j ] = max p { tsp[j] }
9 ats [ i ] = ++ltsi

10
11 sw−w r i t e ( writeri , 〈val, ats〉 )
12 end

14 〈val, ts〉 mw-read ( )
15 begin
16 f o r j = 1 t o m
17 〈valj , tsj 〉 = sw−r e a d ( writerj )

18
19 R e j e c t = ∅
20 f o r i = 1 t o m
21 f o r j = 1 t o m

22 i f ( tsj < tsi || tsj [i] < tsi[i] − k )

23 R e j e c t = Reject ∪ {〈valj, tsj〉}
24
25 return any 〈valj , tsj〉 �∈ Reject

26 end

Fig. 5. Multi-writer K-quorum protocols

was started. Let gtsbeg and gtsend denote the global timestamps at the start and end
of the write. Then,

ats[i] = gtsend[i]

ats[j] > gtsbeg [j] − k

gtsend ≥ gtsbeg

The writer then writes the value, val, along with the timestamp ats to the single-
writer k-atomic system for the writer.

Read operation. To perform a multi-writer read operation, a reader reads from all the m
single-writer k-quorum systems. Because of the k-atomicity of the underlying single-
writer implementation, each of these m responses is guaranteed to be one of the k latest
values written by each writer. However, if some writer has not written for a long time,
then the value could be very old when considering all the writes in the system. Finding
the latest value among these m values is difficult because the approximate timestamps
are not totally ordered.

The reader uses elimination rules (lines 19-23) to reject values that can be inferred
to be older than other values. This elimination is guaranteed to reject any value that is
more than

(
(2m − 1)(k − 1) + m

)
writes old. Finally, after rejecting old values, the

reader returns any value that has not been rejected.

Lemma 1. If a writer wi performs a write, beginning at the (global) time gtsbeg and
ending at gtsend, with a (approximate) timestamp t, then

t ≤ gtsend; t[i] = gtsend[i]; and

∀j : t[j] ≥ gtsbeg [j] − k + 1

Lemma 2. Let 〈valj , tsj〉 be one of the m values read in lines 16-17. If a writer, say s,
has performed 2k writes after 〈valj , tsj〉 has been written (and before the read starts)
then 〈valj , tsj〉 will be rejected in lines 19-23.

Proof: Let gtsbeg
j ,gtsend

j and gtsbeg
s ,gtsend

s denote the global timestamp at the be-

ginning and end of the writes for 〈valj , tsj〉 and 〈vals, tss〉. Also, let gtsbeg
read be the

timestamp when the read is started.
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Since writer s has performed at least 2k − 1 writes after writing 〈valj , tsj〉 we have

gtsbeg
read[s] ≥ gtsend

j [s] + 2k

Also, from the k-atomic properties of the single writer system, we know that

tss[s] = gtsend
s [s] > gtsbeg

read[s] − k

⇒ tsj [s] ≤ gtsend
j [s] ≤ gtsbeg

read[s] − 2k

< gtsend
s [s] − k = tss[s] − k

Hence 〈valj , tsj〉 will be added to Reject in line 23. ��

Theorem 7. The multi-writer read protocol never returns a value that is more than(
(2m− 1)(k − 1) +m

)
writes old.

Proof: Let 〈valj , tsj〉 be the value returned by the read protocol.
The writer j cannot have written more than k−1 writes after 〈valj , tsj〉 (and before

the read begins). From Lemma 2 it follows that each of the remaining (m − 1) writers
could have written no more than 2k−1 writes after the write for 〈valj , tsj〉 (and before
the read begins).

Hence, 〈valj , tsj〉 can be at most
(
1 + (k − 1) + (m− 1)(2k − 1)

)
writes old. ��

Lemma 3. At least one of the m received values is not rejected.

Theorem 8. The multi-writer protocol described in Figure 5 provides
(
(2m − 1)(k −

1) +m
)
-atomic semantics.

Availability of a Multi-writer System We now estimate the availability of the multi-
writer system, assuming that the underlying single-writer k-quorum system has a read
and write availability of asr = 1 − εsr and asw = 1 − εsw respectively.

Each multi-writer write operation involves reading from all the m single-writer k-
quorum systems and writing to one single-writer system. Hence the write availability
of the multi-writer system, amw, is at least (asr)

m
asw. This is a conservative estimate

because we are assuming that, when the network is synchronous, we treat finding a read
quorum and finding a partial-write-quorum as independent events. In practice, however,
the fact that a particular number of servers (size of read quorum) are up and accessible
only increases the probability of being able to find an accessible partial-write-quorum.

Moreover, If the m underlying single-writer k-quorum systems are implemented
over the same strict quorum system, then the potential read quorums that can be used
for all the m systems will be the same.4 Thus, we can use the same read quorum to
perform all the m read operations. In this case, either all reads are available with proba-
bility asr or all reads fail with probability εsr. Hence the probability of the multi-writer
write succeeding is at least asrasw.

amw ≥ asrasw ≥ 1 − εsr − εsw

4 The partial-write-quorums could still be different, if the writers have chosen different partial-
write-quorums in the past.
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To perform a multi-writer read, our read protocol performs m reads from the m
single writer k-quorum implementations. Thus, along similar lines, we can argue that
the availability amr is at least asr

m. Using the same underlying strict quorum system
for all the m single-writer systems, we can achieve an availability of

amr = asr = 1 − εsr

Probabilistic freshness guarantees We now estimate the probability that our multi-
writer implementation of k-quorums provides the latest value, when all the writes that
occur are non-overlapping.

Let δsw denote the probability that a sw-read does not return the latest value written
to the single-writer system. Let δmw denote the probability that the multi-writer system
does not return the latest value written to the system.

Theorem 9. If the operations are non-overlapping, the probability that the multiple-
writer system does not return the latest value is at most mδsw

Once again, the proof can be found in our extended technical report [12].

5 Conclusion and Future Work

In this paper we expand our understanding of k-quorum systems in three key direc-
tions [9].

First, we present a single-writer k-quorum construction that tolerates Byzantine fail-
ures. Second, we prove a lower bound of

(
(2m− 1)(k − 1) + 1

)
on the staleness for a

m writer solution built over a single-writer k-quorum solution.
Finally, we demonstrate a technique to build multiple-writer multiple-reader k-

quorum protocols using a single-writer multiple-reader protocol to achieve
(
(2m −

1)(k − 1) +m
)
-atomic semantics.

One limitation of our approach is that it improves availability only when writes are
infrequent. Also, we have restricted our study of multi-writer solutions to those that built
over a single-writer k-quorum system; it may be possible that a direct implementation
can achieve a better staleness guarantee.
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Abstract. Minimizing the number of electronic switches in optical net-
works is a main research topic in recent studies. In such networks we
assign colors to a given set of lightpaths. Thus the lightpaths are parti-
tioned into cycles and paths, and the switching cost is minimized when
the number of paths is minimized. The problem of minimizing the switch-
ing cost is NP-hard. A basic approximation algorithm for this problem
eliminates cycles of size at most l, and has a performance guarantee of
OPT + 1

2
(1+ε)N , where OPT is the cost of an optimal solution, N is the

number of lightpaths, and 0 ≤ ε ≤ 1
l+2

, for any given odd l. We improve
the analysis of this algorithm and prove that ε ≤ 1

3
2 (l+2)

. This implies

an improvement in the running time of the algorithm: for any ε, the ex-
ponent of the running time needed for the same approximation ratio is
reduced by a factor of 3/2. We also show a lower bound of ε ≥ 1

2l+3
. In

addition, in our analysis we suggest a novel technique, including a new
combinatorial lemma.

Keywords: Wavelength Assignment, Wavelength Division Multiplex-
ing(WDM), Optical Networks,Add-Drop Multiplexer(ADM).

1 Introduction

1.1 Background

Given a WDM network G = (V,E) comprising optical nodes and a set of full-
duplex lightpaths P = {p1, p2, ..., pN} of G, the wavelength assignment (WLA)
task is to assign a wavelength to each lightpath pi.

In the following discussion we also assume that each lightpath p ∈ P is con-
tained in a cycle of G. Each lightpath p uses two ADM’s, one at each endpoint.
Although only the downstream ADM function is needed at one end and only the
upstream ADM function is needed at the other end, full ADM’s will be installed
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on both nodes in order to complete the protection path around some ring. The
full configuration would result in a number of SONET rings. It follows that if
two adjacent lightpaths are assigned the same wavelength, then they can be used
by the same SONET ring and the ADM in the common node can be shared by
them. This would save the cost of one ADM. An ADM may be shared by at
most two lightpaths. A more detailed technical explanation can be found in [1].

Lightpaths sharing ADM’s in a common endpoint can be thought as concate-
nated, so that they form longer paths or cycles. Each of these longer paths/cycles
does not use any edge e ∈ E twice, for, otherwise they cannot use the same wave-
length and this is a necessary condition to share ADM’s.

1.2 Previous Work

Minimizing the number of electronic switches in optical networks is a main re-
search topic in recent studies. The problem was introduced in [1] for ring topol-
ogy. Approximation algorithm for ring topology with approximation ratio of 3/2
was presented in [2], and was improved in [3,4] to 10/7+ε and 10/7, respectively.

For general topology [5] describe an algorithm with approximation ratio of
8/5. The same problem was studied in [6] and an algorithm was presented that
has a preprocessing phase where cycles of length at most l are included in the
solution; this algorithm was shown to have performance guarantee of

OPT +
1
2
(1 + ε)N, 0 ≤ ε ≤ 1

l + 2
(1)

where OPT is the cost of an optimal solution, N is the number of lightpaths,
for any given odd l. The dominant part in the running time of the algorithm is
the preprocessing phase, which is exponential in l.

For l = 1 this implies algorithm without preprocessing, having performance
guarantee of OPT + 2

3N . In [7] this algorithm is proven to have a performance
guarantee of OPT + 3

5N and this bound is shown to be tight.

1.3 Our Contribution

We improve the analysis of the algorithm of [6] and prove a performance of

OPT +
1
2
(1 + ε)N,

1
2l + 3

≤ ε ≤ 1
3
2 (l + 2)

. (2)

Specifically, we show that the algorithm guarantees to satisfy an upper bound
of OPT + 1

2 (1 + ε)N , for ε ≤ 1
3
2 (l+2)

, and we demonstrate a family of instances

for which the performance of the algorithm is OPT + 1
2 (1 + ε)N , for ε ≥ 1

2l+3 .
Our analysis sheds more light on the structure and properties of the algorithm,

by closely examining the structural relation between the solution found by the
algorithm vs an optimal solution, for any given instance of the problem.

As the running time of the algorithm is exponential in l, our result imply an
improvement in the analysis of the running time of the algorithm. For any given
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ε > 0, the exponent of the running time needed to guarantee the approximation
ratio (3 + ε)/2 is reduced by a factor of 3/2.

In addition, in the development of our bounds we use a purely combinatorial
problem, which is of interest by itself.

In Section 2 we describe the problem and some preliminary results. The algo-
rithm and its analysis are presented in Section 3. We conclude with discussion
and open problems in Section 4. Some proofs are sketched or omitted in this
Extended Abstract.

2 Problem Definition and Preliminary Results

2.1 Problem Definition

An instance α of the problem is a pair α = (G,P ) where G = (V,E) is an
undirected graph and P is a set of simple paths in G. Given such an instance
we define the following:

Definition 2.1 The paths p, p′ ∈ P are conflicting or overlapping if they have
an edge in common. This is denoted as p � p′. The graph of the relation � is
called the conflict graph of (G,P ).

Definition 2.2 A proper coloring (or wavelength assignment) of P is a function
w : P �→ N, such that w(p) �= w(p′) whenever p � p′.

Note that w is a proper coloring if and only if for any color c ∈ N, w−1(c) is an
independent set in the conflict graph.

Definition 2.3 A valid chain (resp. cycle) is a path (resp.cycle) formed by the
concatenation of distinct paths p0, p1, ..., pk−1 ∈ P that do not go over the same
edge twice. Note that the paths of a valid chain (resp. cycle) constitute an inde-
pendent set of the conflict graph.

Definition 2.4 A solution S of an instance α = (G,P ) is a set of chains and
cycles of P such that each p ∈ P appears in exactly one of these sets.

In the sequel we introduce the shareability graph, which together with the con-
flict graph constitutes another (dual) representation of the instance α. In the
sequel, except one exception, we will use the dual representation of the problem.

Definition 2.5 The shareability graph of an instance α = (G,P ), is the edge-
labelled multi-graph Gα = (P,Eα) such that there is an edge e = (p, q) labelled u
in Eα if and only if p �� q, and u is a common endpoint of p and q in G.

Example: Let α = (G,P ) be the instance in Figure 1. Its shareability graph
Gα is the graph at the left side of Figure 2. In this instance P = {a, b, c, d},
and it constitutes the set of nodes of Gα. The edges together with their labels
are Eα = {(b, c, u), (a, c, w), (a, b, x), (a, d, x)}, because a and b can be joined in
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their common endpoint u, etc.. Note that, for instance (b, d, x) /∈ Eα, because
although b and d share a common endpoint x, they can not be concatenated,
because they have the edge (x, u) in common. The corresponding conflict graph
is the graph at the right side of Figure 2. It has the same node set and one edge,
namely (b, d). The paths b, d ∈ P are conflicting because they have a common
edge, i.e. (u, v).

u

wx

v

a
d

c
b

t

Fig. 1. A sample input

a

d

bc

The conflict graph

u

w

x

x

The shareability graph

a

d

bc

Fig. 2. The shareability and conflict graphs

Note that the edges of the conflict graph are not in Eα. This immediately
follows from the definitions.

Note also that, for any node v of Gα, the set of labels of the edges adjacent to
v is of size at most two.

Definition 2.6 A valid chain (resp. cycle) of Gα is a simple path p0, p1, ..., pk−1

of Gα, such that any two consecutive edges in the path (resp. cycle) have distinct
labels and its node set is properly colorable with one color (in G), or in other
words constitutes an independent set of the conflict graph.

Note that the valid chains and cycles of Gα correspond to valid chains and cycles
of the instance α. In the above example the chain a, d which is the concatenation
of the paths a and d in the graph G, corresponds to the simple path a, d in Gα
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and the cycle a, b, c which is a cycle formed by the concatenation of three paths
in G corresponds to the cycle a, b, c in Gα. Note that no two consecutive labels are
equal in this cycle. On the other hand the paths b, a, d can not be concatenated
to form a chain, because this would require the connection of a to both b and d
at node x. The corresponding path b, a, d in Gα is not a chain because the edges
(b, a) and (a, d) have the same label, namely x.

Definition 2.7 The sharing graph of a solution S of an instance α = (G,P ),
is the following subgraph Gα,S = (P,ES) of Gα. Two lightpaths p, q ∈ P are
connected with an edge labelled u in ES if and only if they are consecutive in a
chain or cycle in the solution S, and their common endpoint is u ∈ V . We will
usually omit the index α and simply write GS . d(p) is the degree of node p in GS.

In our example, S = {(d, a, c), (b)} is a solution with two chains. The sharing
graph of this solution is depicted in Figure 3. Note that for a chain of size at most
two, the distinct labelling condition is satisfied vacuously, and the independent
set condition is satisfied because no edge of Gα can be an edge of the conflict
graph.

a

d

bc u

w

x

x

Fig. 3. A possible solution

We define ∀i ∈ {0, 1, 2} , Di(S)
def
= {p ∈ P |d(p) = i} and di(S)

def
= |Di(S)|.

Note that d0(S) + d1(S) + d2(S) = |P | = N.
An edge (p, q) ∈ ES with label u corresponds to a concatenation of two paths

with the same color at their common endpoint u. Therefore these two endpoints
can share an ADM operating at node u, thus saving one ADM. We conclude
that every edge of ES corresponds to a saving of one ADM. When no ADMs are
shared, each path needs two ADM’s, a total of 2N ADMs. Therefore the cost of
a solution S is 2 |P | − |ES | = 2N − |ES |.

The objective is to find a solution S such that cost(S) is minimum, in other
words |ES | is maximum.
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2.2 Preliminary Results

Given a solution S, d(p) ≤ 2 for every node p ∈ P . Therefore, the connected
components of GS are either paths or cycles. Note that an isolated vertex is a
special case of a path. Let PS be the set of the connected components of GS that
are paths. Clearly, |ES | = N − |PS |. Therefore cost(S) = 2N − |ES | = N + |PS |.

Let S∗ be a solution with minimum cost. For any solution S we define

ε(S)
def
=

d0(S) − d2(S) − 2 |PS∗ |
N

.

Lemma 1. For any solution S, cost(S) = cost(S∗) + 1
2N(1 + ε(S)).

Proof. Clearly |ES∗ | = N − |PS∗ |. On the other hand 2 |ES | is the sum of the
degrees of the nodes in GS , namely 2 |ES | = d1(S)+2d2(S) = N−d0(S)+d2(S).
We conclude:

cost(S) − cost(S∗) = |ES∗ | − |ES | = N − |PS∗ | − N − d0(S) + d2(S)
2

=
1
2
N

(
1 +

d0(S) − d2(S) − 2 |PS∗ |
N

)
��

The following definition extends the concept of a chord from cycles to paths.

Definition 2.8 Given an instance α = (G,P ) and a solution S of α, an edge
(p, q) of Gα is a chord of S if both p and q are in the same connected component
of GS and (p, q) /∈ ES.

Lemma 2. For every instance α = (G,P ) and there is an optimal solution S∗

without chords.

Sketch of Proof.. Note that any two solutions S1, S2 of α such that cost(S1) =
cost(S2), have the same number of chains, whereas the number of cycles may
differ. Let S∗ be a solution with maximum number of cycles among the solutions
with minimum cost, i.e. optimal. For the complete proof that S∗ satisfies the
claim, see [8]. ��

In the sequel we will always use the dual representation. Henceforth, an element
p of P is referred as a node (of Gα), and a path refers to a path of Gα.

3 Main Results

3.1 Algorithm PMM(l)

In this section we describe Algorithm PMM(l) presented in [2].
The algorithm with has a preprocessing phase which removes cycles of size

at most l, where l is an odd number. Then it proceeds to its processing phase
(Function MM) which can be described as follows:
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Begin with chains consisting of single nodes (which are always valid). At each
iteration, combine a maximum number of pairs of chains to obtain longer chains.
This is done by constructing an appropriate graph and computing a maximum
matching on it. The algorithm ends when the maximum matching is empty,
namely no two chains can be combined into a longer chain.

Function MM(α) {
Phase 0) ES = ∅

// the chains of GS are isolated nodes.
Phase 1)
Do {

Build the graph G′
α in which each node is a chain of GS

and there is an edge labelled u between two chains if
and only if the chains can be merged into one bigger
chain by joining them at a common endpoint u.
//In the first iteration G′

α = Gα

Find a maximum matching MM of G′
α.

For each edge e = (c, c′) of MM labelled u do {
Merge the corresponding chains into one chain
by joining them in the common endpoint u

}
} Until MM = ∅.

return(S).
}

Procedure PMM(l)(α = G,P ) {
Preprocessing:
Find a maximal set S0 of disjoint valid cycles of length ≤
l in P.
P0 is the set of nodes of the cycles of S0.
P1 ← P \ P0. //S0 is maximal, therefore P1

//does not contain feasible cycles of
//length ≤ l.

Processing:
α1 ← (G,P1).
S1 ← MM(α1).
ES ← ES0 ∪ ES1

return(S).
}

3.2 Correctness

We first prove the correctness of MM : After Phase 0, the chains of S consist
of single nodes. Trivially, these are valid chains. At each iteration of Phase 1, a
new chain is constructed only if it is valid, because edges are added to G′

α only if
the corresponding chains can be merged into one chain. Each edge of a matching
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represents a valid merging operation. Moreover two such valid operations do
not affect each other, because each such operation is performed on two chains
matched by an edge of some matching. Therefore after each iteration the solution
consists of valid chains.

We now conclude with the correctness of PMM(l): S0 consists of disjoint
valid cycles. S1 consists of disjoint valid chains because of the correctness of
MM . Moreover P0 ∩ P1 = ∅, therefore S is a set of disjoint valid cycles and
chains, i.e. a solution.

3.3 Analysis

We begin our analysis with Lemma 3 which is proven, although in other ter-
minology, in [2]. This will be helpful in understanding the main result of this
section, i.e. the improved upper bound. The proof is based on the existence of
a matching M having certain size. This matching consists solely of edges of the
connected components of GS∗ . In our proof we show that using other edges of
Gα we can build a larger matching which leads to a higher upper bound. In
Subsection II, we develop a lower bound on the number of edges in ES \ ES∗ .
In Subsection III we prove a combinatorial lemma, which helps us to to build
our matching. In Subsection IV we build the improved matching and prove our
upper bound. In Subsection V we give a lower bound for the performance of the
algorithm.

I-An upper bound
In the sequel S is a solution returned by the algorithm and S∗ is an optimal
solution without chords, whose existence is guaranteed by Lemma 2.

Lemma 3. For any solution S of PMM(l), ε(S) ≤ 1
l+2 .

Sketch of Proof.. This lemma is actually proven in [2]. For a complete proof in
our notations, see [8]. ��

We begin by developing some results which will be used in our proof. The first
family of results gives a lower bound on the number of edges ”touching” cycles
of GS∗ .

II-Lower bounds for edges of ES \ ES∗

Definition 3.1 For every X ⊆ P , OUT (X)
def
= C(X,X) is the cut of X in GS,

namely the set of edges of GS having exactly one endpoint in X.

Lemma 4. Let C be a cycle of GS∗ , then

|OUT (C)| ≥ 1
3
(|C| + |D0(S) ∩C| − |D2(S) ∩ C|).

Proof. Let k be the number of edges of C which are not part of GS and ∀i ∈
{0, 1, 2} , dci

def
= |Di(S) ∩ C|.

The sum of the degrees (in GS) of the nodes of C is

dc1 + 2dc2 = |C| − dc0 + dc2.
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On the other hand each edge of GS connecting nodes of C contributes 2 to this
sum and each edge in OUT (C) contributes 1. As there are no chords of C, the
number of edges contributing 2 is |C| − k. Therefore

|C| − dc0 + dc2 = 2(|C| − k) + |OUT (C)|
|C| + dc0 − dc2 = 2 k − |OUT (C)| . (3)

For the following discussion consult Figure 4. Consider an edge e = (p, q) of C
which is not in GS . This edge was not added to ES by the algorithm. This could
be only because a node p′ in the connected component of p in GS is conflicting
with a node q′ in the connected component of q in GS . Either p′ /∈ C or q′ /∈ C,
otherwise they would not be conflicting. Assume w.l.o.g. that p′ /∈ C. Let p′ be
the node closest to p among such nodes. By the choice of p, there is an edge
e′ connecting p′ to a node in C. We call e′ the blocking edge of e. Moreover
e′ ∈ OUT (C). Therefore, any edge e of C which is not in GS has a blocking
edge, and any edge in OUT (C) may be a blocking edge of at most two edges.
Therefore

k ≤ 2 |OUT (C)| . (4)

Combining (3) and (4) we get

|C| + dc0 − dc2 = 2k − |OUT (C)| ≤ 3 |OUT (C)|

|OUT (C)| ≥ 1
3
(|C| + dc0 − dc2). ��

Definition 3.2 The i-neighborhood Ni(X) of X is the set of all the nodes having

exactly i neighbors from X in GS , but are not in X. N(X)
def
= N1(X).

The following lemma generalizes the previous lemma to a set of cycles.

qp e

e' e''
q'p'

Fig. 4. Blocking and blocked edges
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Lemma 5. Let C be a set of cycles of GS∗ . Let PC
def
= ∪C be the set of nodes

of these cycles. Let IN(C) be the set of edges of GS connecting two cycles of C.
Then

|N(PC)| ≥ 1
3

|PC | +
1
3

|D0(S) ∩ PC | − 1
3

|D2(S) ∩ PC | − 2 |IN(C)| − 2 |N2(PC)|

Proof. Consider the sum
∑

C∈C |OUT (C)|. Each edge in OUT (PC) is counted
in this sum. On the other hand each edge in IN(C) is counted twice (once for
each cycle it connects) where it should not be counted at all. Similarly each edge
having one endpoint in N2(PC) is counted once where it should not be counted
at all. The number of these edges is 2 |N2(PC)|.

|N(PC)| =
∑
C∈C

|OUT (C)| − 2 |IN(C)| − 2 |N2(PC)|

≥ 1
3
(|PC | + |D0(S) ∩ PC | − |D2(S) ∩ PC |) − 2 |IN(C)| − 2 |N2(PC)| . ��

Definition 3.3 The odd cycles graph OGS = (OCS ,OES) of a solution S is a
graph in which each node corresponds to an odd cycle of GS∗ which does not
intersect with P0 and two nodes are connected with an edge if and only if there
is an edge connecting the corresponding cycles in Es.

Lemma 6. Let X ⊆ OCS. Then |N(PX )| ≥ 1
3 |PX |−2 |IN(X )|−2(d2(S)−|P0|).

Proof. First, we show that N2(PX ) ⊆ D2(S) \ P0 \ PX . Let p ∈ N2(PX ). By
definition p has degree 2, namely p ∈ D2(S). Still by definition p /∈ PX . It
remains to show that p /∈ P0. By definition p has both of its neighbors in PX .
Assume p ∈ P0, then p is in some cycle of S0. Then both of its neighbors are
in this cycle, thus in P0. But they are also in PX , contradicting the fact that
by definition, the cycles of X do not intersect with P0. Therefore |N2(PX )| ≤
d2(S) − |P0| − |D2(S) ∩ PX |. Substituting this in Lemma 5 we get

|N(PX )| ≥ 1
3

|PX | + 1
3

|D0(S) ∩ PX | − 1
3

|D2(S) ∩ PX | − 2 |IN(X )|

−2(d2(S) − |P0| − |D2(S) ∩ PX |)

=
1
3

|PX | + 1
3

|D0(S) ∩ PX | + 5
3

|D2(S) ∩ PX | − 2 |IN(X )| − 2(d2(S) − |P0|)

≥ 1
3

|PX | − 2 |IN(X )| − 2(d2(S) − |P0|). ��

Corollary 3.1 Let I be an independent set of OGS. Then |N(PI)| ≥ 1
3 |PI | −

2(d2(S) − |P0|).

Proof. By definition ∀u, v ∈ I, (u, v) /∈ OE . This means that these are not
connected by an edge in ES . In other words IN(I) = ∅. ��



On Minimizing the Number of ADMs 469

III-Odd Distanced Nodes with Distinct Colors
In this subsection we develop a result which will be an essential tool in building
the matching in Subsection IV, and proving a lower bound on its size. For this
purpose we define the ”maximum odd distanced nodes with distinct colors”
family of problems which are pure combinatorial problems of their own interest.

The cycle version of the problem, (MODNDC − C) is defined as follows:

Input: A cycle C with n nodes numbered from 1 to n clockwise, some of which
are colored and the rest are not. If a node is colored, c(v) ∈ N denotes its color,
otherwise c(v) = 0 and it is termed uncolored.

Output: A cyclic subsequence V = (v0, v1, ..., vk−1) of the nodes of C such that:

– Odd distanced: Between every pair of successive nodes vi, vj=i+1 mod k ∈ V ,
the clockwise distance d(vi, vj) from vi to vj is odd. Note that in particular
if k = 1 then the d(v0, v0) = n is be odd.

– Distinct Colors: Every node vi in the sequence is colored (i.e. c(vi) �= 0) and
for every pair of distinct nodes vi and vj in the sequence, c(vi) �= c(vj).

Measure: Our goal is to find V maximizing the number of nodes of C which
are colored with colors from {c(v0), c(v1), ..., c(vk−1)}. In the sequel it will be
easier to measure a solution V by the number of nodes of C which are colored
with colors from {c(v0), c(v1), ..., c(vk−1)}, plus the number of nodes which are
not colored. In other words, given a solution, we first set c(v) = 0 for all v such
that c(v) = {c(v0), c(v1), ..., c(vk−1)} and we count the number of nodes v with
c(v) = 0. We define as Bc(V ) the set of nodes colored c after this uncoloring,

formally Bc(V )
def
= {v ∈ C|c(v) = c}. W (V )

def
= B0 is the set of uncolored nodes.

B(V ) def= �c>0Bc is the set of colored nodes. Our target is to find a solution V
such that |W (V )| is maximized. Obviously C = B(V ) �W (V ).

Definition 3.4 A cycle C is dedicated if it contains nodes colored with one color
and possibly some uncolored nodes. Formally, |{c(v)|v ∈ C} \ {0}| = 1.

Lemma 7. Given an instance of the (MODNDC − C) problem, one of the
following is true:

– (a) C is a dedicated even cycle.
– (b) There is a solution V with measure |W (V )| ≥ �n

3 �

Proof. Let V be an optimal solution. We consider the following cases:

– Case 1: V = ∅. It follows from the definition that, if V ′ and V ′′ are two so-
lutions such that V ′ ⊂ V ′′, then W (V ′) ⊂ W (V ′′), thus |W (V ′)| < |W (V ′)|.
In particular, for any solution V ′ �= ∅, |W (V ′)| > |W (∅)|. As we assumed
V = ∅, it follows that no other solution is feasible.

If all the nodes are uncolored then |W (∅)| = n, thus (b) holds. Otherwise
there are some colored nodes. If n is odd, then any singleton of the colored
nodes is a non-empty solution, a contradiction. Therefore n is even. If there is
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only one color, then this is a dedicated even cycle and (a) holds. Otherwise
there are at least two colors. Since V = ∅ no pair of nodes is a solution.
Then, for any pair u, v of nodes, either they are an even distance apart, or
c(u) = c(v). Fix some node v and let c(v) = a >. Then all the nodes u
such that c(u) �= a are at even distance from v. We claim that all the nodes
u′ such that c(u′) = a are also at even distance from v. Assume that there
is a node u′ such that c(u′) = a at odd distance from v, then it is at odd
distance from the nodes u such that c(u) �= a. Then u′ together with one of
the u nodes is a solution, contradiction our assumption. Then all the colored
nodes are at even distance from u. We conclude that all the nodes at odd
distance from u are uncolored. Then |W (∅)| ≥ n

2 .

– Case 2: V �= ∅. We want to show that |W (V )| ≥ n
3 = |W |

3 + |B|
3 which is

equivalent to |B| ≤ 2 |W |. For this purpose we will partition the set B into
two disjoint sets X,Y , and then prove |X | ≤ |W | and |Y | ≤ |W |.

Let V = {v0, v1, ..., vk−1}. Consider two consecutive nodes vi, vj ∈ V .
Note that i = j if k = 1, thus these nodes need not be distinct. Recall also
that the clockwise distance d(vi, vj) from vi to vj is odd.

Observe that if there are two colored nodes x, y ∈ B(V ) between these
two nodes such that x is closer to vi and that d(vi, x) and d(x, y) are odd,
then c(x) = c(y). For, otherwise the set V � {x, y} is a better solution than
V , a contradiction.

We use this observation to characterize the colored nodes of the solution,
i.e. the nodes of B(V ). For the following discussion consult Figure 5. Let
x ∈ B(V ) be the colored node which is closest to vi when going clockwise
from vi to vj and is at odd distance from vi. Let y ∈ B(V ) be the colored node
which is farthest from vi when going from vi to vj and is at even distance
from vi. Note that y is the first node in B(V ) at odd distance from vj when
going counterclockwise from vj to vi. By these choices, all the colored nodes
before x are at even distance from vi and all the colored nodes after y are at
odd distance from vi. If y occurs before x then there are no colored nodes
between x and y, or in other words, all the colored nodes are either before
y or after x. Note that this statement holds even if one or both of x, y do
not exist. In all these cases we define Xi = ∅. If y occurs after x then by the
observation in the previous paragraph c(x) = c(y) = c. Furthermore, by the
same observation, for every colored node z between x and y, c(z) = c. In this
case we define Xi be the set of all the colored nodes from x to y including
x and y. Let also Yi be the set of all other colored nodes between vi and vj .

Let X
def
= �k−1

i=0 Xi and Y
def
= �k−1

i=0 Yi.
Obviously |Y | ≤ |W |, for the nodes of Y are separated by at least one

node in W .
Let Vi ⊆ W be the set of nodes having originally the same color as vi. Note

that Xi has at least one node x which is at even distance from vi. Therefore
V ′ = V \ {vi} ∪ {x} is a solution. If |Xi| > |Vi| then |W (V ′)| > |W (V )|, a
contradiction, hence |Xi| ≤ |Vi|. Summing up from i = 0 to k − 1 we have
|X | ≤ �k−1

i=0 |Vi| ≤ |W |.
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Fig. 5. The nodes between two nodes of the solution

We conclude that |B(V )| = |X | + |Y | ≤ 2 |W (V )| as required. ��

The path version of the problem (MODNDC − P ) is defined similarly and
similar result is proven in [8].

IV-A better upper bound
Our main result is the following:

Theorem 1. Given a solution S of PMM(l),

ε(S) ≤ 1
3/2(l + 2)

.

Sketch of Proof.. The proof is based on a matching M leaving a small number
of unmatched nodes. We partition the connected components of GS∗ as: (1) I
which some maximum independent set of OGS , (2)D = OCS \ I, (3) O which is
the set of all odd cycles of GS∗ except those in OCS , in other words all the odd
cycles of GS∗ which intersect with P0, (4) E the set of even cycles of GS∗ , and
(5)PS∗ , the set of maximal paths of GS∗ .

Note that each cycle in OCS = I � D has at least l + 2 nodes, because it is
odd and it does not intersect with P0.

We further partition these sets as: I = I1 � I2 � ID, D = D1 � D2, O =
O1 � O2,E = ED � E2.

Initially ID = I2 = D2 = O2 = E2 = ∅, thus I1 = I,D1 = D,O1 =
O, ED = E , and M is the empty matching. The rest of the construction is done
in nine phases, following a relatively long discussion, using, in particular, the
combinatorial lemma 7. Due to space limitation it is omitted from this Extended
Abstract. For a complete proof see [8]. ��
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V-A lower bound

Lemma 8. There are infinitely many instances (G,P ) and solutions S returned
by PMM(l), such that

ε(S) =
1

2l + 3
.

Proof. Consider the graph H containing a cycle H1 of length l + 1 and a cycle
H2 of length l + 2. For each k consider an instance α such that Gα consists of
k copies of H and the conflict graph (not shown in the figure) contains all the
possible edges except the edges of H and the chords of the cycles H1 and H2.

GS∗ consists of the k copies of H1 and H2.
Any cycle C of H with l nodes or less has at least four nodes, two from each

of H1 and H2. At least two pairs of these nodes will be in conflict. Thus, there
are no feasible cycles of length up to l. It follows that the algorithm will not
make any changes during the preprocessing phase. The matching consisting of
the k(l + 1) edges between the k copies of the cycles H1 and H2 is a maximum
matching. If the algorithm finds this maximum matching in the first iteration, it
will not be able to extend it in any manner in the next phase and the algorithm
will terminate GS being this maximum matching. We therefore have d0(S) =
k, d2(S) = 0, |PS∗ | = 0, N = k(2l + 3) and

ε(S) =
d0(S) − d2(S) − 2 |PS∗ |

N

1
2l + 3

. ��

From Theorem 1 and Lemma 8 we get the following theorem as a corollary.

Theorem 2. For any solution S returned by algorithm PMM(l), ε(S) ≤ 1
3
2 (l+2)

and there are infinitely many instances for which ε(S) ≥ 1
2l+3 .

4 Conclusion and Possible Improvements

We presented an improved analysis for the algorithm in [6] for a network of a
general topology and proved PMM(l) = OPT + 1

2 (1 + ε)N , where 1
2l+3 ≤ ε ≤

1
3
2 (l+2)

. For any given ε > 0 this improves the analysis of the time complexity of
the algorithm. In addition we use a novel technique in our analysis.

Open problems that are directly related to our work are (1) to further close
the gap between the upper and lower bound, and (2) to extend to use of our
technique to related problems. As we measure the performance of any algorithm
ALG by ALG ≤ OPT + cN for some 0 < c < 1, two other open problems are
(3) to find an upper bound smaller than c = 1/2, and (4) to determine whether
there exists a positive lower bound for c. Another open problem is (5) to improve
the result of Lemma 7. For instance if the bound of Lemma 7 can be improved
from n/3 to n/2, then it would imply ε ≤ 1

5
3 (l+2)

.
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Abstract. Internet supercomputing is becoming a powerful tool for har-
nessing massive amounts of computational resources. However in typical
master-worker settings the reliability of computation crucially depends
on the ability of the master to depend on the computation performed by
the workers. Fernandez, Georgiou, Lopez, and Santos [12,13] considered a
system consisting of a master process and a collection of worker processes
that can execute tasks on behalf of the master and that may act mali-
ciously by deliberately returning fallacious results. The master decides on
the correctness of the results by assigning the same task to several work-
ers. The master is charged one work unit for each task performed by a
worker. The goal is to design an algorithm that enables the master to de-
termine the correct result with high probability, and at the least possible
cost. Fernandez et al. assume that the number of faulty processes or the
probability of a process acting maliciously is known to the master. In this
paper this assumption is removed. In the setting with n processes and
n tasks we consider two different failure models, viz., model Fa, where
f -fraction, 0 < f < 1

2
, of the workers provide faulty results with proba-

bility 0 < p < 1
2
, given that the master has no a priori knowledge of the

values of p and f ; and model Fb, where at most f -fraction, 0 < f < 1
2
,

of the workers can reply with arbitrary results and the rest reply with
incorrect results with probability p, 0 < p < 1

2
, but the master knows

the values of f and p. For model Fa we provide an algorithm—based on
the Stopping Rule Algorithm by Dagum, Karp, Luby, and Ross [10]—
that can estimate f and p with (ε, δ)-approximation, for any 0 < δ < 1
and ε > 0. This algorithm runs in O(log n) time, O(log2 n) message
complexity, and O(log2 n) task-oriented work and O(n log n) total-work
complexities. We also provide a randomized algorithm for detecting the
faulty processes, i.e., identifying the processes that have non-zero prob-
ability of failures in model Fa, with task-oriented work O(n), and time
O(log n). A lower bound on the total-work complexity of performing n
tasks correctly with high probability is shown. Finally, two randomized
algorithms to perform n tasks with high probability are given for both
failure models with closely matching upper bounds on total-work and
task-oriented work complexities, and time O(log n).
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1 Introduction

With the advent of high bandwidth Internet connections, Internet supercomput-
ing is increasingly becoming a popular means for harnessing the computing power
of an enormous number of processes around the world. Internet supercomputing
comes at a cost substantially lower than acquiring a supercomputer or building
a cluster of powerful machines. Several Internet supercomputers are in existence
today [1,2,3]. For instance, Internet PrimeNet Server, a project comprised of
about 30,000 servers, PCs, and laptop computers, supported by Entropia.com,
Inc., is a distributed, massively parallel mathematics research Internet super-
computer. PrimeNet Server has sustained throughput of over 1 teraflop. An-
other popular Internet supercomputer, the SETI@home project, also reported
its speed to be in teraflops [18]. Such Internet supercomputers consist of a mas-
ter computer or server and a large number of computers called workers, working
for the master. The tasks to be carried out are submitted to the master com-
puter; the worker computers subsequently download the tasks (e.g., [1]). After
completing a downloaded task the worker returns the result to the master, and
then proceeds to download another task. Tasks distributed by the master are
typically independent. One of the major concerns involved in such computing en-
vironments is the reliability of the results returned by the workers. While most
participating computers may be reliable, a large number of the workers have
been known to return incorrect results for various reasons. Workers may return
incorrect results due to unintended failures caused, for example, by over-clocked
processes, or they may claim to have performed assigned work so as to obtain
incentives, such as getting higher rank on the SETI@home list of contributed
units of work.

Related Work. Several schemes have been proposed to improve the quality of the
results obtained from untrusted workers. In this work we consider the problem
of a distributed system consisting of a fail-free master process and a collection of
worker processes that can execute tasks on the master’s behalf as in the model
introduced by Fernandez et al. [12,13]. They assumed that the worker processes
might act maliciously and hence deliberately return incorrect results. The tasks
are carried out independently at different processes and the master is charged
with one work unit by the worker process for each task they do on behalf of the
master. Due to the unreliable nature of the workers, the master cannot count
on the correctness of the result returned by only one worker. Instead the master
assigns the work to several processes and then tries to infer the correct result
from the returned results. Thus the goal is to design algorithms that enable the
master to accept correct results with high probability while minimizing the work
charged by the workers.

Gao and Malewicz [14] considered the problem of minimizing the expected
number of correct results of dependent tasks computed unreliably. There a dis-
tributed system is composed of a reliable server that coordinates the computa-
tion of unreliable workers, where any worker computes correctly with probability
p < 1. Any incorrectly computed task corrupts all dependent tasks. They posed
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the problem of computing a schedule that determines which tasks should be per-
formed by the (reliable) server and which by the (unreliable) workers, and when,
so as to maximize the expected number of correct results under a constraint on
the computation time.

Paquette and Pelc [20] consider a general model of a fault-prone system in
which a decision has to be made on the basis of unreliable information. They as-
sume that a Boolean value is conveyed to the deciding agent by several processes.
An a priori probability distribution of this value is known to the agent and can
be any arbitrary distribution. However, if the agent does not have any informa-
tion on the distribution, it may assume that it is uniform. Relaying processes are
assumed to fail independently (and independent of the choice of the value that
is to be transmitted) with a known (but arbitrary and not necessarily equal)
probability distribution. Fault-free processes relay the correct value but faulty
ones may behave arbitrarily, in a Byzantine way. The deciding agent receives the
vector of relayed values and must make a decision concerning the original value.
The aim is to design a deterministic decision strategy with the highest possible
probability of correctness. Such a deterministic decision strategy is presented,
and it is shown that a locally optimal decision strategy need not have the highest
probability of correctness globally.

Contributions. We consider a model commonly used in the Internet supercom-
puting where a master process supervises the execution of many independent
tasks on a large set of worker processes. For simplicity we assume that the
number of tasks is n and the number of processes is also n. The efficiency of
algorithms is measured in terms of work complexity. Two definitions of work
occur in the literature. The first counts only the work spent on executing tasks,
including multiplicities [11]. This is termed task-oriented work, and it does not
account for idling or waiting processes; we denote it here as work . The second
definition accounts for total work, including idling and waiting [9]; we denote it
here as work (our choice of notation is due to the fact that work ≤ work).

We study two failure models in a synchronous environment (Section 2). The
first, called Fa, has f -fraction, 0 < f < 1

2 of the workers providing faulty results
with probability 0 < p < 1

2 , and the master does not have a priori knowledge of
f and p. The second, called Fb, has at most f -fraction of the workers replying
with arbitrary (possibly incorrect) results and the rest replying with incorrect
results with probability p, and the master knows the exact values of f and p
(this is similar to the model of Fernandez et al. [12,13], although our focus is on
the asymptotic analysis of work complexity).

For the model Fa, where the master has no knowledge of the model parame-
ters, we provide an algorithm that can estimate the quantities f and p up to a
customized degree of accuracy (Section 3). The algorithm has time complexity
of O(log n), work complexity of O(log2 n), work complexity of O(n logn), and
message complexity of O(log2 n). Next, we provide an algorithm to detect the
possibly faulty processes in failure model Fa with work complexity O(n) and
time complexity O(log n) (Section 4).
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Finally, we provide algorithms in failure models Fa and Fb to perform n tasks
(Section 5). For model Fa we obtain optimal work complexity O(n) and time
O(log n) (Section 5.1). We also demonstrate that such optimal complexity (linear
in n) is not possible for work complexity, with high probability; and we provide
an algorithm for failure model Fb with O(n log n) work complexity and time
O(log n) (Section 5.2). The above bounds are claimed with high probability.

Other related work. A fundamental problem in the study of complexity of fault-
tolerant distributed computation is the Do-All problem. The Do-All problem
involves using n processes to cooperatively perform m independent tasks in
the presence of failures. Many algorithms have been developed for Do-All in
various models of computation, including message-passing [11,21], partitionable
networks, and shared-memory models [16,19] under a variety of failure models.

Process groups in distributed systems and services may rely on failure de-
tectors to detect failed processes completely and efficiently. Completeness is the
assurance that the faulty process will eventually be detected by every non-faulty
process. Efficiency means the failed processes are detected quickly as well as
accurately, without making mistakes. Chandra and Toueg [7] showed that it is
impossible for a failure detector algorithm to deterministically achieve both com-
pleteness and accuracy over an asynchronous network. This result led researchers
to look for failure detectors that observes completeness deterministically and ef-
ficiency probabilistically [4,5,6,8]. Probabilistic network models have been used
to analyze “heartbeat” failure detectors but only with a single process detecting
failure of a single other process.

Document Structure. Section 2 describes the model of computation and the fail-
ure models. Section 3 discusses the algorithms for the detection of the parameters
p and f based on the Stopping Rule Algorithm. Section 4 presents and analyzes
an algorithm that detects faulty processes. In Section 5 we provide algorithms,
for failure models Fa and Fb for performing n tasks. Section 6 concludes the
paper and discusses future work. An online technical report [17] contains the
omitted proofs.

2 Models of Computation

We assume a synchronous model where processes communicate by exchanging
authenticated messages. The problem is to perform a collection of similarly-
sized independent tasks. The tasks are idempotent, meaning that a task can be
correctly performed one or more times with the same results. The processes are
subject to Byzantine failures in that a process can maliciously return incorrect
results for any task. One distinguished infallible process M is identified as the
master process. The master has n uniquely identified tasks to perform and for
each task it needs to collect the result. We assume that it is not feasible for M to
perform all tasks by itself (for lack of resources or paucity of time). Consequently,
M supervises a set of n processes called workers. Workers have unique identifiers
from the set P = {1, ..., n}. The master follows the algorithmic template for
executing each task T as shown in Fig. 1 (cf. [12,13]).
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procedure for master process M and task T :
1: Choose a set S ⊆ P
2: Send task T to each process s ∈ S
3: Wait for the results from the processes in S
4: Decide on the result value v from the responses

procedure for each worker w ∈ P :
1: Wait to receive a task from the master process M
2: Upon receiving a task from M
3: Execute the task
4: Send the result to M

Fig. 1. The algorithmic template for the master and worker processes

Models of failure. The workers are subject to Byzantine failures, with the re-
striction that a faulty process cannot impersonate another process and cannot
tamper with messages. We consider two worker failure models, Fa and Fb:

Model Fa

(i) f -fraction, 0 < f < 1
2 , of the n workers may fail.

(ii) Each possibly faulty worker independently exhibits faulty behavior with
probability 0 < p < 1

2 .
(iii) The master has no a priori knowledge of f and p.

Model Fb

(i) There is a fixed bound on the f -fraction, 0 < f < 1
2 , of the n workers

that can be faulty, and any worker from the remaining (1−f)-fraction of the
workers fails (i.e., returns incorrect answers) with probability p, 0 < p < 1

2 ,
independently of other workers.
(ii) The master knows the values f and p.

Remark. Our failure models are more restrictive than the common Byzantine
model where any process may fail and subsequently behave in a malicious man-
ner. In our models probabilistic constraints limit the ability of processes to be-
have in a Byzantine way, however when a process is “allowed” to fail, the failure
can indeed be Byzantine. End remark.

The failure model Fb is somewhat similar to the behavior considered in the
work of Fernandez et al. [12,13]. In contrast to the model Fb they assume that
there is a known probability d of the master process receiving the reply from
a given worker (that is willing to reply) withing time t after sending the task
to the worker. However, they do not specify the distribution and subsume the
factor 0 < d < 1 in the probability of failure, p. Here, we assume 1 < p < 1

2
in order to conform to the failure model considered in [12,13]. Finally, whereas
[12,13] study the conditions leading to the successful executions of tasks, in our
work we focus on the analysis of work complexity as defined below.
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Measures of efficiency. To evaluate the work-efficiency of the algorithms, we use
two popular ways of accounting for work: total work and task-oriented work. In
both cases we assume that it takes one fixed time step to perform a unit of work,
and that it takes one unit of work to perform one task. Chlebus et al. [9] use
total work complexity (a.k.a. available processor steps). Here all steps taken by
the processes during the execution are counted, including the steps of the idling
and waiting non-faulty processes. We refer to this measure as work complexity.

Dwork et al. [11] define work as the number of performed tasks, counting
multiplicities. This approach does not charge for the steps spent by processes
while idling or waiting for messages (motivated by the possibility that processes
that are not performing tasks can be gainfully employed to work on other prob-
lems). We call this task-oriented measure work complexity. (Note that it trivially
follows that work ≤ work , hence our choice of notation.)

We also consider the conventional notions of time complexity and message
complexity, where the latter is the number of point-to-point messages sent during
the execution of an algorithm.

Lastly, we use the commonly used definition of an event E occurs with high
probability (w.h.p.) to mean that Pr[E ] = 1 −O(n−α) for some constant α > 0.

3 Estimation of the Fault Parameters in Model Fa

In the failure model Fa the parameter values f and p are unknown to the master
process. Knowledge of f and p is instrumental in inferring, with high probability,
the correct results based on the computations done by the workers. In order to
estimate the values of f and p we provide an algorithm based on the Stopping
Rule Algorithm of Dagum et al. [10]. The motivation for this algorithm comes
from the following example. Suppose we have a random variable X , where X ∈
{0, 1}, such that Pr[X = 0] = p and Pr[X = 1] = 1 − p = q. Consider the
independent and identically distributed (iid) random variables X1, X2, · · · , Xm

whose distribution is that of X . Therefore, EX = EX1 = · · · = EXm = q.
Suppose we want to use the unbiased estimator Sm

m of q, where Sm = X1 +X2 +
· · ·+Xm. Now, suppose we choose m = c logn, for some c > 0, in an attempt to
have a reasonable number of trials for our setting of n processes with n tasks.
Now by a simple application of a slight variation of the Chernoff bounds result
(see Lemma 1 below) we can show that for δ > 0

Pr
[
Sm

m
≥ (1 + δ)q

]
≤ e−

mqδ2

4 ≤ e−
δ2cq log n

4 ≤ n− cqδ2

4

A similar relation can be shown for the case Pr[Sm

m ≤ (1 − δ)q] ≤ n− cqδ2
4 .

Observe that unless we have some prior information about the value of q (or
p) we many not know what c to choose in order to determine the number of
repetitions in order to obtain a desired level of accuracy for the estimation of
p. Thus it is desirable to have an algorithm that has an online rule for stopping
the computation.
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Lemma 1 (Chernoff Bounds). Let X1, X2, · · · , Xn be n independent Bernoulli
random variables with Pr[Xi = 1] = pi and Pr[Xi = 0] = 1 − pi, then it holds
for X =

∑n
i=1 Xi and μ = E[X ] =

∑n
i=1 pi that for all δ > 0, (i) Pr[X ≥

(1 + δ)μ] ≤ e−
μδ2
3 , and (ii) Pr[X ≤ (1 − δ)μ] ≤ e−

μδ2
2 .

Estimation of f and p. Under model Fa the n tasks can be done in the following
two phases, viz., first estimate the value of p and f followed, second, by the
actual computation of the tasks by the workers. At first we provide algorithms
to estimate the values of f and p in time O(log n) and closely matching upper
bounds on work and work complexities. The basic idea is to ask some of the
worker processes to compute the result of a task whose result is already known
to the master M . Based on the responses we can estimate the value of f and p
with high probability (this is shown later in detail in Fig. 3). However, soon we
will see that this is not a trivial task and is somewhat counter-intuitive.

Let Z be a random variable distributed in the interval [0, 1] with mean μZ . Let
Z1, Z2, . . . be independently and identically distributed according to Z variables.
Our algorithm is based on the Stopping Rule Algorithm [10] for estimating the
mean μZ , and we refer to this algorithm as SRA and give it below in Fig. 2 for
completeness. We say that μ̃Z is an (ε, δ)-approximation of μZ if Pr[μZ(1− ε) ≤
μ̃Z ≤ μZ(1 + ε)] > 1 − δ .

Input Parameters: (ε, δ) with 0 < ε < 1, δ > 0
1: Let Γ1 = 1 + (1 + ε)Γ // λ = (e − 2) ≈ 0.72 and Γ = 4λ log ( 2

δ
)/ε2

2: Initialize N ← 0, S ← 0
3: While S < Γ1 do : N ← N + 1; S ← S + ZN

4: Output: μ̃Z ← Γ1
N

Fig. 2. The Stopping Rule Algorithm (SRA) for estimation of μZ

Let us define λ = (e − 2) ≈ 0.72 and Γ = 4λ log (2
δ )/ε2. Now, Theo-

rem 1 (slightly modified, from [10]) tells us that SRA provides us with a (ε, δ)-
approximation with the number of trials within Γ1

μZ
with high probability, where

Γ1 = 1 + (1 + ε)Γ .

Theorem 1 (Stopping Rule Theorem). Let Z be a random variable in [0, 1]
with μZ = E[Z] > 0. Let μ̃Z be the estimate produced and let NZ be the
number of experiments that SRA runs with respect to Z on input ε and δ.
Then, (i) Pr[μZ(1 − ε) ≤ μ̃Z ≤ μZ(1 + ε)] > 1 − δ, (ii) E[NZ ] ≤ Γ1

μZ
, and

(iii) Pr[NZ > (1 + ε) Γ1
μZ

] ≤ δ
2 .

We present an algorithm for estimating f and p in model Fa in Fig. 3; we call
it algorithm Af,p. Here (1 − f)–fraction of the workers are non-faulty and they
reply with correct answers. On the other hand, every possibly-faulty worker
replies with a wrong answer with probability p > 0 and independently of other
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Input Parameters: (ε, δ) with 0 < ε < 1, δ > 0
procedure for master process M :

1: Let Γ1 = 1 + (1 + ε
2
)Γ

2: Nf ← 0; Sf ← 0 // initialize
3: While Sf < Γ1 do
4: Choose a subset of workers P ′ ⊆ P , with replacement s.t. |P ′| = �log n�;
5: Foreach s ∈ P ′ do Ns

p ← 0; Ss
p ← 0 ; //initialize for all s ∈ P ′

6: While mins∈P ′{Ss
p} < Γ1 do

7: Foreach s ∈ P ′, s.t., Ss
p < Γ1 do

8: Send a “test” task to s ;
9: Receive result from s ;

10: If result is “incorrect” then Ss
p ← Ss

p + 1;
11: Ns

p ← Ns
p + 1 ;

12: End for
13: End while
14: Foreach s ∈ P ′ do
15: If Ns

p �= Ss
p then Sf ← Sf + 1; p̂s ← Γ1

Ns
p
;

16: End for
17: Nf ← Nf + |P ′| ;
18: End while
19: f̂s ← Γ1

Nf

20: Return f̂ and any of the p̂ss;

Fig. 3. Algorithm Af,p for model Fa to estimate the values of f and p

tasks assigned to it. Therefore, the master process uses some “test” tasks the
answers to which it already knows. If the master gets a wrong reply from a
worker to a “test” task, then it can decide that the worker is faulty. However,
our goal is to design an (ε, δ)-approximation algorithm that can help us estimate
f and p with reasonably low work and message complexities.

The basic idea of the algorithm is as follows: choose randomly O(log n) work-
ers, with repetition, and ask each of the chosen workers O(log n) “test” questions
to decide whether or not it is faulty. Now based on the Stopping Rule Theorem
we use the O(log n) “test” responses to estimate p, i.e., compute p̂, and we use
the O(log n) decisions on whether or not the chosen workers are faulty or not to
estimate f , i.e., compute f̂ .

In algorithm Af,p this is implemented by choosing a subset P ′ ⊆ P of logn
workers in line 4 and this is repeated until the stopping rule for the estimation
of f is reached. In line 5 we initialize two counters Ns

p and Ss
p for every s ∈ P ′

used for the estimation of p. The While loop in lines 6–13 is run until each of
the processes reaches the stopping rule individually. If the condition for stopping
the While loop in line 6 is not satisfied then mins∈P ′{Ss

p} ≥ Γ1, i.e., for every
s ∈ P ′, Ss

p ≥ Γ1, then each process s ∈ P ′ reaches its corresponding stopping
condition. Observe that the random variable Z in the Stopping Rule Algorithm
corresponds to “correct” or “incorrect” results i.e., Z = 0 or Z = 1, respectively.
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We now state the following result.

Theorem 2. Algorithm Af,p is an (ε, δ)–approximation algorithm, 0 < ε < 1,
δ > 0, for the estimation of f and p with work complexity O(log2 n), work com-
plexity O(n log n), message complexity O(log2 n), and time complexity O(log n),
with high probability.

From the above result we conclude that given any δ > 0, 0 < ε < 1 algorithm
Af,p can provide the (ε, δ)-approximation to the estimation of f and p in O(log n)
time. Of course, its time increases as the factor (1 + 1

ε2 ) with the decrease of ε,
i.e., when higher accuracy is demanded (as given by inequalities (??) and (??)
in the proof of Theorem 2 in the appendix).

4 Detection of Faulty Processors

In this section we deal with the detection of faulty processes among the initial
set of n processes in the failure model Fa. Although detection of faulty processes
is instrumental in avoiding redundant computations, this is also interesting as a
method of computation in the failure mode Fa. Furthermore, under certain com-
puting environments, once such faulty processes are detected the master process
may choose to stop assigning any tasks to them. For simplicity we suppose that
all n processes are faulty and therefore each will provide wrong results with prob-
ability p if it is asked a “test” question. We propose an algorithm in Fig. 4 based
on the fact that if we send out the “test” messages to the n workers then p ·n of
them will be expected to be diagnosed as faulty, with high probability, based on
their wrong answers. Then in the following round we send the test messages to
the remaining processes and expect a fraction p of them to be diagnosed faulty.
Proceeding this way we can expect to reduce the number of “test” messages sent
out by a factor of p in each round. Thus, to detect all the faulty processes the
algorithm would take O(log n) rounds and and work complexity O(n) w.h.p.,
which in fact asymptotically matches with the lower bound Ω(n).

procedure for master process M :
1: Initially, F ← ∅:
2: For t = 0, · · · , k log n, k > 0
3: Choose a set S ← P \ F
4: Send each process s ∈ S the task
5: Wait for the replies from the processes in S
6: F ← F ∪ {s : s is a faulty process}
7: End For

Fig. 4. Algorithm for detecting faulty processes

First we mention here a result of Karp [15] on probabilistic recurrence relations
that is helpful in our analysis of the algorithm. Consider the probabilistic recur-
rence relation of the type T (x) = a(x) + T (h(x)), where a(·) is a non-negative
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real-valued function of x and h(x) is a random variable ranging over [0, x] and
having expectation less than or equal to m(x), where m(·) is a non-negative
real-valued function.

Theorem 3 ([15]). Suppose that a(x) is a nondecreasing, continuous function
that is strictly increasing on {x|a(x) > 0}, and m(x) is a continuous function.
Then for every positive real x and every positive integer t,

Pr[T (x) > u(x) + ta(x)] ≤
(
m(x)
x

)t

where u(x) =
∑

i≥0 a(m
i(x)) is the solution to the equation u(x) = a(x) +

u(m(x)) with m0(x) := 0 and mi+1 := m(mi(x)).

Lemma 2. The algorithm in Fig. 4 detects all faulty processes among n
processes in O(log n) time and with work O(n) with high probability.

Proof. We have to show that S = ∅ with high probability at the end of O(log n)
rounds and work during this time is O(n).

At any round t of the algorithm we denote by St the number of processes that
are not diagnosed as faulty, i.e., the size of the set S. Clearly, S0 = n. Now, let
us denote by At the event At = {|St − qSt−1| ≤ δqSt−1} for t = 1, 2, . . ., where
δ > 0, and let q = 1 − p. We consider and analyse the following two phases.
Phase 1: St > n

log n . First we want to prove that at every round t, where
t = 1, 2, . . . , k log logn, with k a constant, the number of “possibly non-faulty”
processes decreases by a factor of p. That is, we are interested in computing the
probability of the event A :=

⋂k log log n
t=1 At and we use T to stand for k log logn.

Therefore, we are expressing them as conditional probabilities

Pr(A) =
T∏

t=1

Pr(At|A1 · · ·At−1)

Now, observe the fact that E[St] = qSt−1 and A1 ∩ A2 ∩ · · · ∩ At implies
that ((1 − δ)q)t S0 ≤ St ≤ ((1 + δ)q)t S0, i.e., ((1 − δ)q)t n ≤ St ≤ ((1 + δ)q)t n.
Considering this and by applying Chernoff bounds we can show that

Pr(At|A1 · · ·At−1) = 1 − Pr(Āt|A1 · · ·At−1) ≥ 1 − 2e−
δ2qSt−1

4

and hence

Pr(A) ≥
∏T

t=1

(
1 − 2e−

δ2qSt−1
4

)
≥
∏T

t=1

(
1 − 2e−

δ2((1−δ)q)t n
4

)
≥
(

1 − 2e−
δ2((1−δ)q)T n

4

)T

≥
(

1 − 2e−
δ2qn
log n

)k log log n

≥ 1 − 4k log log n

e
δ2q n

log n

In the above algebra we used the fact that T = k log logn and hence 1
((1−δ)q)T

= O(log n), where 0 < δ < 1. Therefore, we estimate work W1 done during the
rounds t = 1, 2, . . . , T to be bounded as W1 ≤

∑T
t=1((1 − δ)q)tn = O(n).
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Phase 2: St <
n

log n . Observe that this phase can last at most O(log n) rounds
with high probability because the probability that any faulty process has not
been diagnosed as faulty for k logn is 1

nk for some k > 1. In this phase we
want to estimate work done by the algorithm for the case when |St| < n

log n .
Let W (x) denote the amount of work till the end of the algorithm (i.e., until
S = ∅) starting with the round when S < n

log n . Now, we can express W (x) as a
probabilistic recurrence relation:

W (x) = x+W (h(x))

where Eh(x) = qx and hence we identify m(x) as qx. Using Theorem 3 we get

Pr(W (x) ≥ u(x) + tx) ≤
(
m(x)
x

)t

Here we have u(x) =
∑

i≥0 a(m
i(x)) =

∑
i≥0 q

ix < cx, where c = 1
1−q . Now,

choosing t = k′ logn and x = n
log n we have

Pr
[
W

(
n

log n

)
≥ u

(
n

logn

)
+ k′ logn

n

logn

]
≤
(
m(x)
x

)t

≤ qk′ log n ≤ 1
nk′′

where k′′ is some positive constant and after simplification we get

Pr
[
W

(
n

log n

)
≥ c′n

]
≤ 1

nc

Hence, work W2 done in the second phase is W2 = W
(

n
log n

)
= O(n) with high

probability.
From the analyses of the two phases, the overall work done during the execu-

tion of the algorithm is W = W1 +W2 = O(n) with high probability. �

5 Performing n Tasks with n Workers with Fraction f of
them Faulty with Probability p

The ultimate goal of our computational model is to be able to perform all n tasks
in either of the failure models Fa and Fb. Ideally, all n tasks should be done in
O(n) work and work complexities. However, we show that it is not possible to
do all n tasks in O(n) work with high probability.

Lemma 3. It is not possible to perform all n tasks correctly, in the failure model
Fa, with linear work complexity (i.e., O(n)) with high probability.

5.1 Performing Tasks in Failure Model Fa

Discouragedby the result ofLemma 3 forwork complexity, now we look for the pos-
sibility of an algorithm that does n tasks correctly with O(n) work and O(log n)
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time, with high probability. We provide an algorithm that has work complexity
O(n), work complexity (n logn), and time O(log n), with high probability. Recall
that in the context of failure mode Fa, among the n workers, f -fraction of workers
may provide faulty results with probability p. We assume that the local processing
time of the master is negligible. The intuitive idea of the algorithm is to first ran-
domly decide on a set S of n

log n worker processes and send each of them O(log n)
“test” tasks to compute (a “test” task is a task whose result is already known to the
master). Now because of the nature of the failure model Fa (i.e., the probability of
a possibly faulty worker returning erroneous results is independent of other work-
ers) depending on the responses from the workers about the results of these “test”
tasks the master process would be able to deduce some (as discussed in the follow-
ing) of the faulty processes. As a result, with high probability we will detect g n

log n
distinct non-faulty workers, where g := 1 − f . Now, we get our n tasks done by
these processes by sending to these g n

log n workers g n
log n tasks in O(log n) rounds.

Finally, we show that this algorithm runs in logn time and has work O(n). The
algorithm is given in Fig. 5 and the following result can be proved for the algorithm
whose proof is omitted due to paucity of space.

procedure for master process M :
1: Initially, C ← ∅, J ← set of n tasks
2: Choose randomly a subset of workers S, possibly with repetition,

S ⊆ P , s.t. |S| = k n
log n

workers k > 0 is a constant
3: For i = 1, · · · , k′ log n, k′ > 0
4: Send to each worker s ∈ S a “test” task.
5: Collect the responses from all the workers.
6: End For
7: If all the responses from a worker s ∈ S are correct then
8: C ← C ∪ {s}
9: End if

10: For i = 1, · · · , n
|C|

11: Send |C| jobs from J , not sent in a previous iteration,
one to each worker in C.

12: Collect the responses from the C workers.
13: End For

Fig. 5. Algorithm to perform n tasks with n workers with f -fraction of them faulty
with probability p

Theorem 4. The algorithm in Fig. 5 performs all n tasks in O(log n) time and
has work O(n) and work O(n logn).

5.2 Performing Tasks in Failure Model Fb

Now, we consider the setting of failure model Fb to complete n tasks using n
processes. Below we provide a simple algorithm that completes all n tasks with
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high probability for 0 < p, f < 1
2 , and (1 − f)(1 − p) > 1

2 . The basic idea is
to distribute the tasks according to a random permutation from Sn, the set of
all permutations of [n] = {1, 2, · · · , n}. In other words, if in an iteration, the
random permutation π ∈ Sn is chosen, then the task j is sent to process π(j).

procedure for master process M :
1: For i = 1, · · · , k log n, for some constant k > 0
2: Choose a random permutation π ∈R Sn

3: Foreach j ∈ [n]
4: Send task j to process π(j)
5: End For
6: Collect the responses from all the workers.
7: End For
8: Foreach task j ∈ [n]
9: Choose the majority of the results of computation, for task j, as the result.

10: End For

Fig. 6. Algorithm to perform n tasks using n workers in failure model Fb

Theorem 5. The algorithm in Fig. 6 performs all n tasks correctly in O(log n)
time and has work and work complexities O(n log n), for 0 < p, f < 1

2 , and
(1 − f)(1 − p) > 1

2 , with high probability.

Proof. Let us denote by T (i) the number of the majority results for task i as de-
cided in line 9 of the algorithm. For instance, if i was tried 8 times and the results
are a, a, c, a, a, b, a, b, then the fraction of the majority is 5

8 . We are interested in
showing that for every task j ∈ [n] the event {T (i) < (1−δ)(1−f)(1−p)k logn},
for δ > 0, occurs with very low probability. To show that let us consider any
task i ∈ [n]. We know that for one iteration of the loop in line 1

Pr[Task i is computed correctly] ≥ (1 − f)(1 − p)

Now, since task i executed k logn times and these trials are done independently,
by applying Chernoff bound we have

Pr[T (i) < (1 − δ)(1 − f)(1 − p)k log n] ≤ Pr[T (i) < (1 − δ)μ] ≤ e−
δ2μ
4 ≤ n−kδ2

8

where μ > k logn(1−f)(1−p) > k
2 logn. Now, we want to show that

⋃n
i=1{T (i) <

(1 − δ)(1 − f)(1 − p)k logn} occurs with low probability and hence

Pr[
⋃n

i=1{T (i) < (1 − δ)(1 − f)(1 − p)k logn}]
≤
∑n

i=1 Pr[T (i) < (1 − δ)(1 − f)(1 − p)k logn] ≤ n

n
kδ2
8

≤ 1
n�

for some � > kδ2

8 − 1. Now, since the For loop in line 1 is run O(log n) times
and since at every iteration a task is sent to every process, then work and work
complexities are both O(n logn), with high probability. �



Robust Network Supercomputing with Malicious Processes 487

6 Conclusion

In this paper we presented and discussed a model of computation abstracting the
type of computation commonly used in Internet supercomputing where many of
the worker machines may be faulty. The problem is to get n independent tasks
done by a master process by harnessing the power of n workers. We assumed two
different failure models, viz., one that is motivated by the model proposed by
Fernandez et al. [12,13], we call it failure model Fb, and a more realistic failure
model that we call model Fa. In model Fb it is assumed that the fraction of
faulty processes is known and the probability of failure is known to the master
process in advance. However, in model Fa we removed this assumption and
instead provided algorithms that are used to estimate these quantities up to a
customized degree of accuracy at a reasonably low cost in terms of time and
work. We considered two ways in which the master process is charged by the
workers: task-oriented work and total work. We provided algorithms to detect
the possibly faulty processes in failure model Fa. Finally, we provided algorithms
to perform n tasks in models Fa and Fb. For model Fa we obtain optimal O(n)
task-oriented work complexity (i.e., work ) and running time O(log n), w.h.p. We
also demonstrated that such optimality is not possible in the total work measure
(i.e., work). For model Fb we obtain O(n log n) work and work complexities,
and running time of O(log n), w.h.p.

Future work includes considering more virulent failure behaviors and task sets
with inter-task dependencies.

Acknowledgement. The authors would like to thank Elaine L. Sonderegger and
the anonymous reviewers for their valuable comments that helped improve the
paper.
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Abstract. Distributed stream processing architecture has emerged as
appealing solution to coping with the analysis of large amount of data
from dispersed sources. A fundamental problem in such stream process-
ing systems is how to best utilize the available resources so that the over-
all system performance is optimized. We consider a distributed stream
processing system that consists of a network of cooperating servers, col-
lectively providing processing services for multiple data streams. Each
stream is required to complete a series of operations on various servers.
We assume all servers have finite computing resources and all commu-
nication links have finite available bandwidth. The problem is to find
distributed schemes to allocate the limited computing resources as well
as the communication bandwidth in the system so as to achieve a maxi-
mum concurrent throughput for all output streams. We present a gener-
alized multicommodity flow model for the above problem. We develop a
distributed resource allocation algorithm that guarantees the optimality.
We also provide detailed analysis on the complexity of the algorithm and
demonstrate the performance using numerical experiments.

1 Introduction

With the continued fast development and pervasive use of IT technologies, digital
information collected and generated by machines put increasing stress on the
processing capabilities of IT infrastructure. As a consequence, distributed stream
processing architecture emerges as appealing solution to coping with the analysis
of large amount of data. In such a paradigm, incoming data are processed on
the fly and results are forwarded to other servers for further processing. Only a
small amount of data, compared to the input rate, would be stored after these
analyses.

A fundamental problem in such stream processing networks is how to best
utilize available resources and coordinate the multiple servers so that the over-
all system performance is optimized. Since the applications are often running
in a decentralized, distributed environment, at any given time, no server has
the global information about all the servers in the system. One server’s best
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decision for itself may inadvertently degrade the performance of the overall sys-
tem. It is thus difficult to determine the best resource allocation policy at each
server in isolation, such that the overall throughput of the system is optimized.
In addition, the system must adapt to the dynamic changes in network condi-
tions as well as the input and resource consumption fluctuations. The system
needs to coordinate the processing, communication, storage/buffering, and the
input/output of neighboring servers to meet these challenging requirements.

Previous work on resource management for stream processing systems has
focused on either heuristics for avoiding overload or simple schemes for load-
shedding (e.g. [4,9,14,15,19]). The problem of dynamic/distributed resource al-
location has not yet been fully studied. This paper addresses the fundamental
resource allocation questions in a distributed setting.

Specifically, we consider a distributed stream processing system that consists
of a network of cooperating servers, collectively providing processing services for
multiple data streams. Each stream is required to complete a series of opera-
tions on various servers. The size of the data streams may change after each
operation. For example, a filtering operation may shrink the stream size, while a
decryption operation may expand the stream size. This makes our corresponding
flow network different from the conventional flow network since flow conservation
no longer holds. We assume all servers have finite computing resources and all
communication links have finite available bandwidth. The goal is to find distrib-
uted schemes to allocate the limited computing resources and the communication
bandwidth in the system so as to achieve a maximum concurrent throughput for
all output streams. Here the concurrent throughput means the maximum pro-
portional throughput of the system assuming the demand proportions of the
multiple streams are fixed and the system gives a fair effort for all applications.

Our problem can be formulated as a generalized multicommodity flow prob-
lem. Multicommodity flow problems have been studied extensively in the context
of conventional flow networks. Readers are referred to [6,2,3] for the solution
techniques and the related literature. Traditional multicommodity flow prob-
lem looks for the best way of using the link capacities to deliver the maximum
throughput for the flows in the network. In our problem, in addition to the link
bandwidth constraints, we also have processing power constraints for each server.
Furthermore, the traditional flow conservation is generalized so as to allow flow
shrinkage or expansion.

We present a generalized multicommodity flow model for the above problem
and develop a distributed resource allocation algorithm. The algorithm is based
on setting up buffers and using back-pressure governed by potential functions to
move flows across various servers and communication links. Our algorithm can
be considered as an extension of the algorithm in [2,3] that allows flow shrinkage
or expansion. This also completes in both theory and experiments our previous
simulation study [7].

The overall contributions of this paper are as follows:

• We consider the distributed resource allocation problem for a network of
servers, constrained in both computing resources and communication band-
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width. Our model also captures the shrinkage and expansion characteristics
peculiar to stream processing, which generalizes the conventional flow net-
work. We describe an extended graph representation that unifies the two
types of resources seamlessly and then map the problem to a generalized
multicommodity flow problem. (Section 2-3).

• We present a distributed algorithm to solve the resource allocation problem
so as to achieve a maximum concurrent throughput for all output streams.
We show that our algorithm guarantees the optimality and provide detailed
analysis on the complexity. We also discuss how the algorithms can adapt to
dynamic changes (Section 4-5).

• We present experimental studies and demonstrate the performance of the al-
gorithm as the network size scales up (Section 6).

Related work and some concluding remarks are finally presented in Section 7
and Section 8.

2 The Stream Processing Model

2.1 Distributed Environment

We consider a distributed stream processing system that consists of a network of
cooperating servers, collectively providing processing services for multiple data
streams. Each server only has knowledge about its neighboring servers. Each
data stream requires to be processed according to a given sequence of tasks.
Different servers may be responsible for different sets of tasks. Multiple tasks on
the same server can be executed in parallel and share the computing resource.

We assume the system is constrained in both computing resources and com-
munication bandwidth. Hence, each server is faced with two decisions: first, it has
to decide the allocation of its computing resource to multiple processing tasks;
second, it has to decide how to share the bandwidth on each output link among
the multiple flows going through. The overall system throughput depends criti-
cally on the coordination of processing, communication, buffering/storage, and
input and output of various interconnected servers. In addition, such coordina-
tion/allocation schemes have to be distributed and adaptive to the dynamically
changing network environment.

2.2 Graph Representation

Graph representation can help to better describe the problem. First we introduce
two types of graphs: the task sequence graph and the physical server graph.

The task sequence graph describes the logical relationship among the process-
ing tasks for each data stream. The processing for each data stream consists of
a series of tasks. The various servers are assigned to process one task for each
data stream. A task may be assigned to multiple servers, and tasks that belong
to different streams may be assigned to the same server. The placement of the
various tasks onto the physical network itself is an interesting problem. There
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have been studies on how to place the various tasks onto the physical network.
Readers are referred to [18] for an overview. Here, we assume the task to server
assignment is given.

The physical server graph describes the relationship among the servers based
on the task sequence graph. Based on the task to server assignment, the tasks
of each stream form a directed acyclic sub-graph in the physical server graph.
Consider, for example, a system with 8 servers and 2 streams. Stream S1 requires
the sequential processing of Tasks A, B, C, and D, and Stream S2 requires in se-
quence Tasks G, E, F, and H. Suppose the tasks are assigned such that T1 = {A},
T2 ={B}, T3 ={B, E}, T4 = {C}, T5 = {C, F}, T6 = {D}, T7 = {G}, T8 = {H},
where Ti denotes the set of tasks
that are assigned to server i.
Then the directed acyclic sub-
graph of the physical network is
shown in Figure 1, where the sub-
graph composed of solid links cor-
responds to stream S1 and the
sub-graph composed of dashed
links corresponds to stream S2.
It is easily verified that the sub-
graphs corresponding to individ-
ual streams are directed acyclic
graphs (DAG).

Task B

Server 2

Server 3

Task B

Task E

Server 5

Task C

Task F

Task C

Server 4

Task G

Server 7

Task A

Server 1

Stream S2

Stream S1
Task D

Server 6

Task H

Server 8

Sink 1

Sink 2

Fig. 1. Physical Server Graph

The problem can now be represented using a generic graph G = (N , E). Set
N consists of source nodes, sink nodes and processing nodes. Directed edges in
E represent possible information flow between various nodes. The source nodes
correspond to the source of the input data streams. The sink nodes correspond
to the receivers of the eventually processed information. Processing nodes stand
for the various processing servers. An edge (u, v) ∈ E for server v indicates that
there must be a task residing on server v that can handle data output from
node u.

We refer to the different types of eventual processed information as commodi-
ties. We assume there are K different types of commodities, each associated
with a unique source node sk and a unique sink node tk, k = 1, ..., K. Graph
G is assumed to be connected. Note that G itself may not be a DAG, however,
the subgraphs corresponding to individual streams are DAGs. Each processing
node u has available computing resource Ru. Each pair {u, v} of connected nodes
has a finite communication bandwidth Buv.

We assume it takes computing resource rk
u,v for node u ∈ N to process 1

unit of commodity k flow for downstream node v with v ∈ O(u). Each unit
of commodity k input will result in βk

u,v(> 0) units of output after processing.
This β parameter only depends on the task being executed for its corresponding
stream. We shall refer to the parameter βk

u,v as shrinkage factor, which represents
the shrinking (if < 1) or expanding (if > 1) effect in stream processing. Thus
flow conservation may not hold in the processing stage.
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It is possible for a stream to travel along different paths to reach the sink.
The resource consumption can be different along different paths. However, the
resulting outcome does not depend on the processing path. This leads to the
following properties on the β parameters:

Property 1. For any two distinct paths p = (n0, n1, ..., nl) and p′=(n′
0, n

′
1, ..., n

′
l′)

that have the same starting and ending points, i.e.n0 = n′
0 and nl = n′

l′ , we must
have

∏l−1
i=0 βk

ni,ni+1
=
∏l′−1

i=0 βk
n′

i,n
′
i+1

, for any commodity k. For a given node n,

denote gk
n the product of the βk

u,v’s along any path from sk to node n.

That is, no matter which path it takes, a successful delivery of f amount of
commodity k flow from source sk to node n will result in the same amount gk

nf
of output at node n. Clearly, gk

sk
= 1. For simplicity, denote gk = gk

tk
. The

problem is to determine the most efficient paths to process the flows so as to
achieve a maximum concurrent throughput for all output streams.

3 Problem Formulation

3.1 Extended Graph Representation

We next present an extended graph representation of the original graph G that
will facilitate us to address the dual resource constraints.

We introduce a bandwidth node, denoted as nuv, for each pair of nodes u
and v that are connected. If (u, v) ∈ E , then in the new graph, there will be
directed edges (u, nuv) and (nuv, v) (see Figure 2). The role of the bandwidth
node nuv is to transfer flows. We assume that each bandwidth node has resource
Rnuv = Buv. It takes one unit of resource (bandwidth) to transfer a unit of flow,
and it will become one unit of flow for the downstream node, i.e. βk

nuv,v = 1,
rk
nuv ,v = 1. In addition, we set rk

u,nuv
= rk

u,v, βk
u,nuv

= βk
u,v.

Denote the new graph as G′ = (N ′, E ′). In the new system, each node only
has a single resource constraint. If it is a bandwidth node, then it is constrained
by bandwidth; if it is a processing node, then it is constrained by the computing
resource. The new system is then faced with a unified problem: finding efficient
ways of shipping all K commodity flows to their respective destinations subject
to the (single) resource constraint at each node.

Clearly, after the transformation, an original graph G with N nodes, M edges
and K commodities would result in a new graph G′ with N + M nodes, 2M
edges and K commodities. We will work on the new graph G′ from here on.

uu vv nuv

RuRu RvRv

Buv

βk
uv

βk
u,nuv

βk
nuv ,v

Buv

∞ ∞

Fig. 2. An expanded graph representation of the problem
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3.2 Linear Program Formulation

With the extended graph representation, the original dual-resource constrained
problem is transformed into a resource allocation problem with single resource
constraint on each node, which can be formulated as a linear program.

Denote I ′(n) the set of all predecessor nodes and O′(n) the set of all successor
nodes of node n ∈ G′. Denote xk

n,n′ the amount of commodity k flow to be
processed at node n ∈ N ′ that will generate output to downstream node n′ ∈
O′(n). A feasible solution has to satisfy the following conditions:

xk
n,n′ ≥ 0, ∀k; n, n′ ∈ N ′ (1)∑

k

∑
n′∈O′(n)

xk
n,n′rk

n,n′ ≤ Rn, ∀n ∈ N ′ (2)

∑
n′∈O′(n)

xk
n,n′ −

∑
n′′∈I′(n)

xk
n′′,nβk

n′′,n =

⎧⎨⎩
fk, if n = sk

−gkfk, if n = tk

0, otherwise
∀k; n ∈ N ′. (3)

Condition (1) and (2) ensure respectively the non-negativity requirement on the
assignment and the resource constraint on each node. Condition (3) ensures the
flow balance such that incoming flows arrive at the same rate as outgoing flows
being consumed at each node for each commodity. Note that such balance holds
only on the nodes, not when the flow is shipped across edges due to the shrinkage
and expansion effects.

The goal is to allocate the resources so as to achieve a maximum concur-
rent throughput for all output streams. The problem can be formulated as the
following linear program:

max δ subject to fk = δdk, ∀k; and (1)-(3).

where dk’s are given. That is, the problem will find the maximum fraction δ so
that the network is feasible with input rates δdk for all commodities k. Note that
the demand proportions dk, k = 1, . . . , K are fixed and the system gives a fair
effort for all applications.

The linear program represents the centralized solution, hence it does not help
for our goal of obtaining distributed solutions. However, it can serve to provide
the theoretical optimum so that we know the quality of our distributed solutions.

3.3 Multicommodity Flow

The resource allocation problem on the new graph G′ can be interpreted as a
generalized multicommodity flow problem. The variables xk

n,n′ can be thought
of as flow values of a commodity k. The demands dk represent the rate at which
flow is produced at the sources. So at each instant of time, the system is re-
quired to digest demands dk. Different from the traditional flow problem, flow
conservation no longer holds in our model when flows are shipped across edges
due to the shrinkage/expansion effects. Furthermore, the capacity constraints
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are on the nodes instead of edges. We are interested in efficient ways of shipping
the multicommodity flows to their respective destinations subject to the node
resource constraints so as to achieve a maximum concurrent throughput for all
output streams.

We will consider the time evolution of the network as proceeding in a sequence
of synchronous rounds, each lasting for unit time. In each round, dk units of flow
are generated at each source node. The flows may be shipped between nodes, the
resource of each upstream node will be consumed depending on the total amount
of flow shipped, and the total amount of flow received by the downstream node
will be reduced (or expanded) based on the shrinkage factor.

An algorithm for the continuous flow problem will be considered to be stable
if the total amount of flow residing in the system at any time remains bounded.
Clearly such an algorithm is able to deliver the injected flow in the long run.
One can therefore construct the solution for the static problem using the aver-
age of the continuous solution. We present such a distributed algorithm for the
continuous flow problem in the next section.

4 The Local Control Algorithm

We next present a local control algorithm that guides the flow transmission in
between neighboring nodes. For a given set of demands dk, the algorithm will
achieve a stable solution for the continuous flow problem if the demands dk are
feasible. Our algorithm can be considered as an enhancement of the algorithm
in [2,3] so that it allows general flow shrinkage or expansion.

4.1 The Algorithm

We will maintain an input and an output queue for each commodity at the tail
and the head of each edge e ∈ E , and denote qk(eh) and qk(et) the corresponding
queue heights. Let q̄k(eh) = qk(eh)/dk and q̄k(et) = qk(et)/dk be the relative
heights (normalized by the demand).

We define a potential function Φ(q̄) associated with each queue, where the po-
tential function is twice-differentiable and convex. We shall consider exclusively
the potential function Φ(y) = y2

2 . More efficient algorithms may be possible
by choosing other potential functions such as the exponential function [3]. De-
fine Φk(e) = Φ(q̄k(et)) + Φ(q̄k(eh)), for any edge e and commodity k. Define
the potential of a given node n ∈ N ′ as Φ(n) =

∑K
k=1

∑
n′∈O′(n) Φk(en,n′),

where en,n′ denotes edge (n, n′). The potential of the entire system, Φ, is simply
Φ =

∑
n∈N ′ Φ(n). The algorithm will decide locally xk

n,n′ the amount of com-
modity k flow to move across edge (n, n′) with the aim to minimize the potential
of the entire system.

The algorithm will proceed in a sequence of synchronous rounds. Each round
the following four phases are performed.
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The Local Control Algorithm (LC):

Phase 1. For each commodity k, inject dk units of flow at its corresponding
source sk.

Phase 2. Balance all queues for commodity k at node n to equal heights.
Phase 3. For every node n ∈ N ′, push xk

n,n′ ≥ 0 amount of commodity k flow
across edge (n, n′) for all n′ ∈ O′(n), (let en,n′ denote the edge (n, n′)), so
that

min
∑

k

∑
n′∈O′(n)

[
Φ(q̄k(et

n,n′) − x̄k
n,n′) + Φ(q̄k(eh

n,n′) + βk
n,n′ x̄k

n,n′)
]

(4)

s.t.
∑

k

∑
n′∈O′(n)

dk · x̄k
n,n′ · rk

n,n′ ≤ Rn, (5)

where x̄k
n,n′ = xk

n,n′/dk. If n′ = tk, we set the second term in (4) to be zero as
the potential at sink node tk is always zero.

Phase 4. Absorb flow that reached its destination.

4.2 Optimal Resource Allocation at Each Node

In Phase 3, node n’s resource allocation decision is obtained by solving the local
optimization problem defined by (4) and (5). In words, node n will allocate its
resources so as to maximize the potential drop at node n subject to the resource
constraint Rn. Using Lagrangian multipliers, the optimal solution must satisfy

x̄k
n,n′ = max{Δk(en,n′)−sdk·rk

n,n′
1+(βk

n,n′)2
, 0},, where Δk(en,n′) = q̄k(et

n,n′)−βk
n,n′ q̄k(eh

n,n′),

and s(≥ 0) is the Lagrangian multiplier. The optimal value of s is the minimum
s ≥ 0 such that (5) is satisfied. That is,∑

k

∑
n′∈O′(n)

dkrk
n,n′ max{

Δk(en,n′) − sdk · rk
n,n′

1 + (βk
n,n′)2

, 0} ≤ Rn.

The solution can be obtained using the reverse ’water-filling’ method as shown

in Figure 3. Denote hk
n,n′ = Δk(en,n′)

dkrk
n,n′

, and ak
n,n′ =

(dkrk
n,n′)2

1+(βk
n,n′)2

.

For each k and n ∈ O′(n), there is a bucket of
height hk(n, n′) and width ak(n, n′). The optimal
s (see the dashed line in Figure 3) is the line above
which the total area equals to available capacity
Rn, which can be obtained by water filling into
the bucket made by turning Figure 3 upside down.
This value can also be found using a binary search.

s

a1 a2 a3

h1

h2

h3

Fig. 3. Reverse water filling

4.3 Analysis

The following theorem shows that the algorithm will achieve a stable solution
for demands dk if demands (1 + ε)dk are feasible. In particular, all queues in the
system will stay bounded as desired. See Appendix for the detailed proof.
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Theorem 1. If for demands (1 + ε)dk, k = 1, ..., K, there is a feasible solu-
tion that uses paths of length at most L, then for continuous flow problem with
demands dk, the local control algorithm is stable. In particular, all queues are
bounded by

q̄max := 2
√

M(β̄L ∨ 1) · C(β̄, L)K(1 + ε)2/ε, (6)

where

C(β̄, L) =
1 + β̄2

2
· 1 − β̄2L

1 − β̄2
, and β̄ = max

k,n,n′
βk

n,n′ . (7)

Stop Criterion: Based on Theorem 1, since all queues are bounded, after run-
ning the LC Algorithm continuously for T rounds, when T is large enough, the
flow remaining in the system will satisfy:

∑
n

∑
n′∈O′(n)

[q̄k(et
n,n′) + q̄k(eh

n,n′)]dk

gk
n

≤ δdkT, (8)

for a given δ ∈ (0, 1). Note that due to the shrinkage factor gk
n, a unit of com-

modity k flow at node n corresponds to 1/gk
n units of flow from source sk being

successfully shipped to node n.
After T rounds, we will have input dkT units of commodity k into the source

node sk. From (8), at most δdkT units of commodity k (in the view of the source
node sk) remain in the system, thus (1 − δ)dkT units of commodity k should
have successfully reached sink tk. Hence the long run consumption rate is at
least (1− δ)dk for commodity k. (8) can be used as the stop criterion for the LC
Algorithm, and the average (i.e. dividing by T ) of the continuous solution gives
a feasible solution to the static flow problem with demand (1 − δ)dk.

The following results are then immediate.

Corollary 1. If the multicommodity problem is feasible for demands (1 + ε)dk,
k = 1, ..., K, then there is also feasible solution (for the static problem) satisfying
demands (1 − δ)dk, obtained by averaging the continuous solution from the LC
Algorithm.

Theorem 2. The LC Algorithm will satisfy demands (1 − δ)dk, for any δ ∈
(0, 1), after running for Tmax = R/δ rounds, where R = 8M3/2(β̄L ∨ 1) ·
C(β̄, L)K(1 + ε)2/ε.

Notice that when all shrinkage factors are 1’s, C(β̄, L) simply becomes L and
the above bound reduces to be the same as that in the original AL-algorithm [2].
For streaming applications, however, C(β̄, L) is typically much smaller because
the β’s are close to zero due to the high selectivity of stream applications.

5 Maximize Concurrent Throughput

We now describe how to use the LC Algorithm to find the maximum concurrent
throughput. Note that for the concurrent problem, the proportion of injected
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flow among multiple commodities d1 : d2 : . . . : dk is fixed, the problem is
to find the maximum concurrent flow value δ such that input at rate d(δ) :=
(δd1, δd2, . . . , δdK) is feasible.

We will set the input rate to be d(δ), and vary δ till it converges to optimal
δ∗. The key observation is that if δ is too large, then input rate d(δ) is too much
for the network and some queues will grow unbounded; on the other hand, if
δ is smaller than δ∗, then d(δ) should also be feasible and all queues will stay
bounded. Hence, we start out δ at some value that is smaller than the true
maximum concurrent flow value and increase it till we find that some queue
exceeds the bound defined in Theorem 1, at which point we can be sure that the
optimal δ∗ is within a factor of two. We can then perform a bisection search to
determine δ∗ exactly.

The above procedure can be summarized as follows.

Search Algorithm for Max Concurrent Throughput:

Step 0. Initialize δ = δ0, and η > 0 to be the relative error tolerance level.
Step 1. Run the LC Algorithm until 2R rounds pass, or one of (normalized)

queues exceeds q̄max. If 2R rounds pass and no queue has exceeded q̄max,
double δ and repeat Step 1. Otherwise, go to Step 2.

Step 2. Bisection Step.
Step 2.0 Initialize δh = δ, and δl = 0. If δ > δ0, set δl = δ/2.
Step 2.1 Set δ = (δh + δl)/2. Run the LC Algorithm until Tmax rounds pass,

or one of (normalized) queues exceeds q̄max. If Tmax rounds have passed,
then set δl = δ and go to Step 2.2. Otherwise, set δh = δ and go to Step
2.2.

Step 2.2 If (δh − δl)/δl < η, Stop. Otherwise, go back and repeat Step 2.1.

It can be easily shown that the total number of rounds of the above search
algorithm is in the order of Tmax log (δ∗−δ0)

δ∗η , and it can achieve a concurrent
throughput of (1 − η)δ∗.

6 Implementation and Numerical Results

In dynamic large scale environments, the centralized solutions are difficult to
realize as the solutions may not be able to keep up with the changing environ-
ment. Furthermore, the centralized solutions may change by large amounts over
a short time frame, which could lead to unstable system behaviors. Our algo-
rithms presented in the previous sections have the advantages that they do not
require global information, and can easily adapt to dynamic changes. The input
and output queues, or the buffers in our solution make it easy to implement in
real systems. They could directly correspond to the communication buffers at
the servers. At each iteration, a server only needs to know the buffer levels at
its neighboring nodes to determine the appropriate amount of processing and
transmission. As shown in the earlier sections, such a local control mechanism
will lead to global optimal solutions. Dynamic changes of the system character-
istics such as changes to flow shrinkage factors or server capacities will lead to
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changes to the parameters in the problem formulation. Each server can keep a
running estimate of these parameters. As the changes occur, each server natu-
rally adjusts its decisions locally. Our numerical results below demonstrate that
this procedure continues to provide high quality solutions.

We now present experimental results to demonstrate the performance of our
distributed algorithms. We generate random graphs (based on Erdos-Renyi ran-
dom graphs) of different sizes by varying the number of nodes N , the number of
edges M , and the number of commodities K. The parameters are then generated
from independent uniform random samples. We apply our distributed algorithm
and collect the corresponding goodput (i.e. the amount of flow reached its cor-
responding sink successfully) for each commodity and the total run time. The
corresponding optimal solution for the static linear program was obtained using
LP solver.

Figure 4 shows the performance for a 3-commodity 40-node problem, where
the desired goodput for the 3 commodities are respectively set at: d0g0 = 15.5,
d1g1 = 4.5 and d2g2 = 11.1. The left plot in Figure 4 shows the performance of
the LC Algorithm, where the goodput achieved each round for each commod-
ity is plotted as a function of the number of rounds. Observe that the goodput
improves monotonically until it reaches the desired level. which shows that the
LC Algorithm continuously improves its allocation thus pushing more and more
flow in the right direction. We see that the LC Algorithm was able to converge
to desired goodput eventually. The convergence was really quick for commod-
ity 0 and commodity 1, and a bit slower for commodity 2. Although it takes
about 6000 rounds for commodity 2 to converge to its desired throughput, in
computation (CPU) time it is less than a second, which is quite impressive.
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Fig. 4. For 3 commodities, 40 nodes. Left: Total flow reaching sink. Right: CPU usage
as a function of network size.

The right plot in Figure 4 shows the CPU time it takes on average for the
LC Algorithm to converge for networks for varying sizes. The three curves show
respectively the CPU time it takes to reach 90% optimal, 99% optimal, and
completely stable. We can see that it cuts at least half of the run time if a 90%-
optimal solution is acceptable. Observe that the larger the network, the longer it
takes to converge. The curve grows super-linearly in the total number of edges of
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the network, which is consistent with the complexity results derived earlier that
Tmax ∼ M3/2. In fact, since our analytical bound on the complexity is based on
worst case analysis, we find that in most of our experiments, the convergence
time of the distributed algorithms is typically many orders of magnitude faster
than the analytically bound. In addition, the maximum queue size in the system
is also typically many orders of magnitude lower than the analytical bound
given by (6), which indicates that the distributed algorithm should work well in
practice as the assumption on large buffer capacity is not really necessary.

The maximum concurrent flow problem is solved by using the bisection search
algorithm and running the LC Algorithm multiple times. The numerical results
are similar as before except that convergence speed and computation time grow
a factor of log (δ∗−δ0)

δ∗η as discussed earlier. We omit these figures due to space
limit.

7 Related Work

There has been a large body of work on stream processing systems. Much work
has been done on data models (e.g. [1,11]), and operator scheduling (e.g. [8,5]).
Recent resource management work for stream processing systems has focused on
either heuristics for avoiding overload or simple schemes for load-shedding (e.g.
[9,14,19]).

In this paper, we have transformed the dual-resource allocation problem into
an explicit maximum concurrent flow problem. Our multicommodity flow model
can be considered as a generalization of the traditional multicommodity flow
model that allows flow shrinkage and expansion. Prior literature on multicom-
modity flow problems is also extensive. A large body of work centers on the
much simpler problem of 1-commodity flow (also known as the max-flow prob-
lem). A survey of the many 1-commodity algorithms can be found in [10]. For
multicommodity flows, much of the past work (e.g. [13,16,17,12]) has focused on
fast algorithms to solve the centralized problem. Most of these algorithms are
not well suited to distributed implementation or do not adapt well to changing
network topology.

Awerbuch and Leighton [2,3] proposed a distributed multicommodity flow
algorithm that finds an approximation to a feasible flow if one exists. We have
extended the above algorithm to our situation. Our local control algorithm is
essentially an enhancement of the above algorithm so that it allows general flow
shrinkage or expansion. We theoretically analyze the algorithm and give bounds
on the performance that specifically takes the shrinkage factors into account.

8 Conclusion

In summary, we have studied the problem of how to distribute the processing of
multiple data streams over a network of cooperative servers. The network is re-
source constrained in both computing resources at each server and in bandwidth
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capacity over the various communication links. We present a graph representa-
tion of the problem and show how to map the original problem into an equivalent
multicommodity flow problem. We have developed distributed algorithms and
presented both theoretical analysis and numerical experiments. We show that
the proposed distributed algorithms are able to achieve the optimal solution in
the long run.
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Appendix

Proof. Proof of Theorem 1. Let f be any feasible flow for the flow problem
with demands (1 + ε)dk. We will compare the performance of the LC Algorithm
against this flow. For graph G, consider any decomposition of f (the feasible
solution for demand (1+ ε)dk) into a system P of flow paths p of length at most
L (and flow values f(p) so that

∑
p∈P f(p) = |f |). Denote Pk the set of all paths

belonging to commodity k (thus start from source sk).
Consider any node n ∈ N ′, the LC Algorithm selects to process flows (among

all commodities and all the outgoing edges at node n) so as to minimize the
resulting potential function Φ(n) (or equivalently, maximize the potential drop
at node n) subject to the resource constraint Rn. Hence, as a worst case for the
potential drop of the LC Algorithm, we consider the case that the LC Algorithm
actually processes flow (across node n) as prescribed by P . For any edge en,n′ =
(n, n′) with n′ ∈ O′, suppose that P sends a flow of ψk

n,n′ for commodity k across
en,n′ , the potential drop caused by commodity k at en,n′ is equal to

1
2
[(q̄k(et

n,n′))2+ (q̄k(eh
n,n′))2] −1

2
[(q̄k(et

n,n′) − ψ̄k
n,n′)2 + (q̄k(eh

n,n′) + βk
n,n′ ψ̄k

n,n′)2]

= ψ̄k
n,n′ [q̄k(et

n,n′) − βk
n,n′ q̄k(eh

n,n′) −
1 + (βk

n,n′)2

2
ψ̄k

n,n′ ]

= ψ̄k
n,n′ [q̄k

n − βk
n,n′ q̄k

n′ −
1 + (βk

n,n′)2

2
ψ̄k

n,n′ ] (9)

where ψ̄k
n,n′ = ψk

n,n′/dk, and q̄k
n denotes the normalized amount of commodity k

in any queue at node n at the beginning of Phase 3 (since all queues at a given
node are balanced and have equal heights).

Hence, the potential drop at node n under the LC Algorithm is at least:

K∑
k=1

∑
n′∈O′(n)

ψ̄k
n,n′ [q̄k

n − βk
n,n′ q̄k

n′ −
1 + (βk

n,n′)2

2
ψ̄k

n,n′ ]. (10)

Note that ψ̄k
n,n′ can be split among the flow paths p across en,n′ belonging to

commodity k. If path p ∈ Pk contains edge en,n′ , then the f(p) amount of flow at
source sk will become gk

nf(p) amount of flow at node n, where gk
n is the product

of the βk
n,n′ ’s along any path from sk to n, and is invariant for all paths from

source sk to node n due to Property 1. Let f̄(p) = f(p)/dk. Then,

ψ̄k
n,n′ =

∑
p∈Pk:en,n′∈p

gk
nf̄(p) ≤ gk

n

∑
p∈Pk

f̄(p) = gk
n(1 + ε), (11)

since
∑

p∈Pk f̄(p) =
∑

p∈Pk f(p)/dk = (1 + ε)dk/dk = (1 + ε).
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Based on (11), each entry in (10) is bounded below by

∑
p∈Pk:en,n′∈p

gk
nf̄(p)[q̄k

n − βk
n,n′ q̄k

n′ − 1 + β̄2

2
gk

n(1 + ε)]

=
∑

p∈Pk:en,n′∈p

f̄(p)[gk
nq̄k

n − gk
n′ q̄k

n′ − 1 + β̄2

2
(1 + ε)(gk

n)2].

where β̄ is defined by (7), and the last equality is because gk
n′ = gk

nβk
n,n′ due to

Property 1.
Summing up over all nodes in N ′, we then have

∑
n∈N ′

K∑
k=1

∑
n′∈O′(n)

∑
p∈Pk:en,n′∈p

f̄(p)[gk
nq̄k

n − gk
n′ q̄k

n′ − 1 + β̄2

2
(1 + ε)(gk

n)2]

=
K∑

k=1

∑
p∈Pk

∑
en,n′∈p

f̄(p)[gk
nq̄k

n − gk
n′ q̄k

n′ − 1 + β̄2

2
(1 + ε)(gk

n)2]

≥
K∑

k=1

∑
p∈Pk

f̄(p)[q̄k − 1 + β̄2

2
· 1 − β̄2L

1 − β̄2
· (1 + ε)]

=
K∑

k=1

(1 + ε)[q̄k − C(β̄, L)(1 + ε)]

= (1 + ε)
∑

k

q̄k − C(β̄, L)K(1 + ε)2,

where q̄k (= q̄k
sk

) is the normalized amount of commodity k in the queues of
source node sk, and C(β̄, L) is given by (7). For the last inequality, we used the
fact that gk

n ≤ β̄j if n is the j-th hop along path p.
Hence, the potential drop due to the movement of flow in Phases 3 and 4 of

the LC Algorithm is at least:

(1 + ε)
∑

k

q̄k − C(β̄, L)K(1 + ε)2.

We next look at the potential change caused by injecting new flow at Phase 1
of the LC Algorithm. Recall that q̄k is the normalized amount of commodity k
in the queues of the source sk of commodity k after injecting new flow at Phase
1. Suppose there are J outgoing edges from the source sk, and a fraction x̄j

of the newly injected dk amount of commodity k flow was assigned to edge i,
j = 1, . . . , J , and

∑J
j=1 x̄j = 1. Then the total potential increase is:

J∑
j=1

1
2
(q̄k)2 − 1

2
(q̄k − x̄j)2 =

J∑
j=1

1
2
x̄j(2q̄k − x̄j) ≤

J∑
j=1

x̄j q̄
k = q̄k.
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Thus the potential increase caused by phase 1 of the LC Algorithm is at most∑
k q̄k.
Phase 2 of the LC Algorithm can only decrease the potential. This is because

the total potential function associated with all the queues at a given node is
Schur convex, as discussed earlier. Thus balancing all the queues at a given node
can only decrease the potential at that node.

Hence, the overall potential increase in one round of the LC Algorithm is at
most

−ε
∑

k

q̄k + C(β̄, L)K(1 + ε)2. (12)

This value is guaranteed to be negative (i.e. the potential decreases) if∑
k

q̄k > C(β̄, L)K(1 + ε)2/ε. (13)

Note that flow is only pushed through edge (n, n′) when q̄k
n > βk

n,n′ q̄k
n′ . In

other words, if we normalize queue q̄k
n by gk

n for all k and n (so that all queue
heights are relative to the source queue), then the LC Algorithm is only pushing
flow from high to low and the source queue q̄k should always be the highest.
Hence q̄k ≥ q̄k

n/gk
n.

At each round, either condition (13) does not hold, then q̄k
n ≤ gk

nq̄k ≤ (β̄L ∨
1) · C(β̄, L)K(1 + ε)2/ε and there are at most 2M queues of each commodity in
the system, where 2M is the number of edges in the graph G′. If condition (13)
does hold, then according to (12), the overall potential Φ will decrease in that
round. Hence by induction, the potential at any round must be limited to

Φ ≤ 2M · 1
2
[(β̄L ∨ 1) · C(β̄, L)K(1 + ε)2/ε]2.

In the worst case, all of this potential may be concentrated in a single queue.
Hence, the maximum value a q̄k(e) can attain is bounded by q̄max given by (6).

Proof. Proof of Theorem 2. Note that the left hand side of (8) is bounded by
2Mq̄kdk, by setting (8) to equality, we can then obtain an upper bound for the
stopping time T = R/δ, where R = 2Mq̄max. The claimed result then follows
immediately based on (6).
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University of Cambridge
Cavendish Laboratory

piotr.zielinski@cl.cam.ac.uk

Abstract. The Atomic Broadcast algorithm described in this paper can
deliver messages in two communication steps, even if multiple processes
broadcast at the same time. It tags all broadcast messages with the local
real time, and delivers all messages in order of these timestamps. The Ω-
elected leader simulates processes it suspects to have crashed (♦S). For
fault-tolerance, it uses a new cheap Generic Broadcast algorithm that
requires only a majority of correct processes (n > 2f) and, in failure-
free runs, delivers all non-conflicting messages in two steps. The main
algorithm satisfies several new lower bounds.

1 Introduction

In a distributed system, messages broadcast by different processes at approxi-
mately the same time might be received by other processes in different orders.
Atomic Broadcast is a fault-tolerant primitive, usually implemented on top of
ordinary broadcast, which ensures that all processes deliver messages to the
user in the same order. Applications of Atomic Broadcast include state machine
replication, distributed databases, distributed shared memory, and others [4].

As opposed to ordinary broadcast, Atomic Broadcast requires multiple com-
munication steps, even in runs without failures. One of the goals in broadcast
protocol design is minimizing the latency in common, failure-free runs, while
possibly allowing worse performance in runs with failures. This paper presents
an algorithm that is faster, in this respect, than any previously proposed one,
and requires only two communication steps, even if multiple processes broadcast
at the same time.

The definition of latency in this context can be a source of confusion. In this
paper, latency is the time between the atomic broadcast (abcast) of a message
and its atomic delivery. Note that some papers [5, 8] ignore the step in which
the sender physically broadcasts the message to other processes; in that case one
step must be added to the reported latency figure.

The algorithm presented here assumes an asynchronous system with a ma-
jority of correct processes and the ♦S failure detector [2]. Motivated by the
increasing availability of services such as GPS or Network Time Protocol [9],
I additionally assume that each process is equipped with a (possibly inaccu-
rate) real-time clock. The optimum latency of two steps is achieved if the clocks
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Fast Atomic Broadcast
- orders all messages
- 2-step latency if no failures

Generic Broadcast
- orders conflicting messages
- 2-step latency if no conflicts

Atomic Broadcast
- orders all messages
- possibly slow

Ordinary Broadcast
- does not order messages
- 1-step latency

negative
self-statements

if no conflicts

other statements

if conflicts

always

Fig. 1. Layered structure of the Atomic Broadcast algorithm presented in this paper

are synchronized, and degrades gracefully otherwise. In particular, no safety or
liveness properties depend on the clock accuracy.

The algorithm employs a well-known method first proposed by Lamport [7]:
senders independently timestamp their messages, which are then delivered in
the order of these timestamps. The novelty of my approach consists of using
real-time clocks in conjunction with unreliable failure detectors [2] and Generic
Broadcast [1, 12] to ensure low latency and fault-tolerance at the same time.

The layered structure of the algorithm is shown in Fig. 1. Each process tags all
its abcast messages with the local real time, and disseminates this information
using Generic Broadcast. Both positive and negative statements are used (“m
abcast at time 51” vs. “no messages abcast between times 30 and 50”). To achieve
fault-tolerance, the Ω-elected leader occasionally broadcasts negative statements
on behalf of processes it suspects to have crashed (♦S). Any Generic Broadcast
algorithm can be used here, including the new algorithm presented in Sect. 5,
which is specifically tailored for this situation. It requires only a majority of
correct processes (n > 2f) and, in failure-free runs, delivers all non-conflicting
messages in two communication steps.

This paper is structured as follows. Section 2 formalizes the system model and
gives a precise definition of Atomic Broadcast. Section 3 presents the main ideas,
which are then transformed into an algorithm in Sect. 4. Section 5 describes a
new Generic Broadcast algorithm, that is optimized for the use by the main al-
gorithm. Section 6 shortly discusses some secondary properties of the algorithm.
Section 7 presents three new lower bounds that prove that two-step delivery
cannot be maintained if the system assumptions are relaxed (for example, by
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eliminating real-time clocks). Section 8 concludes the paper. Detailed proofs can
be found in the extended version of this paper [15].

1.1 Related Work

A run of an algorithm is good if the real-time clocks are accurate and there
are no failures or suspicions. In such runs, the algorithm presented here delivers
all messages in two steps. No such algorithm has been proposed before; out of
over fifty Atomic Broadcast protocols surveyed by Défago et al. [4], the only
indulgent algorithm capable of delivering all messages faster than in three steps
was proposed by Vicente and Rodrigues [13]. It achieves a latency of 2d + δ,
where d is the single message delay and δ > 0 is an arbitrarily small constant.
The price for having a very small δ is high network traffic; the number of messages
is proportional to 1/δ. In comparison, my algorithm achieves the latency of 2d
with the number of messages dependent only on the number of processes.

Several broadcast protocols achieve a two-step latency in some good runs, such
as those with all messages spontaneously received in order (Optimistic Atomic
Broadcast [10, 14]) or those without conflicting messages (Generic Broadcast
[1, 10, 12, 14]). In comparison, the algorithm presented in this paper delivers
messages in two steps in all good runs.

Défago et al. [4] proposed a classification scheme for broadcast algorithms.
According to that scheme, the algorithm described in this paper is a time-based
communication-history algorithm for closed groups, similarly to the original
Lamport’s algorithm [7], which motivated it.

2 System Model and Definitions

The system model consists of n processes p1, . . . , pn, out of which at most f
can fail by crashing. Less than a half of all the processes are faulty (n > 2f).
Processes communicate through asynchronous reliable channels, that is, there
is no time limit on message transmission time, and messages between correct
processes never get lost.

Each process is equipped with: (i) a possibly inaccurate, non-decreasing real-
time clock, (ii) an unreliable leader oracle Ω, which eventually outputs the same
correct leader at all correct processes, and (iii) a failure detector ♦S. Failure
detector ♦S outputs a list of processes that it suspect to have crashed. It en-
sures that (i) all crashed processes will eventually be suspected by all correct
processes, and (ii) at least one correct process will eventually never be suspected
by any correct process [3]. Detector ♦S is the weakest suspicion-list-like failure
detector that makes Atomic Broadcast solvable in asynchronous settings. It can
implement Ω [3], so the Ω assumption can, technically, be dropped.

In Atomic Broadcast, processes abcast messages, which are then delivered by
all processes in the same order. Formally [6],

Validity. If a correct process abcasts a message m, then all correct processes
will eventually deliver m.
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Fig. 2. A run that uses ordinary broadcast for all statements (not fault-tolerant). One
step is 40 units of time. The fault-tolerant version is shown in Fig. 4.

Uniform Agreement. If a process delivers a message m, then all correct
processes eventually deliver m.

Uniform Integrity. For any message m, every process delivers m at most once,
and only if m was previously abcast.

Uniform Total Order. If some process delivers message m′ after message m,
then every process delivers m′ only after it has delivered m.

I measure latency in communication steps, where one communication step is
the maximum message delay d between correct processes (possibly ∞). Processes
do not know d. In good runs, the algorithm described in this paper delivers all
messages in two communication steps (2d), regardless of the number of processes
abcasting simultaneously. In other runs, the performance can be worse, however,
the above four properties of Atomic Broadcast always hold (Sect. 6).

3 Atomic Broadcast Algorithm

The algorithm employs a well-known method proposed by Lamport [7]: senders
independently timestamp their messages, which are then delivered in the order
of these timestamps. In the scenario in Fig. 2, messages a, b, c, d are tagged
by their senders with timestamps 11, 61, 32, and 43. As a result, they should be
delivered in the order: a, c, d, and b.1

3.1 Runs Without Failures

How can we implement this idea is a message-passing environment? To deliver
messages in the right order, a process, say p3, must know the timestamps of
1 For simplicity, I assume that timestamps are (possibly very large) integers whose last

digit is the process number, so that no two messages can carry the same timestamp.

p1

p2

p3

〈empty p1, 1, 10〉
〈mesg p1, 11, a〉

11

a

〈empty p2, 1, 31〉
〈mesg p2, 32, c〉

32

c

〈empty p3, 1, 42〉
〈mesg p3, 43,d〉

43

d

〈empty p1, 12, 60〉
〈mesg p1, 61,b〉

61

b

〈empty p2, 33, 43〉

83

〈empty p2, 44, 61〉

101

〈empty p3, 44, 61〉

101

deliver a, c

83

deliver d

123

deliver a, c

83

deliver d

101

deliver a, c

72

deliver d

123

deliver b

141

deliver b

141

deliver b

141
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messages a, b, c, d, and that no other messages were abcast. Let the abcast
state of pi at time t be the message (if any) abcast by pi at time t. For example,
the abcast state of p2 at time 32 is c, and empty at time 34.

Processes share information by broadcasting their abcast states. When a
process pi abcasts a message m at time t, it broadcasts two statements (as
separate messages):

1. A positive statement 〈mesg pi, t,m〉 saying that pi abcast message m at
time t.

2. A negative statement 〈empty pi, t
′ + 1, t− 1〉 saying that pi abcast no mes-

sages since abcasting its previous message at time t′ (t′ = 0 if m is the first
message abcast by pi).

In the example in Fig. 2, the following statements are broadcast:

〈empty p1, 1, 10〉, 〈mesg p1, 11, a〉, 〈empty p1, 12, 60〉, 〈mesg p1, 61,b〉,
〈empty p2, 1, 31〉, 〈mesg p2, 32, c〉, 〈empty p3, 1, 42〉, 〈mesg p3, 43,d〉.

After receiving these statements, we have complete information about all
processes abcast states up to time 32. We can deliver messages a and c, in this
order, because we know that no other messages were abcast with a timestamp
≤ 32. On the other hand, d cannot be delivered yet, because we do not have any
information about the abcast state of process p2 after time 32. If we delivered d,
and later found out that p2 abcast e at time 42, we would violate the rule that
messages are delivered in order of their timestamps (43 �< 42).

To deliver d, we need p2’s help. When p2 learns that p3 abcast a message
at time 43, it announces its abcast states by broadcasting 〈empty p2, 33, 43〉
(Fig. 2). Similarly, when processes p2 and p3 learn about b, they broadcast
〈empty p2, 44, 61〉 and 〈empty p3, 44, 61〉 respectively. Note that p1 does not
need to broadcast anything, because by the time it learnt about c and d, it had
already broadcast the necessary information while abcasting b. After receiving
all these statements, we now have complete information about all processes ab-
cast states up to time 61. In addition to previously delivered a and c, we can
now deliver d and b as well. Note that, in the failure-free case, the order in
which processes receive statements is irrelevant.

3.2 Dealing with Failures

What would happen if p2 crashed immediately after sending c? Process p2 would
never broadcast the negative statement 〈empty p2, 33, 43〉, so the algorithm
would never deliver d and b.

To cope with this problem, the current leader (Ω) broadcasts the required
negative statements on behalf of all processes it suspects (♦S) to have failed. For
example, if p1 is the leader, suspects p2, and learns that p3 abcast d at time 43,
then p1 broadcasts 〈empty p2, 1, 43〉. This allows message d to be delivered.

Allowing p1 to make negative statements on behalf of p2 opens a whole can of
worms. To start with, 〈empty p2, 1, 43〉 blatantly contradicts 〈mesg p2, 32,b〉
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broadcast earlier by p2. A similar conflict occurs if p1 is wrong in suspecting p2,
and p2 decides to abcast another message e, say at time 42. In general, two
statements conflict if they carry different information about the abcast state of
the same process at the same time.

The problem of conflicting statements can be solved by assuming that, if a
process receives two conflicting statements, then the first one wins. For example,
receiving

〈mesg p2, 32,b〉, 〈empty p2, 1, 43〉, 〈mesg p2, 42, e〉

is equivalent to
〈mesg p2, 32,b〉, 〈empty p2, 33, 43〉.

We can ensure that all processes receive all conflicting statements in the same
order by using Generic Broadcast [1, 12] to broadcast them. Unlike Atomic
Broadcast, Generic Broadcast imposes order only on conflicting messages, which
leads to good performance in runs without conflicts.

3.3 Latency Considerations

In order to achieve a two-step latency in good runs, all positive statements must
be delivered in two communication steps. Negative statements are even more
problematic, because they may be issued one step after the abcast event that
triggered them (e.g., 〈empty p2, 33, 43〉 triggered by p3 abcasting d at time 43
in Fig. 2). Therefore, negative statement must be delivered in at most one step.
The following observations show how to satisfy these requirements.

Observation 1: No conflicts in good runs. Good runs have no suspicions,
so processes issue statements only about themselves. These self-statements never
conflict. Since no conflicting statements are issued, Generic Broadcast will deliver
all statements in two communication steps [1, 12].

Observation 2: No conflicts involving negative self-statements. State-
ments made by processes can be divided into three disjoint groups: positive
self-statements, negative self-statements, and negative statements made by the
leader. Negative self-statements do not conflict with any of these because (i) self-
statements do not conflict because they talk about different processes or times,
and (ii) negative statements do not conflict because they carry the same informa-
tion “no messages”. Therefore, negative self-statements do not require Generic
Broadcast; ordinary broadcast, which takes only one communication step, is
sufficient.

4 Implementation

Figure 3 presents the details of the algorithm sketched in Sect. 3. It can be
conceptually divided into two parts: broadcasting (lines 1–13) and delivery
(lines 14–28).
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1 tmax
i ← 0 { the highest timestamp used so far }

2 when pi executes abcast(m) do
3 broadcast 〈active timei〉 using ordinary broadcast
4 broadcast 〈empty pi, tmax + 1, timei − 1〉 using ordinary broadcast
5 broadcast 〈mesg pi, timei, m〉 using Generic Broadcast
6 tmax

i ← timei { timei increases after this line }
7 when pi received 〈active t〉 in the past and tmax

i < t ≤ timei do
8 broadcast 〈empty pi, t

max
i + 1, t〉 using ordinary broadcast

9 tmax
i ← t { timei increases after this line }

10 when change in tmax
i or the output of the failure detector or leader oracle do

11 if pi considers itself a leader
12 for all suspected processes pj �= pi do
13 broadcast 〈empty pj , 1, timei〉 using Generic Broadcast

14 task delivery at process pi is
15 todeliveri ← ∅; knowni[j] ← ∅ for all j = 1, . . . , n
16 repeat forever
17 wait for a statement delivered by ordinary or Generic Broadcast
18 if negative statement 〈empty pj , t1, t2〉 delivered then
19 knowni[j] ← knowni[j] ∪ [t1, t2]
20 if positive statement 〈mesg pj , t, m〉 delivered then
21 if t /∈ knowni[j] then
22 send 〈active t〉 to itself
23 add (m, t) to todeliveri

24 knowni[j] ← knowni[j] ∪ {t}
25 else if pi = pj then abcast(m) { the sender tries again }
26 let tknown

i = max{ t | [1, t] ⊆ knowni[j] for all j }
27 for all (m, t) ∈ todeliveri with t ≤ tknown

i , in the order of increasing t do
28 atomically deliver m; remove (m, t) from todeliveri

Fig. 3. Atomic Broadcast algorithm with a two-step latency in good runs. It requires
the ♦P failure detector; see Sect. 4.3 for the modifications required for ♦S.

4.1 Broadcasting Part (Lines 1–13)

Each process pi maintains two variables: timei and tmax
i . The read-only variable

timei is an integer representing the current reading of pi’s clock. Its value in-
creases at the end of every “block” (e.g. lines 2–6), but remains constant within it.
Variable tmax

i represents the highest time for which pi broadcast a statement
about its abcast state. For example tmax

1 = 61 after p1 abcast a and b (Fig. 4).
Initially tmax

i = 0.
To abcast a message m, a process pi first broadcasts 〈active timei〉, which

informs other processes that some message was abcast at time timei. Then, pi

broadcasts one negative and one positive statement using ordinary and Generic
Broadcast, respectively. They inform other processes that pi abcast m at time
timei, and nothing between tmax

i + 1 and timei − 1. Finally, pi updates tmax
i .

When process pi receives 〈active t〉 with tmax
i < t ≤ timei, it broadcasts

〈empty pi, t
max
i + 1, t〉 and updates tmax

i . This informs other processes that pi
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Fig. 4. A example run of the fault-tolerant algorithm from Fig. 3. Generic Broadcast
of statements 〈mesg〉 takes two steps; the related messages are not shown.

abcast no messages between tmax + 1 and t. If tmax
i ≥ t, then pi has already

reported its abcast states for time t and before, so no new statement is needed.
The condition t ≤ timei makes sure that tmax

i < timei at all times, so that
the abcast function does not a issue a conflicting self-statement in line 5. This
condition always holds in good runs: t > timei would mean that the message
〈active t〉 arrived from a process whose clock was at least one communication
step ahead of pi’s. In this case, pi simply waits until t ≤ timei holds, and then
executes lines 7–9.

Lines 10–13 are executed when a leader process pi experiences a change in
tmax
i or in the output of its failure detector ♦S or the leader oracle Ω. In these

cases, pi issues the appropriate negative statements on behalf of all processes it
suspects to have crashed.

4.2 Delivery Part (Lines 14–28)

The delivery tasks delivers messages in the order of their timestamps. Each
process pi maintains two variables: todeliveri and knowni. Variable todeliveri

contains all timestamped messages (m, t) that have been received but not atom-
ically delivered yet.

Variable knowni is an array of sets. Each knowni[j] is the set of all times
for which the abcast state of pj is known, initially ∅. For example, at time 80,
known2[1] = [1, 10], where [t1, t2] = { t | t1 ≤ t ≤ t2 }. Time 11 /∈ known2

because 〈mesg p1, 11, a〉, sent using Generic Broadcast, will arrive at p2 two
communication steps after being sent, that is, at time 91. Each set knowni[j]
can be compactly represented as union of intervals [t1, t2]; most of the time
knowni[j] = [1, t] for some t.

In each iteration of the infinite loop (lines 16–28), the delivery task waits
for a statement delivered by ordinary or Generic Broadcast. After receiving

p1

p2

p3

〈active 1〉
〈empty p1, 1, 10〉
〈mesg p1, 11, a〉

11

a
〈active 32〉

〈empty p2, 1, 31〉
〈mesg p2, 32, c〉

32

c
〈active 43〉

〈empty p3, 1, 42〉
〈mesg p3, 43, d〉

43

d

〈active 61〉
〈empty p1, 12, 60〉
〈mesg p1, 61, b〉

61

b

〈empty p2, 33, 43〉

83

〈empty p2, 44, 61〉

101

〈empty p3, 44, 61〉

101

deliver a

91

deliver c

112

deliver d

123

deliver b

141

deliver a

91

deliver c

112

deliver d

123

deliver b

141

deliver a

91

deliver c

112

deliver d

123

deliver b

141
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〈empty pj , t1, t2〉, process pi updates its knowledge about pj by adding the
interval [t1, t2] to knowni[j]. For 〈mesg pj, t,m〉, pi first checks whether it has
received any information about the abcast state of pj at time t before. If not,
pi schedules message m for delivery by adding the pair (m, t) to todeliveri.
Process pi also adds {t} to knowni[j] to reflect its knowledge of the abcast
state of pj at time t. Sending 〈active t〉 in line 22 is necessary to ensure Uni-
form Agreement on messages abcast by faulty processes. Messages 〈active t〉
broadcast by such processes in line 3 can get lost, so line 22 serves as a backup.

If t ∈ knowni[j], then the leader suspected pj to have crashed, and broad-
cast a conflicting negative statement on pj’s behalf, which was delivered be-
fore 〈mesg pj , t,m〉. Since message m cannot be delivered with timestamp t, its
sender tries to abcast it again, with a new timestamp. In the future, if m can-
not be delivered with the new timestamp, its sender will re-abcast it yet again,
and so on. If the failure detector is ♦P , all correct processes will eventually
be permanently not suspected, so some re-abcast of m will eventually result in
delivering m. For dealing with ♦S, see Sect. 4.3.

After processing the statement received in line 17, pi attempts to deliver
abcast messages. It first computes the largest time tknown

i for which it knows
the abcast states of all processes up to time tknown

i . This ensures that todeliveri

contains all non-yet-delivered messages abcast by time tknown
i . Process pi delivers

all these messages in the order of increasing timestamps and removes them from
todeliveri.

4.3 Dealing with ♦S by Leader-Controlled Retransmission

With the ♦S failure detector, the algorithm from Fig. 3 might fail to deliver
messages abcast by senders that are correct but permanently suspected by the
leader (this cannot happen with ♦P ). This problem can be solved by letting the
leader re-abcast all messages, instead of each process doing so itself.

In this scheme, each process pi maintains a set Bi of messages it abcast but
not delivered yet. Periodically, it sends Bi to the current leader, who re-abcasts
all m ∈ Bi on pi’s behalf. Since Ω guarantees an eventual stable leader, each
message abcast by a correct pi will eventually be delivered (Validity). Some
messages might be delivered twice, so an explicit duplicate elimination must be
employed.

5 Cheap Generic Broadcast

The Atomic Broadcast algorithm from Sect. 4 assumes that, in failure-free runs,
the underlying Generic Broadcast delivers all non-conflicting messages in two
communication steps. Achieving this with existing Generic Broadcast algorithms
requires n > 3f [1, 12, 14].

Figure 5 presents a Generic Broadcast algorithm, which is similar to [1] but
requires only n > 2f (cheapness). As opposed to other Generic Broadcast algo-
rithms, it achieves a two-step latency only in failure-free runs (otherwise n > 3f
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1 seen1
i ← ∅; seen2

i ← ∅; quicki ← ∅
2 when pi executes gbcast(m) do { broadcast m using Generic Broadcast }
3 broadcast 〈first m〉 using (non-uniform) Reliable Broadcast

4 when pi receives 〈first m〉 do
5 add m to seen1

i

6 if seen1
i ∩ C(m) = ∅ { C(m) is the set of messages conflicting with m }

7 then fifo broadcast 〈second good m〉
8 else fifo broadcast 〈second bad m〉
9 when pi receives 〈second good m〉 from all processes do
10 deliver m if not delivered already { two-step delivery }
11 when pi receives 〈second * m〉 from n − f processes do
12 add m to seen2

i

13 if all “*” are “good” and seen2
i ∩ C(m) = ∅

14 then add m to quicki; broadcast 〈third good m ∅〉
15 else broadcast 〈third bad m conflictsi〉 where conflictsi = quicki ∩ C(m)

16 when pi receives 〈third * m conflictsj〉 from n − f processes pj do
17 if all “*” are “good”
18 then deliver m if not delivered already { three-step delivery }
19 else atomically bcast 〈atomic m conflicts〉 with conflicts =

S
j conflictsj

20 when a process atomically delivers 〈atomic m conflicts〉 do
21 deliver all m′ ∈ conflicts if not delivered already
22 deliver m if not delivered already

Fig. 5. Generic Broadcast algorithm that achieves a two-step latency in good runs and
requires only n > 2f (cheapness)

would be a lower bound [11]). As a bonus, all non-conflicting messages are deliv-
ered in three steps even in runs with failures, so the algorithm in Fig. 5 could be
seen as a generalization of three-step Generic Broadcast protocols that require
n > 2f [1, 12]. To deal with conflicting messages, the algorithm employs an
auxiliary Atomic Broadcast protocol, such as [2]. Real-time clocks are not used.

To execute gbcast(m), the sender sends 〈first m〉 using Reliable Broad-
cast [6]. When a process pi receives 〈first m〉, it first checks whether any mes-
sages conflicting with m have reached this stage before. (C(m) is the set of
messages conflicting with m.) Process pi then broadcasts 〈second good m〉 or
〈second bad m〉 accordingly. In failure-free runs, pi receives 〈second good m〉
from all processes, and delivers m immediately (two steps in total, Fig. 6a).

When pi receives n−f 〈second * m〉 messages, it checks whether all of them
are “good” and no conflicting m′ has reached this stage before. The appropriate
〈third good m *〉 or 〈third bad m *〉message is broadcast. In the “good” case,
pi adds m to quicki, the set of messages that may be delivered without using the
underlying Atomic Broadcast protocol. In the “bad” case, the 〈third〉 message
also contain the set of “quick” messages conflicting with m.
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p1

p2

p3

gbcast(m) in line 2 line 7 lines 14 and 10 line 18

〈first m〉 〈second good m〉 〈third good m ∅〉
(a) No conflicts, no failures: delivery in 2 steps. Line 14 gets executed before line 10,
but this order does not matter.

p1

p2

p3

gbcast(m) in line 2 line 7 line 14 line 18

lines 14 and 10

〈first m〉 〈second good m〉 〈third good m ∅〉
(b) No conflicts, one failure: delivery in 3 steps. Note that some processes can deliver
earlier than others.

p1

p2

p3

gbcast(m) in line 2 line 8 line 15 line 19

〈first m〉 〈second bad m〉 〈third bad m {m′}〉 〈atomic m {m′}〉

Atomic
Broadcast

line 22

(c) Message m conflicts with a previously gbcast m′, the latency depends on the un-
derlying Atomic Broadcast protocol.

Fig. 6. Several runs of the Generic Broadcast protocol from Fig. 5 with n = 3 and
f = 1. The apparent synchrony in the diagrams is only for illustrative purposes.

When pi receives n− f messages 〈third good m ∅〉, it deliversm straight away
(three steps in total, Fig. 6b). Thus, if m is delivered in this way, m ∈ quickj

for at least n − f processes pj . As a result, for any m′ ∈ C(m), all messages
〈third * m′ conflictsj〉 broadcast by these processes have m ∈ conflictsj . Since
n > 2f , any two groups ofn−f processes overlap, so any process pi receivingn−f
messages 〈third * m′ conflictsj〉, will havem ∈ conflictsj for at least one of them.

When pi receives n − f messages 〈third * m′ conflictsj〉, not all “good”, it
atomically broadcasts m′ along with the union conflicts of all n − f received
sets conflictsj . As explained above, conflicts contains all messages m ∈ C(m′)
that might be delivered in lines 10 or 18. Processes deliver m′ in line 22 only
after delivering all m ∈ conflicts in line 21. Otherwise, different processes could
deliver m′ (line 22) and messages m ∈ conflicts (line 18) in different orders.
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Fig. 7. Typical message patterns involved in a single abcast

In conflict-free runs, no “bad” messages are sent, so all messages are delivered
in at most three steps (Figs. 6ab). Figure 6c shows that runs with conflicting
messages can have a higher latency, which depends on the latency of the under-
lying Atomic Broadcast. Finally, observe that fifo broadcast used for 〈second〉
messages ensures that, if some process delivered m in line 10, no m′ ∈ C(m) will
reach line 12 before m, so all correct processes will deliver m line 10 or 18.

6 Discussion

6.1 Message Complexity

Figure 7 shows messages related to abcasting a single message b. The upper di-
agram shows ordinary broadcast traffic related to 〈active〉 and 〈empty〉. The
lower one presents a typical message pattern involved in Generic Broadcast of
〈mesg p1, 61,b〉. All messages in the upper diagram can therefore be piggy-
backed on the corresponding messages in the lower diagram. Thus, the message
complexity of the Atomic Broadcast algorithm described here is the virtually the
same as that of the underlying Generic Broadcast algorithm. This holds despite
Atomic Broadcast achieving a two-step latency in all good runs, even in those
with conflicting messages.

6.2 Inaccurate Clocks

In Fig. 4, assume p3’s clock is skewed and it timestamps d with 23 instead of 43.
Message c, timestamped 32, will be delivered after d, timestamped with 23. If d
is delivered in exactly two steps (time 123 = 43+2 ·40), then c will be delivered
in two steps and 43− 32 = 11 units of time (123 = 32 + 2 · 40 + 11). In general,
the latency will be at most two communication steps plus the maximum clock
difference Δ between two processes. By updating the clock whenever a process
receives a message “from the future”, one can ensure that Δ is at most one
communication step. In the worst case, this reduces real-time clocks to scalar

p1

p2

p3

b

〈active 61〉
〈empty p1, 11, 60〉

〈empty p2, 43, 61〉
〈empty p3, 43, 61〉

p1

p2

p3

b

〈mesg p1, 61,b〉
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clocks [7], and ensures the latency of at most three steps in failure-free runs with
inaccurate clocks.

6.3 Latency in Runs with Initial Failures

Consider a run in which all incorrect processes crash at the beginning and failure
detectors do not make mistakes. In such runs, the current leader issues negative
statements on behalf of the crashed processes. As opposed to negative self -
statements, which use ordinary broadcast and are delivered in one step, the
leader-issued ones use Generic Broadcast and take three steps to be delivered
(or two if n > 3f). Therefore, the total latency in runs with initial/past failures
grows from two to four steps (or three if n > 3f).

One communication step can be saved by eliminating line 11 from Fig. 3, so
that every process (not only the current leader) can gbcast negative 〈empty〉
statements on behalf of processes it suspects. In particular, any sender can now
execute line 13 immediately after abcasting in lines 2–6, without waiting for the
leader to receive its 〈active〉 message in line 7. This saves one communication
step and reduces the total latency to that of Generic Broadcast (two steps if
n > 3f and three otherwise).

6.4 Latency in Runs with General Failures

We have just seen that in runs with reliable failure detection, the total latency
can be increased by at most one step. The picture changes considerably when
failure detectors start making mistakes. First, if a crashed process is not (yet)
suspected, no new messages can be delivered because the required 〈empty〉
statements are not broadcast. Second, if a correct process is wrongly suspected,
Generic Broadcast must deliver conflicting statements (from both the sender and
the leader), which can significantly slow it down (Fig. 6c).

The above two problems cannot be solved at the same time: short failure
detection timeouts motivated by the first increase the frequency of the other. To
reduce the resultant high latency, the following technique can be used. When a
process believes to be suspected, it should use the leader to abcast messages on
its behalf rather than abcast them directly (a scheme similar to that in Sect. 4.3).

7 Lower Bounds

The Atomic Broadcast algorithm presented in this paper requires a majority of
correct acceptors (n > 2f) and the ♦S failure detector. These requirements are
optimal [2], as is the latency of two communication steps [11]. Additional lower
bounds hold for algorithms, such as this one or [13], which guarantee the latency
lower than three communication steps in all good runs: the extended version of
this paper [15] proves that no Atomic Broadcast algorithm can guarantee latency
lower than three steps in runs in which (i) processes do not have access to real
time clocks, or (ii) external processes are allowed to abcast (the open-group
model [4]), or (iii) a (non-leader) process fails.
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Conditions (ii) and (iii) represent a trade-off between two-step and three-step
algorithms. The latter usually allow external processes to broadcast, and guar-
antee good performance if at most f non-leader processes fail. On the other
hand, two-step delivery requires synchronized real-time clocks, all processes cor-
rect, and no external senders. (External processes can still abcast by using the
current leader as a relay, but this incurs an additional step.)

The algorithm shown here relies on ♦S to ensure that faulty processes do
not hamper progress. I suspect that Ω alone is insufficient to achieve a two-step
latency in all good runs, however, this is still an open question.

8 Conclusion

The Atomic Broadcast algorithm presented in this paper uses local clocks
to timestamp all abcast messages, and then delivers them in order of these
timestamps. Processes broadcast both positive and negative statements (“mes-
sage abcast” vs. “no messages abcast”). For fault-tolerance, the leader can com-
municate negative statements on behalf of processes it suspects to have crashed.

Negative self-statements do not conflict with anything, so they are announced
using ordinary broadcast. Other statements are communicated using a new
Generic Broadcast protocol, which ensures a two-step latency in conflict-and-
failure-free runs, while requiring only n > 2f . Since no statements conflict in
good runs, the Atomic Broadcast protocol described in this paper delivers all
messages in two steps. Interestingly, this speed-up is achieved with practically
no message overhead over the underlying Generic Broadcast. As opposed to [13],
no network traffic is generated if no messages are abcast.

Although the presented algorithm is always correct (safe and live), it achieves
the optimum two-step latency only in runs with synchronized clocks, no ex-
ternal processes, and no failures. These three conditions are required by any
two-step protocol, which indicates an inherent trade-off between two- and three-
step Atomic Broadcast implementations. It also poses an interesting question:
how much power exactly do (possibly inaccurate) real-time clocks add to the
asynchronous model?
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Abstract. We study the gradient clock synchronization (GCS) problem,
in which the worst-case clock skew between neighboring nodes has to be
minimized. In particular, we consider oblivious clock synchronization al-
gorithms which base their decision on how to adapt the clock solely on
the most accurate timing information received from each neighbor. For
several intuitive clock synchronization algorithms, which attempt to min-
imize the skew at all times, we show that the clock skew between neigh-
boring nodes can be significantly larger than the proven lower bound of
Ω( log D

log log D
), where D denotes the diameter of the network. All of these

natural algorithms belong to the class of oblivious clock synchronization
algorithms. Additionally, we present an oblivious algorithm with a worst-
case skew of O(d +

√
D) between any two nodes at distance d.

Keywords: Distributed algorithms, synchronization protocols, asyn-
chronous computation.

1 Introduction

Due to the rapidly growing popularity of distributed systems, such as the In-
ternet or wireless networks, and the sizable amount of applications running on
those systems, the classical problem of synchronizing distributed clocks has fur-
ther gained in importance in the last few years. The objective of a distributed
clock synchronization algorithm is to ensure that all participating nodes in the
system acquire a common notion of time. In a distributed system, nodes can
accomplish this goal by perpetually sending messages containing information
about the current clock value to the neighboring nodes.

Nodes are equipped with a hardware clock with bounded drift. According to
the current hardware clock value and the messages received from all neighboring
nodes, a logical clock value is computed. The skew between the logical clocks
is to be minimized. Previous work has focused primarily on minimizing the
clock skew between any two nodes in the system, while inducing a moderate
message overhead. Hence, the goal of past work was to ensure that clocks are
well synchronized globally. The resilience of these algorithms in the presence of
node and network failures is another aspect of distributed clock synchronization
that has been studied extensively.

For several distributed applications, such as TDMA, it is mandatory that the
clocks between any node and all nodes in its vicinity do not deviate considerably
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from each other. This so called gradient property for clock synchronization was
introduced in [2]. The gradient property requires that nodes that are close by
have to be closely synchronized, whereas the skew between clocks of faraway
nodes is allowed to be larger.

The main question is what bound on the skew between nearby nodes can be
achieved by any clock synchronization algorithm. It can be shown that the skew
between two nodes at distance d cannot be synchronized better than Ω(d) by
using simple indistinguishability type arguments. Surprisingly, the skew between
two neighboring nodes, i.e. nodes at distance 1, cannot be guaranteed to be con-
stant. The lower bound on the worst-case clock skew proven in [2] is Ω( log D

log log D ),
where D is the diameter of the network.

This lower bound holds even if all nodes have full knowledge of the complete
message history. However, for practical algorithms it is reasonable to assume
that nodes cannot store the entire history of messages ever received. As time
progresses, nodes will be forced to delete outdated information. We study clock
synchronization in a restricted model in which each node is only allowed to store
the largest clock value ever received from each neighbor. It is natural to restrict
the stored information to these values because any algorithm attempting to min-
imize the skew at all times will set the clock in accordance with these clock values
only, due to the lack of information about the message delays and the progress
each node might have made in the meantime. Since these algorithms are un-
aware of the communication process and determine the local clock strictly by
considering the largest clock values received from all neighboring nodes, we call
these algorithms oblivious. Studying oblivious algorithms has a long tradition
in distributed computing and computer science in general. Oblivious algorithms
are examined for various reasons, one being that they can give valuable insights
into problems that are hard to tackle in the general case. A more practical reason
is that they are normally easier to realize in hardware. Another motivation to
explore oblivious algorithms is that several oblivious algorithms perform well in
their respective domains, for example routing or sorting algorithms. It is there-
fore worthwhile to determine the effect of obliviousness on clock synchronization.

Several fundamentally different strategies can be employed in order to min-
imize the skew at all times. As nodes must generally strive to catch up with
the faster nodes, nodes can minimize the skew to the fastest node1 by setting
the clock to the largest clock value. A different approach is to minimize the
skew to all neighbors at all times. A third method that is worth investigating
is minimizing the skew to the slowest node. If every node waits under certain
circumstances for the slower nodes to catch up, the skew might be kept within
reasonable bounds. We will study algorithms devoted to each of these objectives
and show that all of them fail to provide a low bound on the worst-case skew
between neighbors.

However, these observations enable us to devise an oblivious algorithm with a
worst-case skew of O(d+

√
D) between any two nodes at distance d, if the nodes

1 The nodes with the currently largest and smallest logical clock values are called the
fastest and the slowest node, respectively.
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are aware of the diameterD of the network and adjust their clock synchronization
mechanism accordingly. To the best of our knowledge, it is the first gradient
clock synchronization algorithm guaranteeing a worst-case skew of o(D) between
neighboring nodes.

After briefly summarizing related work on clock synchronization in Section 2,
we formally specify the model used in this paper in Section 3. Subsequently, we
propose gradient clock synchronization algorithms which minimize the skew to
the neighboring nodes according to the aforementioned strategies and analyze
their behavior in specific executions. This is the subject of Section 4. In Section 5,
the O(d+

√
D)-GCS algorithm is presented and analyzed.

2 Related Work

The fundamental problem of clock synchronization has been studied extensively
and many theoretical results have been published. Srikanth and Toueg [7] pre-
sented a clock synchronization algorithm which minimizes the maximum skew
between any pair of nodes, given the hardware clock drift. In every possible exe-
cution, their algorithm ensures that the skew between any two nodes is at most
Θ(D), which is asymptotically optimal. However, their algorithm also incurs a
skew of Θ(D) between neighboring nodes in the worst case.

While there has been a lot of research on bounds for the skew and the com-
munication costs [3,5,6] and also on the capability of clock synchronization al-
gorithms to cope with both node and network failures [7], the gradient property
has not been studied until the remarkable work by Fan and Lynch [2].

An algorithm A is said to be an f -GCS algorithm, if for all nodes i and j
the clock skew between node i and j is at most f(di,j) at all times, where di,j

denotes the distance between node i and j.
Fan and Lynch prove that there is an execution after which the skew between

two neighboring nodes is at least Ω( log D
log log D ), independent of the chosen algo-

rithm. They consider a linear network of n nodes, thus D = n− 1. Their proof
relies on the fact that a node cannot increase its clock too quickly, i.e. by more
than O(f(1)) in O(1) time, otherwise it would violate the gradient property in
a different execution that is indistinguishable from the original execution. The
skew between all neighbors among k nodes can be increased by O(1) in O(k)
time, which can be shown using again an indistinguishability type argument. In
their execution, they build up a constant skew c1 in time O(n) between all n
nodes. In the next step, the execution continues to run for O( n

f(1)) time, which
means that the average skew during this time can only be reduced by a constant
c2 between each pair of neighboring nodes. The parameters can be chosen such
that c1 > c2 and thus the skew is still larger than before this round. During
the same time span, the skew between neighbors of a set of O( n

f(1) ) nodes can
again be increased by a constant. This procedure can be repeated recursively
logf(1) n times and since n = D − 1 and f(1) ∈ Ω(logf(1) n), it follows that
f(1) ∈ Ω( log D

log log D ). Meier and Thiele [4] showed that this bound also holds for a
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different model in which the delay of each message is 0, but the communication
frequency is bounded.

An open problem for gradient clock synchronization is whether this lower
bound is tight or whether an algorithm cannot even reach this bound asymp-
totically. We will show that many natural clock synchronization algorithms do
not even come close to this bound. In the context of clock synchronization for
wireless networks, Fan et al. show that when nodes occasionally receive a mes-
sage informing them of the correct real time using a GPS service, the skew
between any two nodes can be bounded by a small constant ε > 0 “some of the
time” [1]. Thus, this algorithm only satisfies a weakened version of the gradient
property. We show that there is a general gradient clock synchronization algo-
rithm for which it holds that the skew between nodes at distance d is bounded
by O(d+

√
D) at all times. This is the first non-trivial upper bound for gradient

clock synchronization.

3 Model

We consider an arbitrary graph G = (V,E), V = {1, . . . , n}, where |V | = n and
E ⊆ V × V . Any node i can communicate with any node j to which node i is
directly connected, i.e. {i, j} ∈ E. These nodes are referred to as the neighboring
nodes or neighbors of node i. Let Ni denote the set of all neighboring nodes of
node i. The communication between neighboring nodes is reliable, but messages
can have variables delays in the range [0, 1]. The distance between nodes i and
j is defined as the length of the shortest path between those two nodes. The
diameter D of G is the maximum distance between any two nodes.

Each node i ∈ V is equipped with a hardware clock Hi(·) whose value at time
t is Hi(t) :=

∫ t

0 hi(τ)dτ , where hi(τ) is the hardware clock rate of node i at
time τ . For all nodes i ∈ V and all times t, it holds that hi(t) ∈ [L,U ], where
0 < L < U . The degree of synchronization that can be achieved is related to
the maximum message delay. It is therefore reasonable to assume that a fast
processor can increase its clock by at least 1, if it takes up to 1 time before a
message arrives, therefore we assume U ≥ 1.

In addition to the hardware clock, each node i further has a logical clock Li(·).
As long as no new messages arrive, the logical clock value increases at the rate of
the hardware clock. This implies that all nodes steadily make progress. A clock
synchronization algorithm A : L × Ψ → L specifies how the logical clock Li(t)
of node i at time t is adapted according to the current value of the logical clock
and the message history Ψi(t) of node i at time t. The algorithms are reactive
in that they perform this update on the logical clock whenever a message from
a neighboring node arrives. Let L̃j(t) denote the maximum logical clock value
ever received from neighboring node j.2 For every algorithm A it must hold that

∀i∀t : Li(t) ≤ A(Li(t), Ψi(t)) ≤ max
j∈Ni

L̃j(t).

2 Note that this might not be the last message received from node j, as the commu-
nication network does not necessarily satisfy the FIFO condition.
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As the logical clock is not allowed to run backwards, the algorithm can either
increase the logical clock or leave it at the current value. Moreover, the algorithm
can set the logical clock at most to the maximum logical clock value it has ever
received. If a node i set its logical clock to a value exceeding any value it has
ever received from a neighbor, a neighboring node j could potentially increase
its logical clock value even more, based on the new clock value of node i etc.
resulting in a large clock skew between some nodes. We further assume that the
adaptation of the logical clock through A requires 0 time.

As mentioned before, we focus on the class of oblivious clock synchronization
algorithms. Nodes only store the reduced history Ψ̃i(t) := {L̃j(t)}j∈Ni , i.e. the
largest clock values received from each neighboring node is stored. Whenever
a message is received, these values are updated and, subsequently, the logical
clock is computed according to a function on Ψ̃i(t). Naturally, the old logical
clock value also has to be considered, since clocks can only make progress. In
case the computed value does not exceed the old logical clock value, the logical
clock simply remains unchanged, otherwise the logical clock is updated and the
new logical clock value is broadcast immediately to all neighbors.

An execution is a tuple E = (M,R), whereM : T ×V ×V → [0, 1] defines the
message delays and the integrable function R : T × V → [L,U ] determines the
hardware clock rates of each node. Hence M(t, i, j) specifies how long it takes
for the message sent by node i at real time t to arrive at j and hi(t) := R(t, i).

For any gradient clock synchronization algorithm, the goal is to ensure a small
logical clock skew between neighboring nodes, i.e. a gradient clock synchroniza-
tion algorithm strives to minimize maxi,j∈Ni,t |Li(t) − Lj(t)| over all possible
executions E for every graph G. In the following section, we present natural
clock synchronization algorithms and bounds on the induced worst-case skew.

4 Algorithms and Bounds

Throughout this section, we consider the graph Glist consisting of a linear list
of n nodes, i.e. |V | = n and Elist = {{1, 2}, {2, 3}, . . . , {n− 1, n}}. This simple
graph is suitable to show that there are executions for all presented algorithms
leading to a large skew between neighboring nodes.

Initially, all logical clock values are 0. We assume that, at real time 0, node n
sends a start message to its neighbor and starts its logical clock. Every node that
receives a start message for the first time also starts its clock and broadcasts the
start message. For the purpose of synchronization, each node regularly informs
all neighbors about its current logical clock value. In particular, we assume that
every node transmits a message containing its ID and its logical clock value to
all neighboring nodes when its logical clock reaches an integer value or when the
logical clock is updated due to a received message. If a node has not yet received
a message from a certain neighbor, it assumes that this neighbor’s logical clock
is still at 0.

Note that this initialization process is used for the sake of simplicity. The
same bounds also hold asymptotically for other start-up procedures. By proving
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that the proposed algorithms incur a large skew among neighboring nodes in
Glist using the stated initialization process, we can conclude that they are poor
gradient clock synchronization algorithms in general.

4.1 Minimizing the Skew to the Fastest Neighbor

A straightforward algorithm, denoted Amax, always sets the logical clock to
the largest clock value ever received, if this value exceeds the current logical
clock value. More formally, the logical clock value of node i is set to the value
max(Li(t),maxj∈Ni L̃j(t)), if it receives a message at time t. Thus, the skew to
the fastest node is minimized by simply adopting the maximum clock value. It
has been pointed out in [2] that Amax potentially incurs a large skew between
neighboring nodes, due to the fact that a skew of Θ(n) between node 1 and n
cannot be avoided and a fast message, i.e. a message that is transmitted with
0 delay, which is forwarded along the chain causes a skew of Θ(n) between two
neighboring nodes. We will now briefly dwell on this simple algorithm in order
to introduce our notation. The following execution E = (M,R) induces a skew
of Θ(n) = Θ(D) between the nodes 1 and 2:

M(t, i, j) :=
{

0 if t ≥ n− 1, j �= 1
1 else

and ∀t∀i : R(t, i) := 1− εi, where εn = 0 and εi > 0 for all i ∈ {1, . . . , n− 1}.3 It
holds that Lj(n− 1) = n− 1 for all j ∈ {2, . . . , n}, as the logical clock of node n
has reached n− 1 and this value is forwarded along the chain with a delay of 0.
Since node 1 receives the start message at time n−1, its logical clock is still at 0
and thus the skew between node 1 and 2 is Θ(n). Note that this effect does not
occur due to the fact that node 1 has merely received its start message. If there
was no fast message, the logical clock of node i at time t ∈ IN, where t > n− 1,
would be Li(t) = t − (n − i). Setting the message delay to 0, except between
nodes 1 and 2, at this point in time would still incur a skew of Θ(n) between
nodes 1 and 2.

Before the fast message is sent, the clock value of node i at time n−1 is i−1.
If each node allowed a slack of 1 between the clock of the fastest node and its
own, the fast message would not alter any clock values. By setting the logical
clock to max(Li(t),maxj∈Ni L̃i(t) − γ) for a particular γ > 0, it seems that the
effect a fast message has in Amax can be avoided. Unfortunately, this is not the
case. Let R(t, n) := U and R(t, i) := L for all i �= n. The message delays are
M(t, i, j) := 0 for all i, j �= 1 and t ≥ ϑ for a specific time ϑ, andM(t, i, j) := 1
otherwise. In this scenario, it holds that limt→∞ Li(t) − Li(t − 1) = U , as all
nodes are paced by the fastest node. If node i receives the value x from node
i + 1, i sets its logical clock to x − γ. In this time, node i + 1 has increased its
clock by U , therefore limt→∞ Li+1(t)− Li(t) = U + γ for all i ∈ {1, . . . , n− 1}.
Assume that at time ϑ, this stabilization has occurred and that Ln(ϑ) = x. The

3 Node n is the fastest node and therefore sets the pace for the other nodes. The clock
rates can be viewed as relative rates compared to the clock rate of the fastest node.
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message delay at this time is reduced to 0 and thus node n− 1 can increase its
clock to x − γ. The skew between n − 1 and n − 2 is then 2U + γ, therefore
node n − 2 can increase its clock by 2U . In general, node n − i will increase
its logical clock by iU and thus the skew between node 1 and 2 at time ϑ is
(n− 2)U ∈ Θ(n). Hence, this variation of Amax does not reduce the worst-case
skew between neighboring nodes asymptotically.

As it is not an effective strategy to strictly minimize the skew to the fastest
node, we will analyze the effect of taking the values L̃j(t) from all neighbors j
into account.

4.2 Minimizing the Skew to All Neighbors

We will now consider the algorithm that sets the logical clock to the average
value of all the neighbors’ clock values in an attempt to minimize the clock skew
to all neighbors at all times, i.e. node i sets its logical clock to the value

Li(t) := max(Li(t),
1
|Ni|

∑
j∈Ni

L̃j(t))

upon receiving a message from a neighbor at time t. We call this algorithmAavg .
In a very simple execution, the skew in Glist can become very large. The

execution Enice = (Mnice,Rnice) is defined as follows. ∀t∀i∀j :Mnice(t, i, j) := 1
and ∀t∀i : Rnice(t, i) = 1−εi, where again εn = 0 and εi > 0 for all i ∈ {1, . . . , n−
1}. Since the hardware clock rates never change, the message delays are the
same at any point in time and identical between any two neighboring nodes,
one might assume that the skew between neighbors cannot become exceedingly
large. Surprisingly, this is not true, as we will prove now.

Lemma 1. Let Aavg be the clock synchronization algorithm in use. When exe-
cuting Enice, it holds that ∀t∀i ∈ {2, . . . , n} : Li(t)−Li−1(t) ≤ 2i−3, independent
of the choices of εi > 0.

Proof. First, we define ΔLi(t) := Li(t)−Li(t−1). It holds that ∀i∀t : ΔLi(t) ≤
1, as the average speed is upper bounded by the maximum hardware clock rate,
which is 1 in this particular execution. It immediately follows that Li(t + k) ≤
Li(t) + k.

We have that L1(t) = L2(t−1), as node 2 is the only neighbor of node 1. If node
1 is informed about a higher value, it can increase its logical clock immediately
to this value. Since ΔL2(t) ≤ 1 for all t, it follows that L2(t)− L1(t) ≤ 1 for all
t. Assume that it holds for all t and all j ≤ i that Lj(t)− Lj−1(t) ≤ 2j − 3. We
will now prove a bound on the skew between node i and i + 1. For t = 0, it is
trivially true that Li+1(t) − Li(t) ≤ 2(i + 1) − 3. Assume that it holds for all
t′ ≤ t. For t+ 1, we have that

Li(t+ 1) ≥ Li+1(t) + Li−1(t)
2

≥ Li+1(t) + Li(t)− (2i− 3)
2
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≥ Li+1(t) + Li(t+ 1)− 1− (2i− 3)
2

≥ Li+1(t + 1)− (2(i + 1)− 3).

The first inequality holds because the logical clock value is always at least the
average value of its neighbors. The second inequality follows by induction and
the third and fourth inequalities hold because ΔLi(t) ≤ 1. 
�
Lemma 1 shows that the skew between any two nodes is bounded, when executing
Enice. In order to prove that the skew can in fact become large, we need another
lemma.

Lemma 2. ∀i ∈ {1, . . . , n} : limt→∞ΔLi(t) = 1.

Proof. Assume that ΔLn−1(t) does not converge to 1. In this case, either there
is an ε > 0 such that for all t it holds that ΔLn−1(t) ≤ 1−ε or ΔLn−1(t) = 1 only
for some t. By definition of Enice, ΔLn(t) is always 1. If there is such an ε > 0,
this would imply that limt→∞ Ln(t)−Ln−1(t) =∞, which is a contradiction to
Lemma 1. If for some t we have ΔLn−1(t) = 1, but the value never converges
to 1, there is an unbounded number of times t′ where ΔLn−1(t′) < 1, which
also implies that limt→∞ Ln(t) − Ln−1(t) = ∞, again a contradiction. Hence,
limt→∞ΔLn−1(t) = 1 and, applying the same argument to the other nodes, it
follows inductively that limt→∞ΔLi(t) = 1 for all nodes i ∈ {1, . . . , n}. 
�
We are now in the position to prove the following theorem.

Theorem 1. Let Aavg be the clock synchronization algorithm in use. When ex-
ecuting Enice, the largest skew between neighbors in Glist is 2n− 3 ∈ Θ(n).

Proof. In particular, we show that limt→∞ Li(t) − Li−1(t) = 2i − 3 for all
i ∈ {2, . . . , n}. Since L1(t) = L2(t − 1), it holds that limt→∞ L2(t) − L1(t) =
limt→∞ΔL1(t+1)=1, according to Lemma 2. We assume now that limt→∞ Lj(t)−
Lj−1(t) = 2j− 3 for all j ≤ i. Lemma 4.2 states that limt→∞ Li+1(t)−Li(t) = Q
for a constant Q which is upper bounded by 2(i + 1) − 3, due to Lemma 1. If
Q < 2(i+ 1)− 3, we get that

lim
t→∞Li(t) = lim

t→∞
Li−1(t− 1) + Li+1(t− 1)

2

= lim
t→∞

2Li(t− 1)− (2i− 3) +Q
2

and thus limt→∞ΔLi(t) < 1, a contradiction to Lemma 2. 
�
Note that the skew between node 1 and n is Θ(n2), which is worse than the
tight upper bound of Θ(n) skew between any two nodes forAmax. This execution
shows that the neighboring node with the fastest clock must have a weight larger
than the weight of all other neighbors together. To see this, consider a k-ary tree
where the root is the fastest node. The skew between neighboring nodes will
also be large when executing Enice if all k children together have a weight that
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is at least the weight of the parent node, as this is equivalent to performing this
execution on the linear list where the weight of the higher indexed node, i.e. the
faster node, is not larger than the weight of the lower indexed node. We proved
that in this case the skew is Θ(D) between neighboring nodes.

4.3 Minimizing the Skew to the Slowest Neighbor

In this section, we present a different approach which actively tries to bound the
skew between neighbors. As proven in [2], a constant bound between neighboring
nodes cannot be maintained. However, introducing a constant bound might still
result in a significantly improved worst-case behavior.

The algorithm Abound increases the logical clock proactively to the maximum
value of all neighbors as long as the clock skew between its own logical clock
and the clock of any of its neighbors does not exceed a predefined constant
bound B. Once the skew between node i and a neighbor j is at least B according
to the state information about node j, i.e. Li(t) − L̃j(t) ≥ B, node i does not
increase its logical clock due to an external message again until node j has caught
up.4 Abound is immune to both the execution Enice and also the execution that
incurred a large clock skew when Amax is used. Nevertheless,Abound is not better
asymptotically in the worst case. The idea behind the adversarial schedule for
this specific algorithm is the following. Using fast messages, a chain of nodes
within the graph is constructed such that the skew between all neighboring
nodes in this chain is B, creating a chain of dependency. Consequently, each
node has to wait for his slower neighbor to catch up, resulting in long waiting
times before the logical clocks can again be increased.

The execution Efast = (Mfast,Rfast), given the constant bound B, is defined
as follows. We set

Mfast(t, i, j) :=
{

0 if t = n− 1, j �= 1
1 else.

Let ı̂ := �n−1
B �+1. The hardware clock rates are ∀t∀i �= ı̂+1 : Rfast(t, i) := 1−εi,

where again εn = 0 and εi > 0 for all i ∈ {1, . . . , n− 1}. ∀t < n− 1 : Rfast(t, ı̂ +
1) := 1− ε̂ı+1, ∀t ≥ n− 1 : Rfast(t, ı̂ + 1) := 1. Thus, the hardware clock of node
ı̂ + 1 is sped up at time n− 1.

Note that the delay of messages is 0 at time n − 1, unless they are sent to
node 1. As local computation requires 0 time in this asynchronous computation
model, some nodes can potentially communicate an unbounded number of times,
while other nodes wait for the arrival of some particular messages. As far as clock
synchronization is concerned, this entails that the clock values of nodes whose
communication links have a delay of 0 at a specific time t will stabilize according
to the clock synchronization algorithm in use. Such a stabilization always occurs
independent of the clock synchronization algorithm, since logical clocks can only
make progress, but the logical clock values cannot exceed the maximum clock
value. This characteristic of asynchronous communication is exploited in the
execution Efast.
4 Note that node i still makes progress at the rate of its hardware clock.
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Lemma 3. Let ϑ := n+ �n−1
B � − κ, 0 < κ < 1. When executing Efast, parame-

terized by B, the skew between nodes ı̂ := �n−1
B � + 1 and ı̂ + 1 at time ϑ is at

least
(
�n−1

B �+ 1− κ
)
ε̂ı.

Proof. For any μ < 1 and i ≥ 2, we have Li(n−2+μ) = i−2+μεi. Node 1 does
not start its logical clock before time n − 1. At time n − 1, all communication
between the nodes i ∈ {2, . . . , n} requires 0 time. Note that we do not need
to specify which messages are handled first. The outcome of this stabilization
process solely depends on the clock synchronization algorithm. In this case, after
the clocks have stabilized, it holds that

Li(n− 1) :=
{

(i− 1)B i ∈ {1, . . . , ı̂}
n− 1 else

as node 1 can increase its logical clock to B and consequently, node 2 can raise
its clock to 2B etc. At this point, the clock rate of node ı̂ + 1 is set to 1, which
means that Lı̂+1(τ) = τ for all τ ≥ n− 1. Node 1 receives the message that the
logical clock of node 2 is already at B at time n and subsequently increases its
own clock to this value. In general, node j has to wait until time n+ j−1 before
it can increase its logical clock by B. Accordingly, node ı̂ has to wait until time
n+ �n−1

B � > ϑ before it can increase its logical clock by B.
Since Lı̂(n− 1) ≤ n− 1, we have that Lı̂(ϑ) ≤ n− 1+ (1− ε̂ı)(1− κ+ �n−1

B �).
Hence |Lı̂+1(ϑ)− Lı̂(ϑ)| ≥ ε̂ı

(
�n−1

B �+ 1− κ
)
. 
�

The following theorem is immediate from Lemma 3.

Theorem 2. Let Abound be the clock synchronization algorithm in use. When
executing Efast, the skew between neighbors in Glist can be at least n ε̂ı

B−( ε̂ı
B +1) ∈

Θ(n). 
�

It is a strong assumption that some nodes can communicate an unbounded
number of times while other nodes are not making any progress. If only a constant
number of communication rounds were possible, the skew would be constant in
this execution. However, the result is quite counterintuitive, as one might assume
that the more and the faster nodes can communicate, the better clocks can be
synchronized in general.

This theorem shows that the resulting skew can be large even though a con-
stant bound has been specified. It turns out that the constant bound potentially
results in waiting times that incur a skew of much more than the specified bound.
In general, for any bound B, it holds that ∃t, i, j ∈ Ni : |Li(t) − Lj(t)| = B. If
the delay is 0 between a set of nodes in a particular execution, this results in
a chain of nodes with clock values x, x + B, x + 2B, . . . , O(D). If the length of
this chain is λ, then the worst-case skew between two neighbors can be at least
Ω(λ), because all nodes in the chain are constrained to wait for the slower node
in the chain. The length of this chain can be Θ(D

B ) when the entire skew of Θ(D)
is allocated. Hence it follows that the skew between neighboring nodes can be
at least Ω(D

B ). According to the bounds maintained by neighboring nodes, a
node might adapt its bound in order to adjust to this situation. Using a smaller
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bound than the current bound of one of the neighbors does not help, as the chain
becomes even longer in the worst case, resulting in a larger worst-case skew. A
node might allow a skew of δB for any δ > 1, if the maximum skew between any
of its neighbors and one of this node’s neighbors has already reached B. In an
execution such as Efast, the length of the chain is at most Θ(logδ

D
B ). However,

the maximum skew between neighbors is then Ω(δlogδ
D
B ) = Ω(D

B ), thus adapt-
ing the bounds does not improve the worst-case behavior either. Consequently,
when minimizing the skew to the slowest node while increasing the clock when-
ever possible, the worst-case skew between neighboring nodes is always at least
Ω(D

B + B) = Ω(
√
D).

5 A O(d +
√

D)-GCS Algorithm

The idea is that the knowledge of the diameter D can be exploited by setting
the bound to O(

√
D). If the algorithm can ensure that the skew between any

two nodes is always at most O(D), the skew between neighbors will be at most
O(
√
D), because nodes do not allow a larger skew than O(

√
D) and the waiting

time until they can raise their logical clocks again considerably is also bounded
by O(

√
D). The algorithm which achieves this goal is described in greater detail

in the following section.

5.1 Description of the Algorithm

As in the previous algorithms, the algorithm presented here, denoted by Aroot,
also mandates the forwarding of the clock value to all neighboring nodes when
the logical clock reaches an integer value. Apart from the diameter D, the algo-
rithm must also know an upper bound on the hardware clock rate. Usually, the
hardware clock rates will only differ slightly, therefore one could simply set U to a
realistic upper bound on the maximum clock rate, if the true bound is unknown.
Algorithm 1 depicts the steps taken upon receipt of a message from a neighbor.

if τ > L̃j(t) then
L̃j(t) := τ

end if
if maxj∈Ni(L̃j(t)) > Li(t) and minj∈Ni(L̃j(t)) + U

√
D + 1 > Li(t) then

Li(t) := min(maxj∈Ni(L̃j(t)),minj∈Ni(L̃j(t)) + U
√

D + 1)
send 〈i,Li(t)〉 to all j ∈ Ni

end if

Algorithm 1: Node i calls this procedure when a message 〈j, τ 〉 from node j with
time stamp τ is received at time t

The information about the corresponding neighbor is updated if the newly
arrived message indicates progress. Subsequently, the logical clock is increased
if the slowest neighbor is not more than U

√
D + 1 behind. The logical clock is

raised at most to the maximum logical clock value of all neighbors. Any message
that does not cause a change of the logical clock is simply dropped.
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5.2 Analysis of the Algorithm

First, we prove that the worst-case skew between any two nodes is at most O(D),
which is asymptotically optimal. This global property is further used to derive
the gradient property of Aroot. Note that both properties hold independent of
the underlying network structure, thus the algorithm effectively bounds the skew
between neighboring nodes in arbitrary graphs.

Theorem 3 (Global Property). Let Aroot be the clock synchronization al-
gorithm in use. For all executions and for any graph, it holds that ∀i, j, t :
|Li(t)− Lj(t)| < UD + 1 ∈ O(D).

Proof. The crucial observation is that for the slowest node Aroot is identical to
Amax. Recall that the slowest node is the node with the currently lowest clock
value, and the node with the largest clock value is denoted the fastest node. After
at most D time, the slowest node starts its clock. The progress of the fastest
node is at most UD during this time, resulting in a skew not larger than UD.
Before the next message reaches the slowest node, the fastest node can increase
its logical clock by less than 1, resulting in a skew of less than UD + 1. Once
this message reaches the slowest node, the skew drops back to at most UD. The
slowest node can increase its logical clock at least at the same speed of the fastest
node, thus the skew cannot grow any further. By reducing the messages delays,
the slowest node can even catch up, as it can increase its clock earlier. If the
messages are sped up such that the skew between the slowest node and any of
its neighbors reaches U

√
D + 1, the slowest node can instantaneously raise its

logical clock by U
√
D + 1 > U , hence the skew again decreases in this case. 
�

Using this bound on the global skew, we can limit the waiting time for any
node and thereby guarantee that the skew between neighbors is always at most
O(
√
D).

Theorem 4 (Gradient Property). Let Aroot be the clock synchronization al-
gorithm in use. For all executions and for any graph, it holds that ∀i,∀j ∈ Ni, t :
|Li(t)− Lj(t)| < 2U

√
D + 1 ∈ O(

√
D).

Proof. It is evident that the skew can only be larger than U
√
D + 1 when

nodes are forced to wait for other nodes to increase their logical clocks. Let the
skew between node i and j be U

√
D + 1 at time t. Without loss of generality,

let Li(t) = Lj(t) + U
√
D + 1. If there is a node k ∈ Nj such that Lj(t) =

Lk(t) + U
√
D + 1, node j has to wait for node k to increase its logical clock.

Node k can again have a neighbor whose logical clock is U
√
D + 1 behind etc. If

this chain of dependent nodes has length λ, it takes at most λ time steps until
node j can increase its logical clock by U

√
D + 1. The length λ is upper bounded

by the maximum skew between any two nodes divided by U
√
D + 1. Hence, using

Theorem 3, λ ≤ UD+1
U√

D+1
≤
√
D + 1, because U ≥ 1. Node i cannot increase its

logical clock by more than U
√
D + 1 during this time, as the maximum hardware

clock rate is U , and node j increases its logical clock by at least U
√
D + 1, thus

nodes can always catch up.
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Before node j can raise its logical clock after
√
D + 1 time, i can increase its

logical clock by less than U
√
D + 1, thus, at all times, the skew between any two

neighbors is less than 2U
√
D + 1. 
�

6 Conclusion

We have shown that aiming at achieving a minimal skew at all times naturally
translates to oblivious algorithms, due to the fact that nodes do not have any
information about the message delays and the hardware clock rates. Focusing
on the fastest nodes potentially incurs a large skew between neighbors, but the
fastest node must nevertheless have a large weight, as proven in our analyses. By
assigning a large weight to the fastest node, the clocks will converge quickly to a
large value, even if some neighboring nodes do not make any significant progress
during the same time span.

However, there is an oblivious clock synchronization algorithm with a worst-
case skew of O(d +

√
D) between any two nodes at distance d, which answers

the question whether there is an GCS algorithm with a skew of o(D) between
neighboring nodes. This algorithm further guarantees a skew of Θ(D) between
any two nodes, which is globally asymptotically optimal.

A challenging open problem is whether the bound of Θ(
√
D) skew between

neighbors is asymptotically optimal for oblivious algorithms. Additionally, it is
also worth investigating how much more knowledge, e.g. the times when mes-
sages arrived or a larger message history in general, is required in order to
substantially improve the worst-case skew. Another important aspect of clock
synchronization is the number of messages required in order to effectively bound
the skew between nodes. Analyzing the message complexity of gradient clock
synchronization algorithms is another demanding problem which has not been
studied so far.
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The setting for this paper is a distributed system in which asynchronous processes inter-
act by accessing linearizable, wait-free shared objects [2]. The typical task in such a sys-
tem is to design an implementation of a target object given certain “base objects”. The
complexity of such implementations is mostly due to the fact that multiple processes
may access the target object concurrently. It has been observed that in some systems
contention on shared objects is rare [3]. It is therefore tempting to try to simplify the
task of implementing shared objects by allowing them to exhibit degraded behaviour in
the (hopefully rare) event of contention.

In this paper we first introduce abortable objects. An abortable object behaves like
an ordinary one when accessed sequentially, but may return the special value ⊥ when
accessed concurrently. An operation that returns ⊥ is said to abort. An aborted opera-
tion may or may not have taken effect, but the object cannot be left in an inconsistent
state, reflecting the partial application of the operation. A caller that invoked an opera-
tion and received the response ⊥ does not know whether the operation took effect. We
use the term “traditional object” to signify objects where operations cannot abort.

We show that any abortable object can be implemented using only single-writer
single-reader abortable registers. We also prove that abortable registers are strictly
weaker than traditional registers. In contrast, it is well-known that many useful tra-
ditional objects cannot be implemented using traditional registers [2]. Thus, abortable
objects are fundamentally easier to implement than traditional ones.

Although easier to implement, abortable objects are harder to use than traditional
ones, because they provide weaker semantics. An application using an abortable object
must cope not only with the prospect that an operation it applied did not take effect, but
also with the potentially more serious problem of not knowing whether it did.

To help the user of an abortable object cope with the uncertainty regarding the fate of
aborted operations, we introduce query-abortable objects. These are abortable objects
with an additional query operation that allows each process to find out whether the
last aborted operation (other than a query) that it previously applied took effect and, if
so, what the appropriate response to that operation would have been. For instance, if
a process p applies a dequeue operation on a query-abortable queue and the operation
aborts, p can subsequently apply the query operation to find out whether its aborted
dequeue took effect and, if did, what element it actually dequeued. Of course, a query
operation can itself return ⊥, if it happens to be concurrent with other operations. In
this case, the user of a query-abortable object can apply the query operation repeatedly
until it returns a satisfactory response.
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We prove that any query-abortable object can also be implemented using only
(single-writer single-reader) abortable registers. Note that in this construction the base
objects are only abortable registers, not query-abortable ones.

Abortable objects and obstruction-free implementations. To avoid the complexity
and expense of wait-free implementations, Herlihy, Luchangco and Moir proposed re-
placing wait freedom by the weaker requirement of obstruction freedom. An implemen-
tation of a traditional object is obstruction-free if the object returns a response to each
operation that eventually executes in isolation [3].

It is easy to see that query-abortable objects can be used to implement obstruction-
free objects. The converse is not true, because an obstruction-free object may “hang”,
i.e., it may never return a response to operations that encounter persistent contention.

Related work. Our definition of abortable objects was inspired by an alternative pro-
posal by Attiya, Guerraoui and Kouznetsov [1]. We first explain their proposal and its
relation to ours, and then we compare the results of the two papers.

By definition, in an obstruction-free implementation, an operation that always en-
counters contention may never terminate. Attiya et al. were the first to suggest that,
instead of starving, it may be better for an operation facing such persistent contention
to return control to the caller. In their proposal, an operation that returns to the caller
does so either with the value ∅, indicating that the operation surely did not take effect,
or with the value⊥, indicating that the operation may or may not have taken effect and
is now considered “paused”. A paused operation causes no contention, giving other op-
erations a chance to terminate. The caller of a paused operation on object O can access
O again only by resuming the paused operation. A paused and subsequently resumed
operation may terminate and return a “normal” response; or, if it encounters contention
again, it may return ∅ or ⊥ with the meanings explained before.

An important difference between these “pausable objects” and query-abortable ones
is that the caller of a paused operation can access the object again only by resuming
that operation. In contrast, the caller of an aborted operation is not restricted in any way
on how it may access the object again. If it wishes to do so, the caller can simulate the
semantics of pausable objects by calling the query operation (perhaps repeatedly) to
find the outcome of the aborted operation. But if applying a different operation on the
object better suits its objectives, it is free to do so. Thus, query-abortable objects are
more versatile than pausable ones.

Another difference between pausable objects and query-abortable ones is the sta-
tus of an aborted operation that returns control to the caller. In pausable objects, the
aborted operation is still pending and may take effect later, when it is resumed. In query-
abortable objects, the aborted operation is not pending: it has either taken effect or not,
but this will not change in the future, even if the caller of the aborted operation later
applies a query operation.

Thus, the behaviour of query-abortable objects is consistent with that of traditional
objects: Processes (including those whose last operation on the object aborted) are not
restricted in what operation they can apply to the object, and an operation that returns
control to the caller cannot remain pending. Abortable and query-abortable objects are
simply objects that, in addition to wait freedom and linearizability, satisfy one other
property: an operation may abort only if it encounters contention.
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Attiya et al. prove that any pausable object can be implemented using traditional reg-
isters; in that implementation, the base objects have stronger properties than the imple-
mented object in the face of contention. In contrast, we prove that any query-abortable
object can be implemented using abortable registers; here the base and implemented
objects have the same properties in the face of contention. Furthermore, starting with
strictly weaker registers we show how to implement more versatile objects.

Interval vs. step contention. Obstruction-free implementations, pausable objects, and
abortable objects all allow an object to exhibit weak behaviour in the presence of con-
tention. Several different notions of contention have been defined, two of which are par-
ticularly relevant to our discussion: interval contention and step contention. Informally,
an operation encounters interval contention if its execution interval intersects that of
another operation; an operation encounters step contention if its execution interval con-
tains steps of another operation. Thus, step contention implies interval contention, but
the converse is not necessarily true.

Attiya et al. base their specification of desirable behaviour for pausable objects on
step, rather than interval, contention. This would appear to be the better choice since,
by doing so, one restricts the circumstances under which an object can return “unusual”
responses (such as ∅ or ⊥). We could have followed this approach in our specification
of desirable behaviour for abortable objects; indeed, initially we did so. We have since
come to realize, however, that this choice can lead to anomalies.

Specifically, we demonstrate an implementation of a target object O from a set of
base objects B that meets the step-contention-based specification, but such that if we
replace the objects in B by a correct implementation using “finer” base objects, the
resulting implementation of O fails to meet the step-contention-based specification.

We consider this lack of composability of implementations undesirable. To avoid this
problem, we define abortable objects based on interval rather than step contention: with
this definition, abortable object implementations are indeed composable.

Summary of contributions. We define abortable and query-abortable objects as a sim-
ple and clean extension of standard wait-free linearizable objects. We show how to im-
plement any abortable and query-abortable object using (single-writer single-reader)
abortable registers. We prove that abortable registers are strictly weaker than traditional
ones.

It was known that traditional registers can be used to implement obstruction-free
objects [3]. In this paper we show something stronger: query-abortable objects (which
are strictly stronger than obstruction-free objects) can be implemented using abortable
registers (which are strictly weaker than traditional registers).
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Problem and Motivation. Atomic (linearizable) read/write memory is one of the fun-
damental abstractions in distributed computing. Atomic object services in message-
passing systems allow processes to share information with precise consistency guaran-
tees in the presence of asynchrony and failures. A seminal implementation of atomic
memory of Attiya et al. [1] gives a single-writer, multiple reader (SWMR) solution
where each data object is replicated at n message-passing nodes. Following this de-
velopment, a folklore belief developed that in messaging-passing atomic memory im-
plementations “atomic reads must write”. However, recent work by Dutta et al. [2]
established that if the number of readers is appropriately constrained with respect to
the number of replicas, then single communication round implementations of reads are
possible. Such an implementation given in [2] is called fast. Furthermore it was shown
that any implementation with a larger set of readers cannot have only the single round-
trip reads. Thus when the number of readers can be large, it is interesting to consider
semifast implementations where the writes involve a single communication round and
where the reads may involve one or two rounds with the goal of having as many as
possible single round reads.

Our Contributions. Our goal is to develop atomic memory algorithms where a large
number of read and write operations are fast. In particular, we want to remove con-
straints on the number of readers while preserving atomicity. We say that an atomic
SWMR implementation is semifast if write operations take a single communication
round and where read operations take one or two rounds. We show that one can ob-
tain semifast implementations with unbounded number of readers, where in many cases
reads take a single round. Our approach is based on forming groups of processes where
each group is given a unique virtual identifier. The algorithm is patterned after the gen-
eral scheme of the algorithm in [2]. We show that for each write operation at most
one complete read operation returning the written value may need to perform a second
communication round. Furthermore, our implementation enables non-trivial executions
where both reads and writes are fast. We also provide simulation results for our algo-
rithm, and we consider semifast implementations for multiple writers.

Semifast Implementations and Virtual Nodes. We consider the single writer, multiple
reader (SWMR) model, where a distinguished process w is the writer, the set of R
readers are processes with unique identifiers from the setR = {r1, . . . , rR}, and where
the object replicas are maintained by the set of S servers with unique identifiers from
the set S = {s1, . . . , sS} such that at most t servers can crash.

To accommodate arbitrarily many readers, we introduce the notion of virtual identi-
fiers. We allow multiple readers to share the same virtual identifier, thus forming groups
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of nodes that we call virtual nodes. More formally each virtual node has a unique iden-
tifier from a set V = {ν1, . . . , νV }, and each reader ri that is a member of a virtual node
νj maintains its own identifier ri and its virtual identifier ν(ri) = νj ; we identify such
process by the pair 〈ri, νj〉. We assume that some external service is used to create vir-
tual nodes by assigning virtual identifiers to reader processes. For a read operation, the
determination of the proper return value is based on the cardinality of a set maintained
by the servers, known as seen set, which contains virtual node identifiers and probably
the writer identifier. Thus we use virtual nodes to set the boundary limits of the seen set
even though arbitrarily many readers may use the service. To ensure the correctness of
our algorithm we restrict the cardinality of the seen set to be less than S

t − 1 and hence
the number of virtual nodes |V| to be less than S

t − 2.
A semifast atomic implementation, as suggested in [2], is an implementation that

either has all reads that are fast or all writes that are fast. We formalize the definition
of semifast implementations that requires all writes to be fast and that specifies which
atomic reads are required to perform a second communication round. In this brief an-
nouncement we present an informal version of our definition: here, for each write op-
eration, only one complete read operation is allowed to perform two communication
rounds. In more detail a SWMR implementation I is semifast if the following proper-
ties are satisfied: (1) All writes are fast, (2) all complete read operations perform one
or two communication rounds, (3) if a read operation ρ1 performs two communication
rounds, then all read operations that precede or succeed ρ1 and return the same value as
ρ1 are fast, and (4) there exists some execution of I which contains only fast read and
write operations.

Implementation SF. We now overview a semifast implementation, called SF, that sup-
ports one writer and arbitrarily many readers. We use timestamps to impose a par-
tial order on the read and write operations, as in [1]. Of interest is the way in which
timestamps are associated with the values.

To perform a write operation, the writer increases the timestamp and sends the new
value to S − t servers. The timestamps impose a natural order on the writes since there
is only one writer.

The server processes maintain object replicas and do not invoke any read or write op-
erations. To implement the fast operation behavior, the servers use a bookkeeping mech-
anism to record all the processes to whom they sent their latest timestamp. Therefore
when a server si receives a message 〈msgType, ts, ∗, vid〉 from a non-server process
pj , it updates its local timestamp ts� to be equal to ts, if ts > ts�, and it initializes the
recording set called seen, to {vid}. Otherwise, if ts ≤ ts�, si sets its seen set to be
equal to seen ∪ {vid} declaring that pj inquired si’s local timestamp. When a reader
performs a second communication round, then the server si updates its postit value ps
if ts ≥ ps. This declares that the timestamp ts is about to be returned by some reader.

When a reader process invokes a read operation it sends messages to all servers and
waits for S − t responses. It determines the maximum timestamp maxTS = ts′ and
the maximum postit maxPS = ps′ value contained among the received messages, and
it computes the set of the messages that contain the discoveredmaxTS (maxTSmsg).
Then the following key predicate is used to decide on the return value:

∃α ∈ [1, V + 1] ∃MS ⊆ maxTSmsg s.t. |MS| ≥ S − αt ∧ | ∩m∈MS m.seen| ≥ α.
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The above predicate is derived from the observation that for any two read operations ρ1

and ρ2 that witness the same maxTS and compute maxTSmsg1 and maxTSmsg2

respectively, the difference ||maxTSmsg1| − |maxTSmsg2|| is less than or equal to
t. If the predicate is true or if maxPS = maxTS the reader returns maxTS otherwise
it returns maxTS − 1. If a reader observes that | ∩m∈MS m.seen| = α or less than
2t + 1 messages containing maxPS are discovered in the system, then it performs a
second communication round before returning maxTS.

To associate the timestamps with the values we maintain a triple 〈ts, vts, vts−1〉,
where ts is the current timestamp, vts the value written with this timestamp, and vts−1

the value written with the previous timestamp. We prove the correctness (atomicity) of
the new implementation. Note that SF is not a straightforward extension of [2]. The
introduction of virtual nodes raises new challenges such as ensuring consistency within
groups so that atomicity is not violated by processes sharing the same virtual identifier.

Impossibility and MWMR model. We consider two families of algorithms, one that
does not use reader grouping mechanisms and the other that assumes grouping mecha-
nisms (such as our algorithm [3]). For both families we show that there is no semifast
atomic implementation when S

t − 2 or more virtual nodes exist in the system. The idea
behind the proof is to show by contradiction that if V ≥ S

t − 2, then the fast behavior
of the system violates atomicity, and as a result property (4) of the semifast definition
cannot hold. Additionally it is shown that any semifast algorithm must inform no less
than 3t+ 1 server processes during a second communication round — otherwise either
property (3) of the semifast definition does not hold, or atomicity is violated.

Examining the applicability of the result in the multiple writer multiple reader
(MWMR) model, we show that there does not exist semifast atomic implementations
even in the case of 2 writers, 2 readers and t = 1. Our proof assumes that the read
operations are allowed to perform one or more communication rounds.

Simulations. We simulated our SWMR implementation using the NS2 network simu-
lator and we obtained preliminary results demonstrating that only a small fraction of
read operations need to perform a second communication round. Specifically, under
reasonable execution conditions in our simulations no more than 10% of the read oper-
ations required a second round. Our simulations assume that the readers are uniformly
distributed among the virtual nodes. Furthermore we assume both stochastic and sta-
tic environments and several plausible frequencies on the invocation of read and write
operations. (The details can be found in [3].)
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Introduction. We present a simple, deterministic gossip protocol for solving the
distributed averaging problem. Each node has an initial value and the objective
is for all nodes to reach consensus on the average of these values using only
communication between neighbors in the network. We first give an analysis of the
protocol in structured networks, namely d-dimensional discrete tori and lattices,
and show that in an n node network, the number of rounds required for the
protocol to converge to within ε of the average is O(| log(ε)| n2/d). We then
extend our results to derive upper and lower bounds on convergence for arbitrary
graphs based on the dimensions of spanning supergraphs and subgraphs.

Analyzing Convergence. The network is represented by an undirected graph
G = (V,E) where V is the set of nodes in the network, with |V | = n, and
E is the set of communication channels between them. The neighbor set of a
node i, denoted Ni, is the set of nodes j ∈ V such that (i, j) ∈ E. Every
node i has an initial value xi(0), and the average of all values in the system
is xave = 1

n

∑n
i=1 xi(0). In each round k, every node sends an equal fraction β

of its current value to each of its neighbors and sends the remaining fraction,
α = 1− |Ni|β, to itself. Each node updates its current value xi(k + 1) to be the
sum of all values received in round k. The desired goal of the protocol is for the
system to converge to an equilibrium where xi(k) = xave for all i ∈ V .

We measure how far the current state of the system is from the average state
using the “deviation from average” vector, with each component defined by

x̃i(k) := xi(k) − 1
n

(x1(k) + . . . + xn(k)) .

When the vector x̃ equals 0, the vector of all 0’s, the vector x equals xave1,
where 1 is the vector of all 1’s. The rate at which ||x̃|| approaches 0 determines
the rate at which the nodes reach consensus at xave. We define the ε-consensus
time to be the number of rounds required for ||x̃(k)||

||x̃(0)|| ≤ ε for a given ε.
If x(k) denotes the vector of current values in round k, the distributed aver-

aging protocol can be represented as an n× n matrix A = [aij ] that transforms
x(k) to x(k + 1), where x(k + 1) is the vector of values in round k + 1. aij is the
fraction of j’s current value that j sends to node i in each round. The evolution
of the vector x is given by following recursion equation.
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x(k + 1) = A x(k)

It can be shown that the evolution of the vector x depends on the second largest
eigenvalue of A, λ2. More specifically, an upper bound on the number of rounds
required for ε-consensus is given by

k ≥ log(ε)
log(|λ2|)

. (1)

Therefore, the ε-consensus time depends upon the inverse of |λ2|. In general, it is
not possible to determine λ2 analytically. However, for certain graph structures,
we can derive λ2 and thus derive an asymptotic bound for the protocol.

In particular, we consider the protocol matrix for a d-dimensional discrete
torus Zd

s . In each round, every node sends an equal fraction β < 1
2d of its current

value to each of its 2d neighbors. In the 1-dimensional case, the protocol matrix
A is a circulant matrix. In the general d-dimensional case, A is known as a
circulant operator. The eigenvalues of A can be explicitly obtained using the
multi-dimensional Discrete Fourier Transform [1]. Using this and Equation (1),
we can determine the ε-consensus time of the protocol in any d-dimensional
discrete torus. For large n, the asymptotic convergence of the protocol in a d-
lattice is the same as for a d-dimensional torus, so the same analysis applies.

Theorem 1. The ε-consensus time of the distributed averaging protocol in a
discrete d-dimensional torus or d-lattice with n nodes is O(| log(ε)| n2/d).

This result shows that the dimensionality of the torus determines the convergence
rate of the averaging protocol. In tori, the dimension is closely related to the
connectivity of the graph; a higher dimensional torus has greater connectivity
and a faster convergence rate than a lower dimensional torus. If β is chosen
carefully, a similar relationship between connectivity and convergence can be
derived for arbitrary graphs.

Theorem 2. Let G1 = (V1, E1) be an undirected, connected graph. Let G2 =
(V2, E2) be a spanning subgraph of G1. For β ≤ 1

2Δ(G1) , where Δ(G1) is the
maximum degree of G1, the convergence rate of the protocol on G1 is greater
than or equal to that on G2.

According to the Theorem 2, if we start with a d-dimensional torus and add
edges, the convergence rate of the protocol on the new graph will be at least as
fast as that on the original graph. Similarly, if we take an arbitrary graph and
add edges to form a d-dimensional torus, the convergence rate of the protocol
on the original graph will be less than or equal to that of the protocol on the
torus. This result is stated precisely in the following corollary.

Corollary 1. Let G = (V,E) be an arbitrary graph with |V | = n.

1. If D is the dimension of the largest dimensional torus that is a spanning
subgraph of G, the consensus protocol reaches ε-consensus on G in
O
(
| log(ε)| n2/D

)
rounds.
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2. If d is the dimension of the smallest dimensional torus for which G is
a spanning subgraph, the consensus protocol reaches ε-consensus on G in
Ω
(
| log(ε)| n2/d

)
rounds.

This corollary is a direct result of Theorems 1 and 2.
Details on the above results can be found in [2].

Related Work. Stochastic gossip protocols for solving the distributed aver-
aging problem have been proposed [3,4]. In these protocols, each node selects a
neighbor at random in each round and averages its own value with the neighbor’s
value. Bounds derived for convergence rates of these protocols are probabilistic.
A deterministic protocol in which a node can send a different fraction of its
current value to each of its neighbors in each round have also been studied [5].
The authors use offline analysis based on global information to determine the
optimal fraction to send along each edge and give localized online heuristics.
However, the selection of fractions does not affect the asymptotic convergence
rate of the protocol. Distributed averaging has also been studied in the context
of anonymous networks [6]. In this work, each node must know the size and
topology of the network. The role of dimensionality in optimal error bounds in
sensor networks was studied in [7]. Our work characterizes the relationship be-
tween network dimensionality and the convergence rate of a deterministic gossip
protocol for distributed averaging that requires only local information, making
it well-suited for large scale P2P systems, sensor networks, and mobile ad-hoc
networks.
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L.R.I./C.N.R.S., Université Paris-Sud 11

Abstract. In this paper, we reduce the problem of computing the con-
vergence time for a randomized self-stabilizing algorithm to an instance
of the stochastic shortest path problem (SSP). The solution gives us a
way to compute automatically the stabilization time against the worst
and the best policy. Moreover, a corollary of this reduction ensures that
the best and the worst policy for this kind of algorithms are memoryless
and deterministic. We apply these results here in a toy example. We just
present here the main results, to more details, see [1].

By their very nature, distributed algorithms have to deal with a non-
deterministic environment. Speeds of the different processors or the message
delays are generally not known in advance and may vary substantially from one
execution to the other. For representing the environment in an abstract way, the
notion of scheduler (also called demon or adversary) has been introduced. The
scheduler is in particular responsible of which processors take a step in a given
configuration or of which among the messages in transit arrives first. It is well
known that the correctness of a distributed algorithm depends on the considered
scheduler. This remark also holds for self-stabilizing distributed algorithm.

In this paper, we restrict our attention to probabilistic self-stabilization. Clas-
sically self-stabilization requires convergence (each execution reaches a legitimate
configuration) and correctness (each execution starting from a legitimate config-
uration satisfies the specification). Probabilistic self-stabilization requires that
convergence is probabilistic. It appears that the convergence property of a given
algorithm depends on the chosen policy. With some policies the algorithm can
converge in a finite number of steps (the stabilization time) while with others
it can not converge at all. Even if the stabilization time is finite, it can differ
according to the policy. It is thus interesting to know the best policy (the policy
that gives the smaller expected stabilization time) and the worst. Note that the
best policy can possibly give a finite stabilization time and the worst an infi-
nite one. In some cases best and worst both give finite stabilization time (it is
then said that the algorithm is self-stabilizing under the distributed scheduler:
scheduler that produce any k-bounded policy).

In a distributed system, all the machines are finite state machines. A con-
figuration X of the distributed system is the N -tuple of all the states of the
machines. The code is a finite set of guarded rules. The guard of a rule on p
is a boolean expression involving the state of p and its neighbors. A machine p

S. Dolev (Ed.): DISC 2006, LNCS 4167, pp. 543–547, 2006.
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is enabled in a configuration c, if a rule guard of p is true, in c. The execution
simultaneously by several enabled machines of rules is call a computation step.

A randomized distributed algorithm can be seen as a Markov Decision Process.
Informally, a Markov Decision Process is a generalization of a Markov chain in
which a set of possible actions is associated to each state. To each state-action
pair corresponds a probability distribution on the states, which is used to select
the successor state. A Markov chain corresponds thus to a Markov Decision
Process in which there is exactly one action associated with each state. The
formal definition is as follows.

Definition 1 (Markov Decision Process). A Markov Decision Process
(MDP) (S, Act, A, p) consists of a finite set S of states, a finite set Act of
actions, and two components A, p that specify the transition structure.

• For each s ∈ S, A(s) is the non-empty finite set of actions available at
s.
• For each s, t ∈ S and a ∈ A(s), pst(a) is the probability of a transition
from s to t when action a is selected. Moreover, p verifies the following
property ∀s, ∀a ∈ A(s) we have

∑
t∈S pst(a) = 1.

The MDP associated with a distributed algorithm is defined by (i) S is the set of
configurations, (ii) Act is the set of machine sets, (iii) A(c) is the set of enabled
machines in c, (iv) pst(a) is the probability to reach the configuration t from a
configuration s by a computation step where all processors in a execute a rule.

Policies are closely related to the adversaries of Segala and Lynch, and to the
schedulers of Lehman and Rabin, Vardi, Pnueli and Zuck , and to the strategies
of Beauquier, Delaët, Granidariu, and Johnen.

Definition 2 (Policy). A policy η is a set of conditional probabilities
Qη(a|s0s1...sn), for all n ≥ 0, all possible sequences of states s0, ..., sn and all a ∈
A(sn) such that 0 ≤ Qη(a|s0, s1..., sn) ≤ 1 and

∑
a∈A(sn) Qη(a|s0, s1..., sn) = 1.

Definition 3 (Probability measure under a policy). Let η be a policy.
Let h = s0a0s1a1...sn be a sequence of computation steps. P η

s (Ch) =∏n−1
k=0 psksk+1(ak)Qη(ak|s0, s1..., sk).

Under a given policy, the randomized distributed algorithm can be seen as a
Markov chain. In this Markov chain, we denoted by Xn the configuration reached
after n computation steps (Xn is the random variable).

Definition 4 (Probabilistic convergence). Let Leg be the legitimate predi-
cate defined on configurations. A probabilistic distributed algorithm A under a
policy η probabilistically converges to Leg iff : from any configuration s, the
probability to reach a legitimate configuration is equal to 1 under the policy η.
Formally, limn→∞ P η

c (∃m ≤ n | Xm ∈ L) = 1 where Xm is the reached state af-
ter m computation steps in the Markov chain defined by : MDP associated to A,
c and η.
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The convergence time under a policy is the expectation value of the random
variable Y under this policy (Y being the number of computation steps to reach
a legitimate configuration). The best policy (resp. the worst policy) is the policy
having the smallest (resp. largest) convergence time.

Informally, the Stochastic Shortest Path problem consists in computing the
minimum expected cost for reaching a given subset of destination states, from
any state of a Markov Decision Process in which a cost is associated to each
action.

Definition 5 (Instance of Stochastic Shortest Path Problem). An in-
stance of the stochastic shortest path problem is (M,U, c, g) in which (i) M is a
Markov Decision Process, (ii) U is the set of destination states, (iii) c is the cost
function, which associates to each state s ∈ S − U and action a ∈ A(s) the cost
c(s, a), and (iv) g is the terminal cost function which associates to each s ∈ U
its terminal cost g(s).

In [1], we have define two instances of SSP (called SSPb and SSPw). SSPb

allows us to compute the best convergence time. SSPw is designed to compute
the worst convergence time.

• SSPb: M is the MDP associated to the algorithm. U is the set of legit-
imate configurations. c is always equal to 1. g is function null.
• SSPw: M is the MDP associated to the algorithm. U is the set of legit-

imate configurations. c is always equal to −1. g is function null.

Definition 6 (Bellman operator). Let (M,U, c, g) be an instance of the SSP
problem. We denote v = (vs)s∈S−U a vector of real numbers. We define the
Bellman operator L by

L(vs) = mina∈A(s){c(s, a) +
∑

t∈S−U pst(a)vt +
∑

t∈U pst(a)g(t)}

Theorem 1. Computing the convergence time for a randomized self-stabilizing
algorithm under the best and worst policy can be reduced to an instance of SSP.

Thus, one can apply the result on the SSP problem. For instance, the Bellman
operator has a fixpoint in SSPb and in SSPw. Thus, the convergence time under
the best and worst policy can be compute automatically (via the fixpoint of
Bellman operator). We can also obtain the corresponding policies. In SSPb,
(resp. SSPw) on each configuration, the selected action is the best choice (resp.
worst choice) to converge from this configuration.

Toy Example. The presented algorithm achieves token circulation on unidirec-
tional ring, it was defined by Beauquier and al. in [BDC95].

A processor is said to have a token iff it is enabled. The algorithm to be
self-stabilizing should converge from a configuration with several tokens to a
configuration with one token. Notice that the algorithm ensures that in any
configuration, the ring has at least one token.

Configurations are gathered in class. Configurations in which the tokens are
at the same (clockwise) distance d, belong to the same class denoted d. If a
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Algorithm 1. token circulation on anonymous and unidirectional rings
Constant:
N is the ring size. mN is the smallest integer not dividing N .
Variables on p: vp is a variable taking value in [0, mN -1].
Random Variables on p:

rand boolp taking value in {1, 0}. Each value has a probability 1/2.

Action on p: lp is the clockwise preceeding neighbor of p
R:: (vp − vlp �= 1 mod mN ) → if rand boolp = 1 then vp := (vlp + 1) mod mN ;

.

token T 1 is at distance d of the other token T 2 then T 2 is at distance N -d
of T 1. Therefore class d and N -d are identical. Notice that if d = 0 then the
ring has only one token. The best convergence time is easy to guess here, from
the configuration of the class 0 < d ≤ N/2 is 2 × d, whatever is the ring size.
This convergence time is achieved under the following policy: in any configura-
tion, the token at distance d of the other token tries to catch up the unmoving
token.

Let us take N = 5, then there are 3 classes c0, c1, c2 There are also three
kinds of policy in each different configuration, one can choose only the closest
token (action c), the furthest (f), or both of them (b). In the corresponding
SSP instance we have U = c0 and we can start from the vector v0 = (0, 0)
then applying one time the Bellman operator L we obtain that v1 = (1, 1)
then v2 = (3/2, 2), v3 = (7/4, 11/4), v4 = (15/8, 26/8), v5 = (31/16, 57/16),
v6 = (63/32, 120/32), v7 = (127/64, 247/64), v8 = (255/128, 502/128) and the
sequence converges towards v• = (2, 4) which is effectively a fixpoint. Then, by
getting the action in which the minimum is reached we obtained that the best
policy is the one that chose always action c, that is conform to the intuition.

In [1], we study two other self-stabilizing algorithms : vertex coloring, and
naming in grids. There is a self-stabilizing deterministic algorithm giving distinct
name to nodes in grids. Using this technique we show that the convergence time
under the worst and best policy are better with our randomized algorithm that
with the deterministic one.

One could think that the best policy and the worst policy are intricate and
difficult to describe, or that their simulation would use a lot of resources. In fact
it is not true because there are always a best policy and a worst policy that
are memoryless (meaning that the choice they make in a given configuration
depends only on the configuration, and not on the past of the execution). This
results extend a result in [3] and, although in a different context, a result of [2].

Corollary 1. The best and the worst policy (considering the convergence time)
for a randomized self-stabilizing algorithm are memoryless and deterministic.

This last result allows us to only consider memoryless policies when studying
self-stabilizing algorithms. Indeed, the worst convergence time is always given
by a memoryless policy. This result considerably simplifies the verification of the
correctness and the computation of the complexity of these algorithms.
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1 Introduction and Background

In this paper, we present a new technique called multislicing to efficiently verify whether
a distributed program has executed correctly. Our algorithm supports a class of tem-
poral predicates (Multislicing Temporal Logic or MTL [1]) which allows properties
based on local predicates and arbitrarily placed negations, disjunctions and conjunc-
tions along with the possibly (♦ , EF ) temporal operator. We show that multislicing
makes it possible to detect any MTL predicate in polynomial time with respect to the
number of processes (n) in the system and the number of events (|E|) in the distributed
computation (though, as expected, it is not polynomial with respect to the size of the
predicate) [1]. We do not know of any other algorithm that allows detection of a similar
class of predicates in polynomial time in n (or |E|).

We model a distributed computation (〈E,→〉) as a partial order on the set of events
E, based on the happened before relation (→) [2]. A partial order captures all the pos-
sible causally consistent interleavings and ensures that bugs in any possible consistent
interleaving of the computation will be visible. The drawback of using a partial order
model is that the number of global states of the computation is exponential in the num-
ber of processes in the system.

A consistent cut C is a set of events in the computation which satisfies the following
property: if an event e is contained in the set C, then all events in the computation that
happened before e are contained in C, i.e., ∀e1, e2 ∈ E : (e2 ∈ C)∧(e1 → e2)⇒ e1 ∈
C. Detecting a predicate in a distributed computation is determining if the initial cut of
the computation satisfies the predicate. Using a model checking approach for predicate
detection is inefficient and requires exponential time in the worst case.

The set of all consistent cuts in a computation forms a distributive lattice [3]. Birk-
hoff’s representation theorem [4] states that a distributive lattice can be completely
characterized by the set of its join irreducible elements. Join irreducible elements are
elements of the lattice that cannot be expressed as the join of any two elements.

The slice s[p] of a computation with respect to a predicate p is the poset of the join
irreducible consistent cuts of the smallest sublattice that contains all consistent cuts
satisfying p. If every consistent cut in the slice s[p] satisfies the predicate p, then the
slice is said to be a lean slice. A lean slice is obtained whenever the consistent cuts
that satisfy the predicate have a lattice structure (closed under joins and meets). Such
predicates are called regular predicates.

� Supported in part by the NSF Grants ECS-9907213, CCR-9988225, CNS-0509024, Texas
Education Board Grant ARP-320, an Engineering Foundation Fellowship, and an IBM grant.
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Predicate detection using computation slicing traditionally involves computing the
slice with respect to the predicate and examining the slice [5]. The drawback of this
approach is that, if the computed slice is not lean, then we are forced to examine each
global state in the slice. This may require exponential time with respect to the number
of processes in the system.

In multislicing, instead of computing a single non-lean slice, we compute a set of
slices that are guaranteed to be lean. We show that it is possible to restrict the size of
this set, thus making it possible to efficiently detect the predicate.

2 Multislicing Overview

Definition 1. (Multislice) A multislice S of a computation C with respect to a predicate
P is defined as a set of lean slices {s1, s2, ..., sl} corresponding to regular predicates
p1, p2, ..., pl such that P = p1 ∨ p2 ∨ ... ∨ pl.

Note that, the multislice of a computation for a predicate is not necessarily unique
[1]. Multislicing is the operation of computing a multislice of the computation with
respect to the given predicate. It follows from the definition that given a predicate P , a
multislice S[P ] satisfies the following properties:

1. If P is true at consistent cut C in the computation, then there exists a slice s in the
multislice S[P ], such that, cut C belongs to s

2. ∀s ∈ S[P ] : C belongs to s⇒ C satisfies the predicate P

A multislice represents all the cuts in the computation at which the predicate holds.
To determine if the given MTL predicate holds at the initial state of the computation,
we can simply check if the initial cut belongs to any slice of the multislice. A multislice
is nonempty if the predicate is true in any consistent cut of the computation.

Definition 2. A predicate P in MTL is defined recursively as follows:

1. All local predicates are MTL predicates
2. If P andQ are MTL predicates then P ∨Q, P ∧Q,♦P and¬P are MTL predicates

Note that ∨, ∧, ¬, ♦ have their usual meanings [1]. �P (or AG(P )) can rewritten in
MTL as ¬♦¬P .

In the following discussion, we denote regular predicates and lean slices by small
case letters (e.g. s or s[p] denotes the slice of the computation for a regular predicate p).
We use uppercase letters to represent multislices and MTL predicates.

Efficient algorithms to compute the slice for local predicates can be found in [3]. The
multislice of a local predicate is the single element set containing its slice. It is trivial to
compute the multislice for the disjunctions of two predicates( S[P∨Q] ≡ S[P ]∪S[Q]).
The conjunction of two lean slices, s1 ∧ s2, can be computed by using the grafting
algorithm described in [3]. The multislice for S[P ∧Q] is obtained by computing sp∧sq

for all sp ∈ S[P ], sq ∈ S[Q]. Since ♦ distributes over ∨, the multislice S[♦P ] is
obtained by computing the slices ♦s for all s ∈ S[P ]. Note that if s1 and s2 are lean
slices, then s1 ∧ s2 and ♦s1 are also lean [3, 5].
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We assume that the negation operators are pushed inside as far as possible (to the
local predicates or to the ♦ operator). Using existing slicing approaches to calculate
a multislice for a predicate with nested negations can quickly lead to an exponential
blowup. To avoid this, we present a new algorithm to efficiently compute¬♦p, where p
is a regular predicate. To compute the multislice of ¬♦P where P = p1 ∨ p2 ∨ . . .∨ pl

is a MTL predicate, we compute the multislices for ¬♦p1, ¬♦p2 etc. and take their
conjunction. The detailed algorithm to efficiently compute the multislice for ¬♦ of
a regular predicate is presented in the technical report [1]. The main idea is, to find
along each process, the least cut that does not satisfy ♦P . We get a set of at most
n such cuts (called the least cuts) when the computation has n processes. Let S′ =
{C1, C2, . . . , Cn} be the set of least cuts. The output multislice S is given by the set
of n slices S = {intervalLatticeBetween(Ci, E)|i = 1 to n} where E is the final
cut. Note that, intervalLatticeBetween(C1, C2) returns the slice which with the
contains all cuts betweenC1 andC2 withC1,C2 as the initial and final cuts respectively.

Though it may appear that nested ¬♦ operators could lead to an exponential blowup
(in n, the number of processes), we show that the number of slices does not explode
due to the property that the multislice for ¬♦P is a join-closed structure in the original
computational lattice [1].

Theorem 1. The time complexity of our multislicing algorithm is polynomial in the
number of events (|E|) and the number of processes (n) in the computation.

In the future, it will be interesting to extend multislicing for non-terminating computa-
tions. Another promising avenue is to explore ways to define and efficiently compute a
canonical version of a multislice.

A detailed explanation of the algorithms, proofs of correctness, complexity analysis
and the experimental evaluation can be found in the technical report [1].
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Abstract. It is known that graphs of doubling dimension O(log log n)
can be augmented to become navigable. We show that for doubling di-
mension � log log n, an infinite family of graphs cannot be augmented to
become navigable. Our proof uses a counting argument which enable us
to consider any kind of augmentations. In particular we do not restrict
our analysis to the case of symmetric distributions, nor to distributions
for which the choice of the long range link at a node must be independent
from the choices of long range links at other nodes.

1 Statement of the Problem

The doubling dimension of a graph G is the smallest d such that, for any integer
r ≥ 1, and for any node u ∈ V (G), the ball B(u, 2r) centered at u and of radius
2r can be covered by at most 2d balls B(ui, r) centered at nodes ui ∈ V (G). The
doubling dimension has an impact on the analysis of the small world phenom-
enon, precisely on the expected performances of greedy routing in augmented
graphs. An augmented graph is a pair (G,ϕ) where G is an n-node graph, and ϕ
is a collection of probability distributions {ϕu, u ∈ V (G)}. Every node u ∈ V (G)
is given an extra link pointing to some node v, called the long range contact of
u. The link from a node to its long range contact is called a long range link. The
original links of the graph are called local links. The long range contact of u is
chosen at random according to ϕu as follows: Pr{u→ v} = ϕu(v). Greedy rout-
ing in (G,ϕ) is the oblivious routing protocol where the routing decision taken
at the current node u for a message of destination t consists in (1) selecting a
neighbor v of u that is the closest to t according to the distance in G (this choice
is performed among all neighbors of u in G and the long range contact of u),
and (2) forwarding the message to v. This process assumes that every node has
a knowledge of the distances in G. On the other hand, every node is unaware
of the long range links added to G, except its own long range link. Hence the
nodes have no notion of the distances in the augmented graph.
� The complete version of this paper is available as: P. Fraigniaud, E. Lebhar, and Z.
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An infinite family of graphs G = {G(i), i ∈ I} is navigable if there exists a
family Φ = {ϕ(i), i ∈ I} of collections of probability distributions, and a func-
tion f(n) ∈ O(polylog(n)) such that, for any i ∈ I, greedy routing in (G(i), ϕ(i))
performs in at most f(n(i)) expected number of steps where n(i) is the order
of the graph G(i). More precisely, for any pair of nodes (s, t) of G(i), the ex-
pected number of steps E(ϕ(i), s, t) for traveling from s to t using greedy rout-
ing in (G(i), ϕ(i)) is at most f(n(i)). In his seminal paper, Kleinberg (STOC,
2000) proved that, for any fixed integer d ≥ 1, the family of d-dimensional
square meshes is navigable. Slivkins (PODC, 2005) recently related navigability
to doubling dimension by proving that any metric with doubling dimension at
most O(log logn) is navigable. All these results naturally lead to the question of
whether all graphs are navigable.

2 Our Results

Let δ : N �→ N, let Gn,δ(n) be the class of n-node graphs with doubling dimension
at most δ(n), and let Gδ = ∪n≥1Gn,δ(n). Slivkins result restricted to the context
of non-weighted graphs implies that Gδ is navigable for any function δ bounded
from above by c log log n for some constant c > 0. We prove a threshold of
δ(n) = Θ(log logn) for the navigability of Gδ:

Theorem 1. Let δ : N �→ N be such that limn→∞ log log n
δ(n) = 0. Then Gδ is not

navigable.

Hence, the result by Slivkins is essentially the best that can be achieved by
considering only the doubling dimension of graphs. Note that Theorem 1 does
not assume independent trials for the long range links.

3 Sketch of the Proof

Our negative result requires to prove that for an infinite family of graphs in Gδ,
any distribution of the long range links leaves the expected number of steps of
greedy routing above any polylogarithmic for some pairs of source and target.
For this purpose, we exhibit an infinite family of graphs presenting a very high
number of possible “directions” for a long range link to go, implying that for
any trial of the long range links, there always exist a direction for which these
long links do not help. Precisely, by a counting argument, we show that there
exists a pair of source and target at distance greater than any polylogarithm,
between which greedy routing does not use any long range link, whatever their
distribution is.

Let {G(n), n ≥ 1} be an infinite family of graphs indexed by their number of
vertices as depicted on Figure 1. Precisely, let d : N �→ N be such that d ≤ δ,
limn→∞ log log n

d(n) = 0, and d(n) ≤ ε
√

logn for some 0 < ε < 1. For the sake
of simplicity, assume that p = n1/d(n) is integer. G(n) is the graph of n nodes
consisting of pd(n) nodes labeled (x1, . . . , xd(n)), xi ∈ Zp. Node (x1, . . . , xd(n))
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dir(+1,+1)

dir(+1,0)dir(−1,0)

dir(0,+1)

dir(0,−1)dir(−1,−1)

dir(−1,+1)

dir(+1,−1)

Fig. 1. Example of graph G(n) with d(n) = 2

is connected to all nodes (x1 + a1, . . . , xd(n) + ad(n)) where ai ∈ {−1, 0, 1},
i = 1, . . . , d(n), and all operations are taken modulo p. One can check that the
diameter of G(n) is �p/2�, and G(n) ∈ Gn,δ(n).

Let u = (u1, . . . , ud(n)) be any node. For D = (ν1, . . . , νd(n)) ∈ {−1, 0,+1}d(n),
we call direction the set of nodes diru(D) = {v = (v1, . . . , vd(n)) : vi = (ui +
νi · xi) mod p, 1 ≤ xi ≤ �p/2�}. On Figure 1, grey areas represent the various
directions for the central node. For any D = (ν1, . . . , νd(n)) ∈ {−1,+1}d(n), we
call diagonal the set of nodes diagu(D) = {v = (v1, . . . , vd(n)) : vi = (ui +
νi · x) mod p, 1 ≤ x ≤ �p/2�}. On Figure 1, the bold line represents a diagonal
for the central node. We can prove that for any node u and its long range
contact v for some distribution ϕ(n) of the long range links, if v ∈ diru(D) and
t ∈ diagu(D′) for D,D′ ∈ {−1,+1}d(n), D �= D′, then greedy routing from u
to t does not use the long range link (u, v). Consider now a distribution of long
range links for G(n). We prove that routing on the diagonals is hard. For this
purpose, we define an interval I as a connected subgraph of a diagonal. We say
that an interval I of diagu(D) is good if there exists x ∈ I such that the long
range contact y of x satisfies y ∈ dirx(D).

A line L of G(n) in direction D ∈ {−1,+1}d(n) is a maximal subset of V (G(n))
such that for any two nodes u, v ∈ L, we have diagu(D) ∩ diagv(D) �= ∅. On
Figure 1, dark grey nodes belongs to a line. The set of all the lines in the same
direction D partitions G(n) into n/p lines of size p. Let us partition each line
into p/X disjoint intervals of same length X . This results into n/X intervals per
direction, thus in total into a set S of n

X · 2d(n) intervals of length X . There is
a one-to-one mapping between intervals and nodes because every good interval
I ∈ S must contain a node u (called the certificate) whose long range contact v
satisfies v ∈ diru(D). We have 2d(n) · n

X intervals in S. Since 2d(n) · n
X ≤ n, we

get X ≥ 2d(n). By the pigeonhole principle, if X < 2d(n), there is one interval
I = [s, t] ∈ S which is not good. Choosing X = 2d(n) − 2 implies that greedy
routing from s to t takes 2d(n) − 3 /∈ O(polylog n) steps. 
�



Brief Announcement: Decoupled Quorum-Based
Byzantine-Resilient Coordination in Open

Distributed Systems�

Alysson Neves Bessani1,2, Miguel Correia2,
Joni da Silva Fraga1, and Lau Cheuk Lung3

1 DAS/PGEEL, Universidade Federal de Santa Catarina, Brazil
2 LaSIGE, Faculdade de Ciências da Universidade de Lisboa, Portugal

3 PPGIA, Pontificia Universidade Católica do Paraná, Brazil

1 Introduction

The tuple space coordination model, originally introduced in the Linda program-
ming language [2], uses a shared memory object called a tuple space to support
coordination that is decoupled both in time – processes do not have to be active
at the same time – and space – processes do not need to know each others’
addresses. The tuple space can be considered to be a kind of storage that stores
tuples, i.e. finite sequences of values. The operations supported are essentially
three: inserting a tuple in the space, reading a tuple from the space and removing
a tuple from the space.

In this paper we propose an efficient Byzantine fault-tolerant implementation
of a tuple space called LBTS (Linearizable Byzantine Tuple Space). LBTS is
implemented by a set of distributed servers and behaves according to its spec-
ification if up to a number of these servers fail in a Byzantine way. Moreover,
LBTS also tolerates accidental and malicious faults in an unbounded number of
the clients that use its services and satisfies two important properties: lineariz-
ability and wait-freedom (with respect to client failures). In LBTS, most opera-
tions on the tuple space are implemented by pure Byzantine quorum protocols
[3,4]. However, since a tuple space is a shared memory object with consensus
number 2, it cannot be implemented using only quorum protocols. In this paper
we identify the tuple space operations that require stronger protocols, and show
how to implement them using a modified Byzantine Paxos consensus protocol
[1]. The philosophy behind our design is that simple operations are implemented
by “cheap” quorum-based protocols, while stronger operations are implemented
by more expensive protocols based on consensus.

2 LBTS Protocols

We assume an eventually synchronous system model composed by an infinite set
of clients and n ≥ 4f + 1 servers. An unbounded number of clients and at most
f servers can fail in a Byzantine way. The tuple space is implemented by the
� Work supported by CNPq (project 506639/2004-5) and LaSIGE.
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servers organized as a f -masking Byzantine quorum system, where each quorum
contains q = �n+2f+1

2 � servers, ensuring an intersection of 2f +1 servers between
every two quorums of the system [3]. An important assumption of our protocols is
that each tuple is unique. This assumption can be enforced in practice appending
a nonce to each tuple.

In this paper we briefly describe the protocols that implement the three (non-
blocking) operations of LBTS: out , for tuple insertion in the space; rdp, for tuple
reading from the space; and inp, for tuple removal from the space. A fundamental
property of the inp operation is that no two clients can remove the same tuple
from the space.

Tuple Insertion (out). The tuple insertion protocol comprises a single access to
a quorum giving the tuple being inserted. Each server that receives the tuple
stores it in its local copy of the space if the tuple is not already stored and was
not removed before. Notice that we are implementing a multi-writer storage but
are not using timestamps. The protocol requires only two communication steps
and has linear message complexity.

Tuple Reading (rdp). This operation is implemented by a protocol that executes
in two phases. At first, the reading client accesses the servers requesting the
tuples that match a given template. A server sends a response to the client
together with the number of tuple removals it previously executed. The client is
registered in a listener set and receives an update message every time a tuple that
matches the given template is inserted in the server or some removal is executed.
The client keeps collecting information from the servers until it receives matching
tuples from a quorum of servers that removed the same number of tuples. If
there is a tuple t that appears in at least f + 1 of these responses, t is the
read tuple. If this tuple appears in less than q servers, the client has to write
it back to the system to ensure that it will be read in subsequent reads and
satisfy linearizability. Notice that the listener communication pattern is used for
a different purpose than in [4]: the reader wants to “take a photo” of the system
between removals in order to define the result of the read operation. This protocol
requires 2 and 4 (when write-back is needed) communication steps and has linear
message complexity. Its correctness relies on the fact that all removals (inp) are
executed in all correct servers in the same total order.

Tuple Destructive Reading (inp). The approach to implement the semantics of
this operation (no two clients can remove the same tuple) is to execute all inp
operations in the same order in all servers. This can be implemented using a total
order multicast protocol based on the Byzantine Paxos algorithm, e.g. BFT [1].
BFT works briefly as follows. When a client wants to multicast a message m, it
sends m to all servers. When the leader server s receives m, it gives it the next
sequence number i and sends it to all the other servers. If server s′ receives 〈m, i〉
from the leader, it has previously received m from the client, and it accepted
no previous message with sequence number i, then s′ accepts m. When this
happens, s′ engages in two rounds of message exchange with the other servers to
do agreement on the association 〈m, i〉. When agreement is reached, m is defined
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as the i-th message to be delivered by correct servers. If some servers detect that
the leader is faulty (e.g. because it leaves gaps in the sequence numbers), they
elect another leader. LBTS’ inp protocol is a modified version of BFT. It differs
from BFT in three aspects: (1) when the leader s receives a inp(t) request, it
sends to the other servers not only the sequence number for this message but also
a tuple tt from its local tuple space that matches t; (2) each server s′ accepts to
remove the tuple tt received from the leader if the BFT conditions for acceptance
are met, s′ did not previously accepted the removal of tt, the tuple tt matches
the given template t, and tt is not forged (s′ has tt in its local tuple space or s′

received f + 1 signed messages from different servers ensuring that they have tt
in their local tuple spaces); (3) when a new leader l′ is elected, each server sends
it its protocol state and a signed set with the tuples in its local tuple space that
match t. This information is used by l′ to build a proof for a proposal with a
tuple t (in case it gets that tuple from f + 1 servers) or ⊥ (in case it does not).
This modified version of BFT ensures total order in all inp executions and that
the result of a inp is the same in all correct servers.

3 Discussion

This paper presents the first quorum-based construction for a shared memory
object strictly stronger than a register. This construction is based on a com-
bination of common quorum techniques plus three novel ones: (i.) instead of
using timestamps, it uses a novel technique suited for collection objects, i.e., ob-
jects that store collections of elements, where the elements space is partitioned
between all clients, and every element is unique; (ii.) it uses the listener com-
munication pattern to capture the state of the system between executions of
the read-write operations, and then apply the usual quorum-based reasoning to
define the result for a read operation; and (iii.) it uses a modified Byzantine
Paxos algorithm to do total order multicast and reach agreement about the re-
sult of an operation in a single execution. LBTS is more efficient in terms of
message complexity and communication steps than a similar object would be if
implemented directly on top of a BFT.

As future work, we expect to generalize the techniques used to design LBTS to
define a replication algorithm that can be used to implement any shared object
with consensus number greater than 1.
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1 Introduction

Database replication protocols based on group communication have recently re-
ceived a lot of attention. The main reason for this stems from the fact that group
communication primitives offer adequate properties, namely agreement on the
messages delivered and on their order, to implement synchronous database repli-
cation. Most of the complexity involved in synchronizing database replicas is han-
dled by the group communication layer. Previous work on group-communication-
based database replication has focused mainly on full replication. However, full
replication might not always be adequate. First, sites might not have enough
disk or memory resources to fully replicate the database. Second, when access
locality is observed, full replication is pointless. Third, full replication provides
limited scalability since every update transaction should be executed by each
replica.

2 Partially-Replicated Database State Machine

In this paper, we discuss an extension of the Database State Machine (DBSM)
[3], a group-communication-based database replication technique, to partial
replication. The DBSM is based on the deferred update replication model [1].
Transactions execute locally on one database site and their execution does not
cause any interaction with other sites. Read-only transactions commit locally
only; update transactions are atomically broadcast at commit time for certifica-
tion. The certification test ensures one-copy serializability [1] and requires every
database site to keep the writesets of committed transactions. The certification
of a transaction T consists in checking that T ’s readset does not contain any
outdated value, i.e., no committed transaction T ′ wrote a data item x after T
read x .

A straightforward way of extending the DBSM to partial replication consists
in executing the same certification test as before but having database sites only
process update operations for data items they replicate. But as the certification
test requires storing the writesets of all committed transactions, this strategy

� The work presented in this paper has been partially funded by the Hasler Foundation,
Switzerland (project #1899) and SNSF, Switzerland (project #200021-107824).
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defeats the whole purpose of partial replication since replicas may store infor-
mation related to data items they do not replicate. Ideally, sites would only store
transaction information related to the data items they replicate. However, we do
not want to rule out solutions that rely on building blocks (e.g., consensus) that
may be oblivious to the data items replicated by the sites. In such cases, sites
may momentarily store transactions unrelated to the data items they replicate.
Moreover, we want to make sure each transaction is handled by a site at most
once. If sites are allowed to completely forget past transactions, this constraint
cannot obviously be satisfied. We capture these constraints with the following
property:

– Quasi-Genuine Partial Replication: For every submitted transaction T , cor-
rect database sites that do not replicate data items read or written by T
permanently store not more than the identifier of T .1

Consider now the following modification to the DBSM, allowing it to ensure
Quasi-Genuine Partial Replication. Besides atomically broadcasting transactions
for certification, database sites periodically broadcast “garbage collection” mes-
sages. When a garbage collection message is delivered, a site deletes all the write-
sets of previously committed transactions. When a transaction is delivered for
certification, if the site does not contain the writesets needed for its certification,
the transaction is conservatively aborted. Since all sites deliver both transactions
and garbage collection messages in the same order, they will all reach the same
outcome after executing the certification test. This mechanism, however, may
abort transactions that would be committed in the original DBSM. In order to
rule out such solutions, we introduce the following property:

– Non-Trivial Certification: If there is a time after which no two submitted
transactions conflict, then eventually transactions are not aborted by certi-
fication.

In [4], we present two algorithms for partial database replication for clusters
of servers. Our algorithms satisfy both Quasi-Genuine Partial Replication and
Non-Trivial Certification and are optimistic, i.e., we assume spontaneous total
order : with high probability messages sent to all servers in the cluster reach all
destinations in the same order.

To the best of our knowledge, [2] and [5] are the only papers addressing
partial database replication using group communication primitives. In [2], every
operation of a transaction on data item x is multicast to its replicas and a final
atomic commit protocol ensures transaction atomicity. In [5], the authors extend
the DBSM for partial replication by adding an extra atomic commit protocol.
Both of our algorithms compare favorably to [2,5]: they either have a lower
latency or make weaker assumptions about the underlying model, i.e., they do
not require perfect failure detection.

1 Notice that even though transaction identifiers could theoretically be arbitrarily
large, in practice, 4-byte identifiers are enough to uniquely represent 232 transactions.
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3 Final Remarks

This short paper defines two properties, Quasi-Genuine Partial Replication and
Non-trivial Certification. These properties characterize our view of partial repli-
cation in the DBSM. The first property forbids replicas to permanently store in-
formation about data items they do not replicate; the second property prevents
trivial solutions that would unnecessarily abort transactions in an attempt to
satisfy the first property. Two algorithms for partial replication in the DBSM
that ensure these two properties are presented in [4]. In the future, we intend to
better characterize partial replication and devise efficient algorithms that satisfy
a stronger property than Quasi-Genuine Partial Replication. Intuitively, Gen-
uine Partial Replication should be defined such that only database sites that
replicate data items touched by a transaction T are involved in its certification.
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Motivations. Unstructured overlays form an important class of peer-to-peer
networks, notably for content-based searching algorithms. Being able to build
overlays with low diameter, that are resilient to unpredictable joins and leaves, in
a totally distributed manner is a challenging task. Random graphs exhibit such
properties, and have been extensively studied in literature. Cyclon algorithm
is an inexpensive gossip-based membership management protocol described in
detail in [1] that meets these requirements.

An Overview of Cyclon. For a detailed description of Cyclon algorithm, the
reader should refer to [1]. Briefly, Cyclon supports two different modes of oper-
ation : a basic shuffling mode, and an enhanced one. The basic mode, the only
one to be studied in this article is a purely random mode, while the second mode
uses a timestamp mechanism to improve performance with respect to node fail-
ures behavior. Each node maintains a cache of neighbor nodes of size c, hence
each node knows exactly c nodes in the overlay. To correctly initialize nodes
caches, we assume the existence of a predefined set of well-known supernodes.
During the execution of the protocol, each node performs periodically a shuffle
step. For a given node p, a shuffle step consists in contacting one node q among
its neighbors. Then p and q exchange � ≤ c nodes from their respective caches.
� is a parameter of the algorithm. Counterintuitively, simulations in [1], have
shown that the influence of parameter � is negligible (except for limit cases,
when � is close to 1 or c). One of the most fundamental operation performed
by the shuffling step is that p sends its own identity to q, and remove q from
its own cache. Consequently, the edge from p to q is reversed by the shuffling
step. This guarantees the connectivity of the underlying overlay. In this paper,
we propose two models to analyse Cyclon performances in term of convergence
speed, and quality of the obtained overlay. In our work we evaluate this qual-
ity from the distribution of the in-degree1 of nodes. We are interested by this
distribution since it is highly related to the robustness of the overlay in the
presence of failures. This gives also an indication of the distribution of resource

1 The number of nodes that have an edge directed to the considered node. It is an
integer in [0, n − 1] since we do not authorized loop edges.
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usage (processing, bandwidth) across nodes. We are looking for a distribution
as uniform as possible.

Model #1. We assume that there are n nodes in the system, gossip exchanges
are atomic, and are triggered by a global scheduler which picks at random the
next process to perform a shuffle operation with uniform probability. This is
of course, a rather coarse model of reality, where each process would certainly
locally triggers its shuffling operation, using timeout expiration. In fact this
model corresponds to a complete asynchronous system; even though this model
is questionable (see [2]) it has been introduced by [3] and [4]. With this random
scheduling a given process has probability 1− e−1 of taking at least one compu-
tation step, when exactly n steps are triggered. This must be compared to a real
system based on local uniform time triggers, where the same process would have
probability 1 to perform a step, every n steps counted globally. We are interested
in evaluating the in-degree evolution of a given node since it is a good measure
of the quality of the obtained overlay. We model Cyclon algorithm by a discrete
time Markov chain (DTMC) whose states space S is the possible in-degrees for
a given process. Note that we can focus on a particular process because they are
all equivalent with respect to the scheduler. The evolution of the in-degree of a
node after a shuffle step depends only on its value before the step; the impact of
the detailed structure of the network is negligible. Moreover during a step, the
in-degree can only change by one. Thus, the n-square matrix M1 associated to
this DTMC is a tridiagonal one. Its upper diagonal is m1

i,i+1 = − i
n(n−1) + 1

n ,
while its lower diagonal is m1

i,i−1 = i
n(n−1)

n−1−c
c . Being a stochastic tridiagonal

matrix, diagonal elements mi,i of M1 are equal to 1−m1
i,i+1 −m1

i,i−1. We show
that the generating function Gλ(z) =

∑n−1
i=0 vλ[i]zi associated to the eigenvec-

tor vλ
2 satisfies a first-order differential equation whose solutions are equal to(

z−1
cz+n−c−1

)cn(λ−1) (
cz−n−c−1

n−1

)n−1

. Since by definition, this function must be a

polynomial of degree n − 1, we can conclude that eigenvalues are 1 − k
nc with

k ∈ [0, n − 1]. In particular we obtain for k = 0, a closed form for the gener-
ating function π(z) associated with the stationary distribution π = v1, namely

π(z) =
(

cz+n−c−1
n−1

)n−1

. Thus π[i] =
(
n−1

i

) (
n−c−1

n−1

)n−1−i (
c

n−1

)i

. This corre-
sponds exactly to the in-degree distribution of a purely random directed graph
where each vertex has exactly c outgoing edges, a highly desirable property for
unstructured overlays. Using well-known properties on generating functions we
can establish that the mean value π of stationary distribution is equal to c, which
naturally satisfies the balance equation in a directed graph3. Similarly we can
establish that standard deviation of π is equal to c+O(1/n). Since we have ac-
cess to the eigenvalues, and in particular the second largest one, namely 1− 1

nc ,
we can establish an upper bound on the convergence speed of the DTMC. Using
classical linear algebra, we can show that maxX0

1
2‖X0M

t
1 − π‖1 ≤

(
1− 1

nc

)t
2 vλ is such that vλM1 = λvλ for a given λ called an eigenvalue of M1.
3 The number of outgoing edges, nc in this particular case, is equal to the number of

ingoing edges, which is equal to nπ.
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where X0 denotes the initial distribution. Mixing time τ1(ε) as defined in [5] is
thus bounded by nc log ε−1 + O(1), which shows that Cyclon is a fast mixing
algorithm 4.

Model #2. We consider a more refined model, where processes are fairly sched-
uled. We consider now that a step in our model corresponds to a whole cycle
of the protocol, i.e. in a step every node performs one and exactly one shuf-
fle. Contrary to model #1, this model corresponds to a synchronous system:
all nodes execute the same number of exchanges and at the same time. This
refinement comes at the price of a more complex stochastic matrix M2. The
evolution of the in-degree of a node after a (model) step still depends only on its
value before the step, but its variation may now be larger than one. In particu-
lar, M2 is an lower hesselberg5 matrix whose general term is m2

0≤j−1≤i≤n−1 =(
i

j−1

) (
1
c

)i+1−j ( c−1
c

)j−1. We show that the generating function Gλ(z) is solution

of the functional equation : λGλ( cz−1
c−1 ) = cz−1

c−1 Gλ(z)+ c(1−z)
c−1

(
cz−1

c

)n−1
vλ[n−1].

We can extract and solve a recurrence equation giving Gλ(z) and all of its succes-
sive derivatives G(k≥0)

λ (z) at point z = 1. For λ = 1, by using a Taylor series ex-
pansion, and by the fact that G1(z) is a polynomial of degree n−1, we have access
to a closed formula for π(z) the generating function associated to the stationary

distribution of the considered DTMC, namely π(z) =
∑n−1

k=0
G

(k)
1 (1)
k! (z − 1)k. For

λ �= 1, the fact that Gλ(z) is a polynomial of degree n−1 can be expressed as a set
of constraints on the successive derivatives at point z = 1, namely G(k≥n)

λ (1) = 0.
These constraints reduce to a polynomial of degree n − 1 whose roots are ex-
actly the n − 1 eigenvalues λ < 1. We show that the second largest eigenvalue
is smaller than 1 − 1

c . Hence mixing time τ2(ε) is bounded by c log ε−1 + O(1).
Note that this is compatible with model #1. Indeed in model #2, each step of
the Markov process corresponds to n steps of the previous Markov process. This
explains why τ1(ε)

τ2(ε)
= n. The reader is invited to refer to [6] for a detailed version

of the results.
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Since their introduction, structured overlays have been used as an important substrate
for many peer-to-peer applications. In a structured peer-to-peer overlay, each node
maintains a partial list of other nodes in the system, and these partial lists together form
an overlay topology that satisfies certain structural properties (e.g., a ring). Various sys-
tem conditions, such as node joins and leaves, message delays and network partitions,
affect overlay topology, so overlay topology should adjust itself appropriately to main-
tain structural properties. Topology maintenance is crucial to the correctness and the
performance of applications built on top of the overlay.

Most structured overlays are based on a logical key space, and they can be conceptually
divided into two components: leafset tables and finger tables.1 The leafset table of a node
keeps its logical neighbors in the key space, while the finger table keeps relatively faraway
nodes in the key space to enable fast routing along the overlay topology. The leafset
tables are the key for maintaining a correct overlay topology since finger tables can be
constructed efficiently from the correct leafset tables. Therefore, our study focuses on
leafset maintenance. In particular, we focus on one-dimensional circular key space and
the ring-like leafset topology in this space, similar to many studies such as [1] and [2].

Leafset maintenance is a continuously running protocol that needs to deal with var-
ious system conditions. An important criterion for leafset maintenance is convergence,
that is, the leafset topology can always converge back to the desired structure after the
underlying system stabilizes (but without knowing about system stabilization), no mat-
ter how adverse the system conditions were before system stabilization.

Existing studies on overlay maintenance have various limitations. Some investigate
system level improvements without formal proofs on protocol guarantees [3,4,5]; some
provide formal proofs to their protocols but do not address fault tolerance and con-
vergence [6]; and some propose one-shot protocols for fast overlay construction under
known system stabilization conditions without considering adverse effects before sys-
tem stabilization [7]. There are some studies on self-stabilizing protocols, which guar-
antee convergence with arbitrary initial states of processes and communication chan-
nels. However, among these protocols, some rely on a continuously available bootstrap
system to actively participate in the self stabilization process [8,9]; some incur a sig-
nificant amount of cost by maintaining a large membership list [10,11]; and some only
provides a special case for self stabilization [12].

1 The term leafset is originally used in Pastry [1] while the term finger is originally used in
Chord [2].
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In contrast, we have designed a leafset maintenance protocol [13] that removes the
limitations in existing protocols. In particular, we provide a precise specification for
leafset maintenance protocols with cost effectiveness requirements. All properties of
the specification are desired by applications, while together they prohibit protocols with
the above limitations. We then provide a complete protocol with proof showing that it
satisfies the specification.

Our study is based on a decentralized and symmetric system model in which any
node may join and leave the system or crash, and there is no special group of nodes
that is always available to act as a bootstrap system. We assume the system eventually
stabilizes, but the protocol does not know the system stabilization time, so it cannot
easily nullify the impact of system conditions before system stabilization.

Based on the system model, we provide a set of properties as a rigorous specification
of the leafset maintenance protocol. One important property is Connectivity Preserva-
tion: If the underlying system stabilizes and the topology is still connected, the main-
tenance protocol should not break the connectivity of the topology while it evolves the
topology towards the correct configuration. Moreover, we explicitly put requirements
on cost effectiveness: The messaging and local state costs on a node could depend on
the size of its leafset table, but should not depend on the size of the system.

To deal with topology partitions caused by network partitions, we define a simple
add(contacts) interface, through which an application can add new contact nodes into
a leafset to heal topology partitions. Our specification makes it clear that after the un-
derlying system stabilizes, the add(contacts) interface only needs to be invoked once
at one node to bridge the partitioned topology. Afterwards, the protocol should con-
tinue to preserve connectivity and converge the topology by itself without further help.
Hence, the reliance on an outside mechanism such as a bootstrap system is kept at the
minimum.

Our specification prohibits protocols that either rely on a continuously available
bootstrap system, or maintain large local membership lists that is related to the size
of the system, or assume that the system stabilization condition is known. Therefore, it
only permits protocols that remove these limitations existed in previous protocols.

We have designed a protocol and proved that it satisfies our specification. The core
of protocol is to preserve the connectivity of the topology during its convergence. To be
cost-effective, the protocol needs to remove extra entries in leafsets (as in many other
protocols), but such removals may break topology connectivity. To avoid such situation,
in our protocol if a node x wants to remove another node z from its leafset, it has to find
a replacement node y such that x can still reach z in the topology through y. However,
the task of finding a replacement that guarantees connectivity is not trivial, because
these tasks are run concurrently by all nodes and they may interfere with each other.
In particular, some tasks may be started before system stabilization and cause incorrect
replacements, and thus breaking the topology even long after the system stabilizes. We
employed a round-number mechanism to eliminate such interference.

Besides connectivity preservation, the protocol also needs to guarantee progress.
A subtle issue in guaranteeing progress is that our protocol execution is not closed:
Because of the interface add(contacts), an application may continue to invoke this
function to bridge potentially partitioned components. Without careful design, these in-
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vocations may interfere with leafset convergence and cause livelocks. We employed a
couple of mechanisms to avoid such livelock scenarios.

Finally, we also studied some heuristics to significantly improve the convergence
speed of our protocols. We verified these heuristics by simulations on several classes
of initial topologies and showed that it improves convergence speed from O(N) to
O(logN), where N is the number of online nodes when the system stabilizes.

As a summary, our protocol maintains a small leafset independent of the system size,
guarantees leafset convergence as long as the topology is still connected after the sys-
tem stabilizes, and if it is not connected, one invocation of the add() interface is enough
to bridge disconnected components and lead to convergence. Moreover, continuous in-
vocations of add() interface will not interfere with the convergence process.
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Abstract. We consider a general formal model for monitoring of a local
network behavior. Monitored behavior of the system corresponds to the
dynamics induced on the observed state space by the corresponding pro-
jection function. An algorithm is developed for restoration of information
about the system state on the base of the observations.

The theoretical work is backed by our experiments on monitoring
Spanning Tree Protocol.

1 Formal Model of a Local Network Behavior

We assume a local network to be a state transition system of the following form.
The network topology is characterized by a fixed finite graph G = (V,E), where
V denotes the set of vertices, E stands for edges. The state of the whole system,
Ω, is a union of all the states of the vertices. Without loss of generality one can
assume that all the vertices have the same state space S, so Ω = S|V |. A system
transition is a nondeterministic update of the global state such as

– update of a single node (e.g. timer event or communication with environ-
ment);

– update of two adjacent nodes (message passing or so);
– simultaneous update of more than two nodes (different kinds of broadcast-

ing).

It turns out that in many cases the state of a vertex is characterized by
a fixed number of integer valued variables, so we assume S = Zm. Moreover,
network protocols rarely make use of rather advanced mathematics; as a rule,
linear arithmetic is enough to express the transition function. So, the transition
relation τ is a relation definable over natural numbers by means of addition,
multiplication by a constant, inequality and boolean connectives (note that case
splitting is expressible, so min, max are also allowed).
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2 The Projecting Function

Given a nonempty set M a projecting function is a mapping π : Ω → M .
Informally, M is the state space of a system monitor, π is the correspondence
between the states of the whole system and the monitored ones.

In the context described above it is natural to consider the following two kinds
of the projecting function that differ by the function range. Namely

1. M = Zm, where m ≤ n. In practice it means that monitor observes some of
the state variables and/or some aggregative integer valued parameters.

2. M is a finite set. Then, without loss of generality one can assume M to be
an initial segment of natural numbers M = {1, . . . , p}. This corresponds to
observing fixed number of boolean (or other finitely valued) parameters of
the system.

3 The Observed Dynamics

Let c = (s0, s1, . . . , sl) be a computation, that is si+1 = τ(si). Then, projection
of the computation π(c) is the sequence (π(s0), π(s1), . . . , π(sl)) over M .

The main goal of our research here is to study the relation between c and π(c).
The following tasks seem to be the most natural. First, given Ω, τ , π and the
monitored behavior (π(s0), π(s1), · · · , π(sl)) to restore maximum information
about the system dynamics (s0, s1, . . . , sl). The second task corresponds to the
situation when the user has more freedom in choosing the projection function.
Then the goal is to find the “best quality” monitor π. Another interesting task
is the following. Given two hypotheses about the system behavior, τ1 and τ2, to
construct a monitor π such that the corresponding monitored behavior will be
different.

4 The Theoretical Results

Theorem 1. For a linear nondeterministic transition system (Ω, τ) and a piece-
wise linear projection function π the set of projections of all possible computa-
tions is decidable.

The proof provides an algorithm, which takes a sequence γ over M as input and
returns an answer, whether the given sequence could be a projection of some
trajectory c for (Ω, τ).

The second theorem provides sufficient conditions for π to be the most infor-
mative in the sense that it uses all the expressive power of M .

Let M = {1, . . . , p} and M∗ denote the set of all finite words over M .

Theorem 2. If for any i ∈ M one has τ(π−1(i)) = Ω then every word in M∗

is a projection of some computation of (Ω, τ).
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Let L(Ω, τ, π) denote the set of all words of the form π(c), where c ranges over
all possible computations of (Ω, τ). In these terms the previous theorem provides
a criteria for L(Ω, τ, π) = M∗

The following theorem concerns the task to distinguish between two possible
behaviors of the monitored system.

Theorem 3. a) Let |M | = 2. Then there exist two different transition rela-
tions τ1 and τ2 such that for any monitor π : Ω → M one has L(Ω, τ1, π) =
L(Ω, τ2, π).

b) Let |M | ≥ 3. Then for any different τ1 and τ2 one can construct monitor
π : Ω →M such that there exists at least one word of length 2 that distinguishes
between L(Ω, τ1, π) and L(Ω, τ2, π).

5 Monitoring the Spanning Tree Protocol for Recognition
of Topology Changes

To verify the framework described above we made experiments with monitoring
the STP traffic through a single sensor in a local area network. (See e.g. [5] re-
garding the STP protocol.) During the experiment we disconnected switches one
edge at a time and captured STP traffic observed by our sensor. The experiment
showed that for a given configuration of the network topology and a sensor one
can construct a monitor for recognizing the topology changes.
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Abstract. Several algorithms implementing the failure detector class
�P have been proposed in the literature. Regarding communication ef-
ficiency, a performance parameter based on the number of links that
carry messages forever, algorithms using n links have been proposed, be-
ing n the number of processes in the system. In this paper, we show that
communication-optimal �P algorithms, i.e., using only C links, being
2 ≤ C ≤ n the number of correct processes, can be implemented. The
price to pay for obtaining communication optimality is a higher number
of messages exchanged when a failure suspicion occurs. However, one of
the algorithms we propose shows that this cost can be linear in n.

1 Introduction

Unreliable failure detectors, proposed by Chandra and Toueg [2], are a mech-
anism providing (possibly incorrect) information about process failures. This
mechanism has been used to solve several problems in asynchronous distributed
systems, in particular the Consensus problem [6]. In this paper, we focus on the
Eventually Perfect failure detector class, denoted �P .

In [4] we have proposed a family of heartbeat-based algorithms implement-
ing �P which are based on a ring arrangement of processes. The algorithms
are communication-efficient [1], i.e., eventually only n unidirectional links carry
messages forever, outperforming previously proposed algorithms for �P . In this
paper we show how communication-optimal [4] algorithms for �P are possible,
in which eventually only C unidirectional links carry messages forever, being
2 ≤ C ≤ n the number of correct processes.

In our system model, every pair of processes is connected by two unidirectional
and reliable communication links. Processes can only fail by crashing and crashes
are permanent. We consider that processes are arranged in a logical ring. We
will use the functions pred(p) and succ(p) respectively to denote the predecessor
and the successor of a process p in the ring. Concerning timing assumptions,
we consider a partially synchronous model [2,3] for just the links between every
correct process and its correct successor in the ring.
� Research partially supported by the Spanish Research Council (MCyT), under grant

TIN2004-07474-C02-02, the Basque Government, under grant S-PE051K06, and the
Gipuzkoa Provincial Council, under grant OF-204/2005.
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Every process p executes the following:

procedure update pred and succ()
(p1) predp ← p’s nearest predecessor r in the ring such that Balancep(r) ≤ 0
(p2) succp ← p’s nearest successor r in the ring such that Balancep(r) ≤ 0
end procedure

( 1) predp ← pred(p)
( 2) succp ← succ(p)
( 3) for all q ∈ Π : Δp(q) ← default time-out interval
( 4) for all q ∈ Π : Balancep(q) ← 0

( 5) cobegin

( 6) || Task 1: repeat periodically
( 7) if succp �= p then
( 8) send (p-is-alive) to succp

( 9) || Task 2: repeat periodically
(10) if predp �= p and p did not receive (predp-is-alive)

during the last Δp(predp) ticks of p’s clock then
(11) Balancep(predp) ← Balancep(predp) + 1
(12) r-broadcast (SUSPICION, predp) to the rest of processes
(13) update pred and succ()

(14) || Task 3: when r-deliver (SUSPICION, r)
(15) if r �= p then
(16) Balancep(r) ← Balancep(r) + 1
(17) update pred and succ()
(18) else
(19) r-broadcast (REFUTATION , p) to the rest of processes

(20) || Task 4: when r-deliver (REFUTATION , q) for some q
(21) Balancep(q) ← Balancep(q) − 1
(22) Δp(q) ← Δp(q) + 1
(23) update pred and succ()

(24) coend

Fig. 1. A communication-optimal �P using reliable broadcast

2 A Basic Communication-Optimal Implementation of
�P

Figure 1 presents a communication-optimal implementation of �P using reliable
broadcast. Every process p sends periodical heartbeats to its successor in the
ring and monitors its predecessor in the ring. Besides this, p reliably broadcasts
suspicions and, when it is erroneously suspected, refutations. Balancep accounts
suspicions and refutations for every other process. If Balancep(q) > 0, then p
suspects q; else, q is trusted by p. Balancep provides the properties of �P .
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3 Optimizations and Performance Analysis

In [5] we present two optimized versions of the previous algorithm that do not
use reliable broadcast. In one of them, processes re-send suspicions, keeping mes-
sages simple. In the other, we try to maintain as low as possible the number of
messages exchanged as a consequence of a suspicion, at the cost of increasing the
size of messages by adding more information. Figure 2 summarizes the communi-
cation costs of the algorithms, which are expressed in terms of regular heartbeat
messages exchanged (which corresponds to the number of unidirectional links
used in stability), and extra messages exchanged to manage an erroneous sus-
picion (l stands for the size of the local list of suspected processes). The cost of
the communication-efficient �P algorithms proposed in [4] is also included. As
it can be observed, communication optimality is obtained at the price of sending
more messages during stabilization.

# regular heartbeats # extra messages to manage
Algorithm (communication efficiency) an erroneous suspicion
Figure 1 C (communication-optimal) O(n2)

Optimized 1 [5] C (communication-optimal) 3(n − 1) − 1 + (l − 1)2

Optimized 2 [5] C (communication-optimal) 3(n − 1) − 1
Algorithms in [4] n (communication-efficient) From 0 to 2n

Fig. 2. Communication cost of algorithms implementing �P
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Introduction and Related Work. Cognitive Radios (CR) [4] enable flexible and im-
proved radio spectrum utilization by allowing a group of CR nodes to utilize unused
channels without interference with the channels’ owners [1]. A CR node has a set of
available (wireless) channels and this set varies with time, location and activities of the
primary (licensed) users. Determining a node’s neighborhood and common channels for
communication is non-trivial. We propose several efficient distributed algorithms for
node discovery and configuration (NDC) for various CR node models. Krishnamurthy
et al. [3] proposed a solution for NDC without a control channel. In their model, each
node has a single transceiver. If N is the maximum number of nodes and M is the max-
imum number of channels, their algorithm uses 2NM timeslots for NDC. Other works
assume a common control channel, or every node is equipped with a separate radio in-
terface for each channel or an identical frequency distribution at each node. Please see
[2] for a thorough discussion of related work. Here, we extend the algorithms of [3] to
other CR node models.

System Model. We assume that during NDC, the CR network topology is a static
multi-hop multi-channel wireless network. Each node i has a unique id UIDi in the
range [1 . . .N ], where N is an upper bound on the total number of nodes. We assume
UIDi = i. All nodes know N . Let Auniv = {c1, c2 . . . cM} represent the universal
set of available channels. All nodes know M and Auniv . Every channel has a unique
id and all nodes know the mapping between the channel id and its frequency a priori.
Node i is aware of its channel availability set Ai and it can receive and transmit on any
channel of Ai. Communication is loss-free. Nodes i and j are said to be neighbors if i
and j are within each other’s radio range and Ai ∩ Aj �= ∅. Communication between
non-neighbors is by multi-hop transmissions. The set of channels that is common to i
and nodes that are within k hops from i is referred to as the k-local channel set, Lk

i .
Node i needs to know L2

i for collision-free communication with its neighbors.
Nodes invoke NDC every T time units to account for changes in network topology

and/or channel availability sets. The starting times of NDC are known to all. The clocks
of the nodes are synchronized. NDC is said to be complete when each node i determines
its set of neighbors and its 2-hop local channel set L2

i . Time is divided into timeslots
of equal duration. A message transmitted by a node is delivered to all its neighbors in
the same timeslot. A receiver successfully receives a message if and only if there is
exactly one message being delivered at that timeslot on the channel it is tuned to. If
two or more neighbors of a node i transmit on the same channel in a given timeslot, a
collision occurs and i does not receive any of those transmitted messages. Nodes cannot
distinguish between a collision and background noise.
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Our Contributions. NDC consists of two rounds of identical duration. A round is the
number of timeslots required for each node to communicate with all of its neighbors.
Each timeslot is assigned to one or more node-channel pairs depending on the model.
When a node-channel pair (i, c) is assigned to a timeslot t, node i transmits on channel
c during timeslot t only if c ∈ Ai; i remains silent otherwise. During round 1, each node
i communicates its channel availability set Ai and receives Aj from each neighbor j.
Thus, node i finds its neighborsNBRi and their respective channel availability sets by
the end of round 1. Node i then computes L1

i . In round 2, i sends L1
i to its neighbors.

Limited Channel Divergence with Single Transceiver: Suppose that channel availability
across nodes does not vary drastically. Such a situation may arise in scenarios where
the CR network is deployed in regions that have a scarce population of primary users
and/or other sources of interference. We assume that the sets of channels available to
any pair of neighboring nodes i and j differ by at most k i.e. |Ai − Aj | ≤ k, and that
the nodes know k. Since Ai and Aj differ by at most k channels, if i transmits on any
subset of (k + 1) channels, there is at least one channel on which j can receive the
message provided j tunes to the correct channel(s) in the appropriate timeslot(s). Let
Ak+1

i be the set of (k+1) lower-most channels inAi. Let cx ∈ Ak+1
i . In our algorithm,

i transmits on cx for (k + 1) timeslots while the other nodes listen on their respective
(k + 1) lower-most channels, one channel at a time. Node i repeats the transmission
behavior for every channel in Ak+1

i ; the remaining nodes listen on their (k + 1) lower-
most channels as before. Thus, each node transmits for (k + 1)2 timeslots and a round
of this algorithm consists of

(
N × (k + 1)2

)
timeslots. For k  M , this is a drastic

improvement over the NM timeslots required for NDC in [3].

Nodes with Multiple Receivers: Multiple transmissions may be supported by increasing
the number of receivers at each node. Each node has r receivers (r > 0) and a sin-
gle transmitter. At any given time, a node can be (i) transmitting on one channel, (ii)
receiving on up to r channels or (iii) turned off. Simultaneous transmission and recep-
tion (even on different channels) at a node is not allowed. Collisions in a timeslot t are
avoided by assigning a unique channel for each node that is transmitting in t. Note that
a node cannot receive when it is transmitting. As a result, if nodes i and j are assigned
to transmit simultaneously on channels ci and cj in a timeslot t, then there must be at
least two other timeslots ti and tj for the nodes to communicate with each other. We
use ⊕b to denote the modulo b addition: x ⊕b y = (x+ y− 1) mod b+1. Therefore,
given the sequence of numbers 1, 2, · · · , b, the subsequence of j consecutive numbers
starting from number i (with wrap-around) is given by i, i ⊕b 1, · · · , i ⊕b (j − 1).

LetG = {1, 2, · · · , N} be the set of nodes. We assume that r divides bothN andM .
G is partitioned into N

r groupsG1, G2, · · · , GN
r

each of size r. LetG1 = {1, 2, · · · , r},
G2 = {r + 1, r + 2, · · · , 2r}, and so on be the groups. Each round of the algorithm
consists of two sub-rounds. The first sub-round handles inter-group communications
among nodes and consists of N

r blocks. Each block consists of M timeslots. In block
i, nodes in group Gi transmit and all other nodes listen. Specifically, in timeslot j of
block i, r nodes in Gi, given by (i− 1) ∗ r + 1, (i− 1) ∗ r + 2, · · · , i ∗ r, transmit on
r channels cj , cj ⊕M 1, · · · , cj ⊕M (r−1), respectively. The remaining nodes receive on
these r channels simultaneously. The second sub-round employs a divide-and-conquer
approach to achieve intra-group communication. For the sake of brevity, we will only
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describe the second sub-round for the special case of M = N = x, such that each node
has at least x receivers and x = 2y for some integer y. The algorithm for this special
case is used as a subroutine to achieve inter-group communication for general M , N
and r in O (max(N,M) log r) timeslots. Thus, the time complexity of a round of the
algorithm for NDC is O

(
N×M

r + max(N,M) log r
)

[2].

Algorithm DAC: Consider a group of nodes A = {a1, a2, · · · , ax} and a group of
channels B = {b1, b2 · · · , bx}. The algorithm ensures that every node in A listens to
every other node in A on all x channels in O(x log x) timeslots. Let DAC(A1, B1) and
DAC(A2,B2) be two instances of the algorithm DAC. We use DAC(A1,B1) ‖DAC(A2,
B2) to denote the algorithm obtained by running the two instances concurrently. To
run the two instances concurrently, they should not interfere with each other. Thus,
A1 ∩ A2 = ∅ and B1 ∩ B2 = ∅. Further, we also ensure that |A1| = |A2|. As a
result, the running time of the resulting algorithm is same as that of the either instance.
Likewise, we use DAC(A1, B1) ◦ DAC(A2, B2) to denote the algorithm obtained by
running the two instances serially, one-by-one.

Let A = A1 ∪ A2 be a partition of A, where A1 = {a1, a2 · · · , ay} and A2 =
{ay+1, ay+2, · · · , a2y} (recall that x = 2y). The algorithm consists of three blocks. In
the first block consisting of x timeslots, all nodes in A1 transmit on all channels in B
whereas nodes in A2 only listen. Specifically, in timeslot i of the first block, nodes a1,
a2, · · · , ay transmit on channels bi, bi ⊕x 1, · · · , bi ⊕x (y−1), respectively. The second
block is similar to the first block except that roles of A1 and A2 are reversed. Finally, in
the third block, we recursively invoke the algorithm. Let B = B1 ∪B2 be a partition of
B into two equal halves. The third block is given by

(
DAC(A1,B1) ‖ DAC(A2,B2)

)
◦
(
DAC(A1,B2) ‖ DAC(A2,B1)

)
. Let T (x) denote the running time of DAC(A, B).

Then, T (x) = 2x+ 2T (x/2), which yields T (x) = O(x log x).

Discussion: Details of the algorithms and the proofs of correctness appear in [2]. In ad-
dition, we have also proposed solutions for other CR node models – (i) Limited channel
divergence with multiple receivers and (ii) Nodes with multiple transceivers [2]. We
have proved that O(NM) timeslots is a lower bound for oblivious deterministic algo-
rithms for NDC for the single transceiver model. (The proof is to appear in a future
article.) Hence, we believe that the solutions presented here are close to optimal for
models considered in this paper. Future work will focus on proving lower bounds and
investigating adaptive deterministic algorithms that could potentially be faster than the
oblivious algorithms proposed in this paper.
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Abstract. Encryption is a fundamental building block for computer and com-
munications technologies. Existing encryption methods depend for their security
on unproven assumptions. We propose a new model, the Limited Access model
for enabling a simple and practical provably unbreakable encryption scheme. A
voluntary distributed network of thousands of computers each maintain and up-
date random pages, and act as Page Server Nodes. A Sender and Receiver share a
random key K. They use K to randomly select the same PSNs and download the
same random pages. These are employed in groups of say 30 pages to extract One
Time Pads common to S and R. Under reasonable assumptions of an Adversary’s
inability to monitor all PSNs, and easy ways for S and R to evade monitoring
while downloading pages, Hyper Encryption is clearly unbreakable. The system
has been completely implemented.

Modern encryption methods depend for their security on assumptions con-
cerning the intractability of various computational problems such as the factor-
ization of large integers into prime factors or the computation of the discrete
log function in large finite groups. Even if true, there are currently no methods
for proving such assumptions. At the same time, even if these problems will be
shown to be of super-polynomial complexity, there is steady progress in the devel-
opment of practical algorithms for the solution of progressively larger instances
of the problems in question. Thus there is no firm reason to believe that any of the
encryptions in actual use is now safe, or an indication as to how long it will remain
so. Furthermore, if and when the current intensive work on Quantum Computing
will produce actual quantum computers, then the above encryptions will succumb
to these machines.

At present there are three major proposals for producing provably unbreakable
encryption methods. Quantum Cryptography employs properties of quantum me-
chanics to enable a Sender and Receiver to create common One Time Pads (OTPs)
which are secret against any Adversary. The considerable research and develop-
ment work as well as the funding invested in this effort are testimony to the need
felt for an absolutely safe encryption technology. At present Quantum Cryptog-
raphy systems are limited in range to a few tens of miles, are sensitive to noise
or disturbance of the transmission medium, and require rather expensive special
equipment.

The Limited Storage Model was proposed by U. Maurer. It postulates a public
intensive source of random bits. An example would be a satellite or a system
of satellites containing a Physical Random Number Generator (PRNG) beaming
down a stream a of random numbers, say at the rate of 100GB/sec. S and R
use a small shared key, and use those bits and the key to form OTPs which are
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subsequently employed in the usual manner to encrypt messages. The Limited
Storage Model further postulates that for any Adversary or group of Adversaries
it is technically or financially infeasible to store more than a fraction, say half, as
many bits as there are in a. It was proved by Aumann, Rabin, and Ding and later
by Dziembowski-Maurer, that under the Limited Storage Model assumptions, one
can construct schemes producing OTPs which are essentially random even for a
computationally unbounded (but storage limited) Adversary. The critique of the
Limited Storage Model is three-fold. It requires a system of satellites, or other
distribution methods, which are very expensive. The above rate of transmission
for satellites is right now outside the available capabilities. More fundamentally,
with the rapid decline of cost of storage it is not clear that storage is a limiting
factor. For example, at a cost of $ 1 per GB, storing the above mentioned stream
of bytes will cost about $ 3 Billion per year. And the cost of storage seems to go
down very rapidly.

The Limited Access Model postulates a system comprising a multitude of
sources of random bytes available to the Sender and Receiver. Each of these
sources serves as a Page Server Node (PSN) and has a supply ofrandom pages.
Sender and Receiver initially have a shared key K. Using K, Sender and Receiver
asynchronously in time access the same PSNs and download the same random
pages. The Limited Access assumption is that an Adversary cannot monitor or
compromise more than a fraction of the PSNs while the Sender or Receiver down-
load pages. After downloading sufficiently many pages, S and are make sure that
they have the same pages by employing a Page Reconciliation Protocol. They now
employ the common random pages according to a common scheme in groups of,
say, 30 pages to extract an OTP from each group. Let us assume that the extrac-
tion method is simply taking the XOR of these pages. The common OTPs are
used for encryption in the usual manner.

A crucially important point is that a Page Server Node sends out a requested
random page at most twice, then destroys and replaces it by a new page. Oppor-
tunity knocks only twice!

Why is this scheme absolutely secure? Assume that we have 5,000 voluntary
participants acting as PSNs. Assume that a, possibly distributed, Adversary can
eavesdrop, monitor or corrupt (including by acting as imposter) no more than
1000 of these nodes. Thus the probability that in the random choice of the 30
PSNs from which a group of 30 pages are downloaded and XORed, all 30 pages
will be known to the Adversary is smaller than (1/5)30, i.e., totally negligible.
But if an Adversary misses even one page out of the 30 random pages that are
XORed into an OTP then the OTP is completely random for him.

The send at most twice, then destroy policy, prevents a powerful Adversary
from asking for a large number of pages from each of the PSNs and thereby gain
copies of pages common to S and R. The worst that can happen is that, say, S
will down load a page P from PSNi and the Adversary (or another user of Hyper-
Encryption) has or will download the same page P from PSNi. When R now
requests according to the key K the same page from PSNi, he will not get it. So R
and S never have a page P in common if P was also downloaded by a third party.
The only consequence of an Adversary’s down-loading from too many PSNs is
denial of service to the legitimate users of the system. This is a problem for any
server system and there are ways of dealing with this type of attack.

What if an Adversary eavesdrops onto the Sender and or Receiver while they
are downloading pages from PSNs. Well, S and R can go to an Internet caf or one
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of those establishments allowing a customer to obtain an Internet connection.
They can use a device that does not identify them and download thousands of
pages from PSNs within a short time. The salient point is that S and R need not
time-synchronize their access to the PSNs. Once S and R have common OTPs,
they can securely communicate from their fixed known locations with immunity
against eavesdropping or code breaking.

The initial key K is continually extended and updated by S and R using com-
mon One Time Pads. Each pair of random words from K is used to select a PSN
and a page from that PSN only once and then discarded. This is essential for the
absolute security of Hyper Encryption.

With all these provisions Hyper Encryption in the Limited Access Model also
provides Ever Lasting Secrecy. Let us make a worst case assumption that the
initial common key K or its later extensions were lost or stolen after their use
to collect common random pages from PSNs. Those pages are not available any
more as a result of the send only twice and destroy policy. Thus the extracted
OTPs used to encrypt messages cannot be reconstructed and the encryption is
valid in perpetuity. By contrast, all the existing public or private key encryption
methods are vulnerable to the retroactive decryption attack if the key is lost or
algorithms come up that break the encryption algorithm.

We shall also describe an additional scheme based on the use of search engines
for the generation of OTPs and of unbreakable encryption.

Our systems were fully coded in Java for distribution as freeware amongst
interested users. All the protocols described below are running in the background
on the participating computers and impose negligible computational and storage
overheads on the host computer.
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Abstract. A guided tour through the labyrinth of my thoughts, from the Bakery
Algorithm to arbiter-free marked graphs. This exercise in egotism is by invitation
of the DISC 20th Anniversary Committee. I take no responsibility for the choice
of topic.
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Abstract. I first became involved in Distributed Computing Theory around 1978
or 1979, as a new professor at Georgia Tech. Looking back at my first few years in
the field, approximately 1979-1982, I see that they were tremendously exciting,
productive, and fun. I collaborated with, and learned from, many leaders of the
field, including Mike Fischer, Jim Burns, Michael Merritt, Gary Peterson, Danny
Dolev, and Leslie Lamport.

Results that emerged during that time included space lower bounds for mu-
tual exclusion; definition of the k-exclusion problem, with associated lower
bounds and algorithms; the Burns-Lynch lower bound on the number of registers
needed for mutual exclusion; fast network-wide resource allocation algorithms;
the Lynch-Fischer semantic model for distributed systems (a precursor to I/O au-
tomata); early work on proof techniques for distributed algorithms; lower bounds
on the number of rounds for Byzantine agreement; definition of the approximate
agreement problem and associated algorithms; and finally, the Fischer-Lynch-
Paterson impossibility result for consensus.

In this talk, I will review this early work, trying to explain how we were think-
ing at the time, and how the ideas in these projects influenced later work.
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This panel discussed the contributions of the DISC community to distributed comput-
ing. The panelists (Eli Gafni, Jan van Leeuwen, Nicola Santoro, Shmuel Zaks) and the
moderator (Michel Raynal) were the members of the program committee of the second
DISC (called WDAG at that time), held in Amsterdam.

At the very beginning, WDAG was centered mainly on distributed algorithms on
graphs. Subsequently, while keeping its main focus on distributed algorithms, WDAG
evolved and adopted a more general view of the research area, changed its name and be-
came DISC. In a continuous manner, new topics have always appeared in the DISC call
for papers (and also in accepted papers!). These include ubiquitous computing, cryp-
tography, autonomic computing to name only a few. The scientific DISC contributions
are numerous. They are on distributed computing models, algorithm design, complex-
ity, possibility/impossibility results, distributed computability, lower bounds, etc. The
panel reviewed the status of many contributions to network protocol design and to the
understanding of distributed computing in general. It also discussed the possible ways
in which DISC may evolve in the future.
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Prologue

DISC 2006 marks the 20th anniversary of the DISC conferences. We list below the
special events that took place during DISC 2006, together with some information and
perspectives on the past and future of DISC.

Present: Special 20th Anniversary Events

The celebration of the 20th anniversary of DISC consisted in three main events: invited
talks by three of the brightest figures of the distributed computing community, and a
panel involving all the people who were at the very beginning of DISC:

– An invited talk “Time, clocks and the ordering of my ideas about distributed sys-
tems’’ by Leslie Lamport.

– An invited talk “My early days in distributed computing theory: 1979-1982” by
Nancy Lynch.

– An invited talk “Provably unbreakable hyper-encryption using distributed systems”
by Michael Rabin.

– A panel on “The contributions of the WDAG/DISC community to distributed com-
puting: a historical perspective” by Eli Gafni, Michel Raynal, Nicola Santoro, Jan
van Leeuwen and Shmuel Zaks (who were the PC members of the second WDAG,
Amsterdam, 1987).

Past: A Short History

The Workshop on Distributed Algorithms on Graphs (WDAG) was initiated by Eli
Gafni, Nicola Santoro and Jan van Leeuwen in 1985. It was intended to provide a fo-
rum for researchers and other interested parties to present and discuss recent results and
trends in the design and analysis of distributed algorithms on communication networks
and graphs.

Then, more than 10 years later, the acronym WDAG was changed to DISC (the
international symposium on DIStributed Computing). This change was made to reflect
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the expansion from a workshop to a symposium as well as the expansion of the research
areas of interest. So, following 11 successful WDAGs, DISC’98 was the 12th in the
series.

Since 1996 WDAG/DISC has been managed by a Steering Committee consisting
of some of the most experienced members of the distributed computing community.
The main role of this committee is to provide guidance and leadership to ensure the
continuing success of this conference. To do so, the committee oversees the continu-
ous evolution of the symposium’s research areas of interest, it forges ties with other
related conferences and workshops, and it also maintains contact with Springer-Verlag
and other professional or scientific sponsoring organizations (such as EATCS). The
structure and rules of the DISC Steering Committee, which were composed by Sam
Toueg and Shmuel Zaks, can be found at http://www.disc-conference.org, along with
information about the previous DISC conferences.

The location, program chairs, and proceedings of the past 20 WDAG/DISC meetings
are summarized in Table 1, and the Steering Committee Chairs are listed in Table 2.

Table 1. The past Wdag/Disc

Year Location Program Chair(s) Proceedings
1985 Ottawa N. Santoro and J. van Leeuwen Carleton Scientific
1987 Amsterdam J. van Leeuwen LNCS 312
1989 Nice J.-Cl. Bermond and M. Raynal LNCS 392
1990 Bari N. Santoro and J. van Leeuwen LNCS 486
1991 Delphi S. Toueg and P. Spirakis LNCS 579
1992 Haifa A. Segall and S. Zaks LNCS 647
1993 Lausanne A. Schiper LNCS 725
1994 Terschelling G. Tel and P. Vitányi LNCS 857
1995 Le Mont-Saint-Michel J.-M. Hélary and M. Raynal LNCS 972
1996 Bologna Ö. Babaoglŭ and K. Marzullo LNCS 1151
1997 Saarbrücken M. Mavronicolas and Ph. Tsigas LNCS 1320
1998 Andros S. Kutten LNCS 1499
1999 Bratislava P. Jayanti LNCS 1693
2000 Toledo M. Herlihy LNCS 1914
2001 Lisbon J. Welch LNCS 2180
2002 Toulouse D. Malkhi LNCS 2508
2003 Sorrento F.E. Fich LNCS 2848
2004 Amsterdam R. Guerraoui LNCS 3274
2005 Cracow P. Fraigniaud LNCS 3724
2006 Stockholm S. Dolev These proceedings

Table 2. Steering committee chairs

Period 1996-1998 1998-2000 2000-2002 2002-2004 2004-2006 2006-2008
SC chair Sam Toueg Shmuel Zaks André Schiper Michel Raynal Alex Shvartsman Paul Vitányi
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Epilogue, and Future

Together with the whole DISC community, we congratulate DISC for its 20th anniver-
sary. We feel proud to have taken part in this important and successful activity of our
research community, and are confident that DISC will continue to play a central role in
years to come.

We wish to thank all those who contributed over the years to the success of DISC.
Each played an essential role, and each forms a vital link in the DISC chain:

– The local organizers, and their teams, who did everything to ensure a smooth and
successful conference,

– The program committee chairs, program committee members, and external refer-
ees, who ensured the high academic level of the conference,

– The participants of the WDAG and DISC conferences,
– The steering committee members,
– The sponsor organizations, for their generous support over the years,

and - last but not least -
– All the members of the distributed computing community who submitted papers to

WDAG and DISC.

We are confident that the DISC community will continue to play a central role within
the distributed computing and communication networks research areas for many years
to come.

HAPPY ANNIVERSARY TO DISC!

This photo is from DISC 2005 in Cracow, Poland, and was taken during the banquet
at Wierzynek 1364 restaurant (one of the oldest restaurants in Europe). It shows the
first five chairs of the DISC steering committee (from left to right: Shmuel Zaks, Alex
Shvartsman, Michel Raynal, André Schiper and Sam Toueg).
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Raipin-Parvédy, Philippe 46
Rajasekaran, Sanguthevar 474
Rajsbaum, Sergio 329
Raynal, Michel 1, 580, 581
Reiter, Michael K. 254
Riegel, Torvald 284

Santoro, Nicola 105, 580
Scherer III, William N. 179
Schiper, Nicolas 557
Schmidt, Rodrigo 557
Schmitt, Alan 269
Schuster, Assaf 90
Scott, Michael L. 179
Segala, Roberto 238
Shalev, Ori 194
Shalom, Eran 209
Shalom, Mordechai 459
Shavit, Nir 194
Shimony, Benny 120
Shvartsman, Alexander A. 474, 537
Spear, Michael F. 179

Toueg, Sam 534, 581
Travers, Corentin 1
Tronel, Frédéric 560

van Leeuwen, Jan 580
Venkatesan, S. 572
Voulgaris, Spyros 560

Wattenhofer, Roger 520
Wieland, Joachim 569
Woelfel, Philipp 413

Xia, Cathy H. 489

Yavorskiy, Rostislav 566

Zaks, Shmuel 459, 580, 581
Zemtsov, Nikolay 566
Zhang, Li 489
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